The quenching of the Yb (III) porphyrazine complexes and heterocyclic ligands by C₆₀ in solutions

Lopatin M.A.*, Klapshina L.G., Grigoryev I.S., Semenov V.V., Lermontova S.A., Domrachev G.A.

G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia *e-mail: lopatin@iomc.ras.ru

The interaction of the Yb(III)tetra-aryl-tetra-cyano-porphyrazine complexes (Aryl=C₆H₅(I), C₆H₄F(II), C₆F₅(III), C₁₀H₇(IV)) with C₆₀ had been investigated. Complex (I) is readily soluble in organics. It is well compatible with a variety of polymeric matrices giving doped polymeric glasses, films and solutions which are highly luminescent ($\varphi = 13\%$) in the biologically relevant optical window covering the visible and near infrared range.

We investigated complexes (I-IV) luminescent spectra ($\lambda_{\text{excitation}}$ = 300 nm) in acetonitrile solutions using C₆₀ as a quencher in visible region ($\lambda_{\text{emission}} = 420\text{-}460$ nm). It had been found [1] that a quenching was caused by resonance interaction of aromatic hydrocarbons with fullerene C₆₀. Relative intensity of complexes (I-IV) emission dependence on quencher molar concentration is satisfied to Stern-Volmer equation with Kq = (1,24-1,89)*10⁵ l/mol because of a week CT-complex formation. The results are shown in the table.

Aryl	C ₁₀ H ₇	C ₆ H ₅	C ₆ H ₄ F	C_6F_5
$\lambda_{\text{emission}}(nm)$	428	456	425	453
Kq*10 ⁻⁵ (l/mol)	1.24	1.56	1.75	1.89
\mathbb{R}^2	0.892	0.997	0.993	0.994

Kq – Stern-Volmer quenching constants R^2 – correlation coefficient.

A comparison of the complex (I-IV) with organic ligands shows one order of magnitude increase of quenching constants. Such the compounds can be potentially used in photovoltaic devices.

This work was supported by the State Contract N_{P} Π -337 and programs of RAS.

[1] R.G.Bulgakov, D.I.Galimov, Russ. Chem. Bull. 3, 432-436(2007).