Synthesis and characterization of the novel isomer 1,4,10,19,25,41,60,69-C₇₀(CF₃)₈

<u>Apenova M.G.*</u>, Rybalchenko A.V., Borkovskaya E.V., Belov N.M., Dorozhkin E.I., Ignat'eva D.V., Goryunkov A.A., Ioffe I.N.

Lomonosov Moscow State University, Chemistry Department, Moscow, 119992, Russia *e-mail: mg.apenova@mail.ru

A large number of different individual structurally-characterized $C_{60/70}(CF_3)_n$ compounds with n=2-18 is known. Under the typical conditions for trifluoromethylation, both with CF_3I [1] and silver trifluoroacetate [2], the major product is C_s -symmetrical $C_{70}(CF_3)_8$. Additionally isolated and characterized were two more isomers of $C_{70}(CF_3)_8$ molecule with C_2 -symmetry [1,3]. Here we report the synthesis and characterization of the novel asymmetrical 1,4,10,19,25,41,60,69- $C_{70}(CF_3)_8$ isomer.

For the preparation of C_1 - $C_{70}(CF_3)_8$ the typical two-step method was used [1]. The reaction of C_{70} and CF_3I in a glass ampoule at 420 °C gave a mixture of $C_{70}(CF_3)_n$ compounds, n=10-18, as evidenced by MALDI mass spectra. Further reaction of this mixture with C_{70} at 440 °C yielded lower trifluoromethylated fullerenes (n=2-10) *via* comproportionation. Isolation of novel isomer of $C_{70}(CF_3)_8$ was carried out by means of two-step HPLC separation.

On the basis of the ¹⁹F NMR data and the quantum chemical calculations at the DFT level the addition pattern for the experimentally obtained new C_1 - $C_{70}(CF_3)_8$ was suggested. 2D COSY ¹⁹F NMR data reveal that the new isomer of $C_{70}(CF_3)_8$ represents trifluoromethylated fullerene molecule with the C_1 -symmetry comprising a single continuous ribbon of edge-sharing *para*- and *meta*- $C_6(CF_3)_2$ hexagons.

- [1] Mutig T., Kemnitz E., Troyanov S.I., Mendeleev Commun, 19, 30 (2009).
- [2] Dorozhkin E. I., Ignat'eva D. V., Tamm N. B., Goryunkov A. A., Khavrel P. A., Ioffe I. N., Popov A. A., Kuvychko I. V., Streletskiy A. V., Markov V. Y., Spandal J., Strauss S. H., Boltalina O. V., *Chem. Eur. J.* **12**, 3876 (2006).
- [3] Mutig T., Ioffe I.N., Kemnitz E., Troyanov S.I., Mendeleev Commun. 18, 73 (2008).