Fullerenes P5.70

Effective synthesis of methano- and pyrazolinofullerenes

<u>Tuktarov A.R.</u>*, Khuzina L.L., Dzhemilev U.M.

Institute of Petrochemistry and Catalysis of RAS, 450075 Ufa, Russia *e-mail: ink@anrb.ru

In the present report, a synthetic approach to the selective synthesis of methano- and pirazolinofullerenes with potential biological activity through cycloaddition of the synthesized on the basis of farmaco-significant compounds diazoacetates to the C_{60} carbon clusters in the presence of the three-component catalyst $Pd(acac)_2$ - PPh_3 - Et_3Al is discussed. In this study, α -tocopherol, trolox, 20,29-dihydro betulinic and ursolic acids were used as pharmacophores.

Thus, the reaction of diazoacetates, derived from α -tocopherol and methyl ester of 20,29-dihydro betulinic acid, with [60]fullerene (o-dichlorobenzene, \sim 80°C, 1.5 h) assisted by the Pd(acac)₂-PPh₃-Et₃Al (1:2:4) catalyst leads to the corresponding fulleropirazolines 1 and 2 in the yields of 45 and 50% respectively. A change in the Pd:P:Al catalyst component ratio from 1:2:4 to 1:4:4 favors the formation of individual methanofullerenes 3 and 4. It is shown that the synthesized fulleropirazolines 1 and 2 are quite stable compounds and do not undergo any change even after boiling them in toluene for a day.

Metanofullerenes **5** and **6** have been exclusively obtained, when diazoacetates synthesized on the basis of the methyl esters of trolox and ursolic acid, were used in the reaction assisted by the catalytic system Pd(acac)₂-PPh₃-Et₃Al with a component ratio of 1:2:4.

HN N O
$$-R$$

$$kat (1:2:4)$$

$$kat (1:2:4)$$

$$(1:2:4)$$

$$(1:2:4)$$

$$3 \cdot 6$$

 $kat = Pd(acac)_2 - PPh_3 - Et_3Al$

R=
$$HO$$
 CO_2Me (2, 4); CO_2Me (5); CO_2Me (6)

This work was supported financially by the FTP "Scientific and pedagogical staff of innovative Russian (Grant No. P1218 and No. 14.740.11.0014).