Reaction barriers and deformation energies of C₆₀-based composites

Sheka E.F.*, Shaymardanova L.Kh.

Peoples' Friendship University of Russia, 117198 Moscow, Russia *e-mail: sheka@icp.ac.ru

The current paper is aimed at the determination of barriers that govern the covalent coupling between two fullerenes C_{60} (C_{60} dimer), C_{60} and single-walled carbon nanotube ([C_{60} -(4,4)] carbon nanobud), and C_{60} and graphene ([C_{60} -(5,5)] and [C_{60} -(9,8)] graphene nanobuds). *Brutto* barriers determined as couplings energies E_{cpl}^{tot} are expanded over two contributions that present total energy of deformation of the composites' components E_{def}^{tot} and energy of covalent coupling E_{cov}^{tot} . In view of these energetic parameters and in contrast to expectations, seemingly identical reactions result in different final products. The peculiarity is suggested to be provided by a topochemical character of the covalent coupling between any two members of the sp^2 nanocarbons' family. The computations were performed by using the AM1 semiempirical version of unrestricted broken symmetry Hartree-Fock approach.