CNT/ PMMA electromagnetic coating: effect of carbon nanotube diameter

Paddubskaya A.G.¹, Kuzhir P.P.*¹, Kuznetsov V.L.^{2,3,4}, Mazov I.N.^{2,3}, Moseenkov S.I.^{2,3}, Ishchenko A.V.^{2,3}, Romanenko A.I.^{3,5}, Anikeeva O.B.^{3,5}, Buryakov T.I.^{3,5}

 ¹Research Institute for Nuclear Problems of Belarusian State University, 220030, Minsk, Belarus
²Boreskov Institute of Catalysis SB RAS, 630090, Novosibirsk, Russia ³Novosibirsk State University, 630090, Novosibirsk, Russia
⁴Novosibirsk State Technical University, 630092, Novosibirsk, Russia
⁵Nikolaev Institute of Inorganic Chemistry, 630090, Novosibirsk, Russia *e-mail: polina.kuzhir@gmail.com

In the present communication we focus on the comparative study of the electromagnetic response properties provided by polymethylmetacrylate (PMMA) filled with well purified CVD multi-walled carbon nanotubes of two different mean diameters (9nm and 12-14nm). The effect of smaller diameter together with higher electromagnetic shielding effectiveness has been observed experimentally in Ka-band and interpreted theoretically. Geometry and polarizability of individual filler constituents – the constitutive parameters of nanocarbon assemblies – is addressed here to be pointed out as controllable factors for producing effective electromagnetic coating.

Figure: MWCNT/PMMA EM transmittance versus concentration of MWCNT. The inset figures: frequency dependence of real parts of the permittivity in Ka-band for MWCNT (9 nm diameter)/PMMA samples.

The work was partially supported by the ISTC project B-1708, and the EU FP7 project FP7-266529 BY-NanoERA.