Shiliaeva L.A.¹, Korobov M.V.*¹, Avdeev M.V.², Senyavin V.M.¹, Semenyuk P.I.³

¹Department of Chemisry, Moscow State University, 119899, Moscow, Russia ²Joint Institute for Nuclear Research, Dubna, Moscow reg., Russia ³Department of Bioengineering and Bioinformatics, 119991, Moscow State University, Moscow, Russia *e-mail:mkorobov49@gmail.com

Solubility of C_{60} in N-methyl-2-pirrolidon (NMP) is a puzzle. It has long been known that UV-visible spectrum of C_{60} -NMP solution undergoes dramatic change in time [1]. This change may be attributed to the formation of C_{60} vander-Waals clusters/ C_{60} -NMP charge transfer complexes in the solution. Reasonable mechanism of the process is not established so far.

This study was focused on the stability of C_{60} monomers in NMP. Almost saturated concentration of monomers in NMP was obtained by gentle dissolution of C_{60} or by its extraction from alkenes. Monomers were easily extracted from NMP to alkenes (hexane, cyclohexane and octane) and back from alkenes to NMP. Extinction coefficients for C_{60} monomers in NMP were determined at different wavelengths. Abrupt fall of monomer's concentration in saturated solution is due to interaction of NMP with the surface of solid C_{60} . After addition of fresh solid C_{60} monomeric species re-appear in the solution.

Simple kinetic model was put forward to account for the results obtained. It involves successive processes of dissolution of C_{60} in the form of monomers, step aggregation of C_{60} in NMP, slow process of interaction of C_{60} with NMP, which terminates both growth of C_{60} clusters in the solution and dissolution of solid C_{60} .

The model represents evolution of UV-spectra of C_{60} – NMP saturated solution in time to a reasonable degree of approximation.

[1] Yevlampieva N.P., Biryulin Yu.F., Melenevskjaja E.Yu. et al., *Colloids and surfaces A* **209**, 167 (2002).

299

P5.62