Concentrating of higher metallofullerene and empty fullerene fraction with carbon cages of more than 100 carbon atoms

<u>Grushko Yu.S.</u>^{*1}, Kozlov V.S.¹, Artamonova T.O.², Khodorkovsky M.A.²

¹St.Petersburg Nuclear Physics Institute RAS, 188300, Gatchina, Russia ²Russian Scientific Centre "Applied Chemistry", 197198 St. Petersburg, Russia *e-mail: grushko@pnpi.spb.ru

The metallofullerenes and empty fullerenes form great families of homologues with increasing number of carbon atoms in a molecule up to formation of carbon nanotubes.

The most abundant in arc-produced carbon soot is metallofullerene $M@C_{82}$. Nevertheless main part of carbon-encapsulated metal atoms is located in high molecular weight fullerenes. For some applications, such, for instance, as MRI –contrasting, any metallofullerenes of $Gd@C_{2n}$ or their mixtures are suitable.

Here we report on the simple method of concentrating of higher homologues of metallofullerenes $Gd@C_{2n}$, based on the difference in solubility of metallofullerenes and empty fullerenes in special organic solvents. The usual procedure for preparation of $M@C_{82}$ is two stage extraction. The first stage is extraction from soot with o-xylene (or CS_2) of main part of empty fullerenes (C_{60} , C_{70} et al.) followed by second stage of extraction of metallofullerenes with DMFA(dimethylformamide). DMFA-extract contains main part of metallofullerenes but only $M@C_{82}$ can be easily redissolved in o-xylene. Therefore combining o-xylene and water for extraction of DMFA one can obtain solution of $M@C_{82}$ in o-xylene and the solid residue of higher metallofullerenes and empty fullerenes.

Figure. LD-TOF mass-spectrum of higher fullerene concentrate.

"Black" area is the Gd-metallofullerene region. It constitutes ~30% of residue.