Рисунки к главе 5

Рис.5.1.

Рис.5.2

Рис. 5.3

Рис.5.4

Рис.5.5.

Рис.5.6

Рис. 5.7.

Рис.5.8

Рис.5.9.

Рис. 5.10.

Рис.5.11.

Рис.5.12.

Рис. 5.13.

Рис. 5.14.

Рис. 5.15.

Рис. 5.16.

Рис.5.17.

Рис.5.18.

Рис.5.19.

Рис.5.20

Рис.5.21.

Рис.5.22.

Рис. 5.23.

Рис. 5.27.

Рис. 5.28.

Рис.5.29

Подписи к рисункам главы 5

Рис.5.1. **Параметр угловой анизотропии** для **3***p*⁶ электронов **Ar** . Сплошная линия – ПСФО, пунктир – ХФ, точки – эксперимент [4], звездочки – эксперимент [5].

Рис.5.2. Параметр угловой анизотропии $\beta_{5p}(\omega)$ фотоэлектронов из 5 p^6 оболочки Хе. Пунктир - расчет ПСФО с учетом взаимодействия только 5 p^6 электронов, сплошная линия - ПСФО с учетом межоболочечного взаимодействия. Экспериментальные точки из работ [7-10].

Рис.5.3. Параметр угловой анизотропии 5s² электронов Xe. Сплошная линия – ПСФО, пунктир – XФ, штрих-пунктир – релятивистское РПСФ [13], точки и кружки - эксперимент [12].

Рис.5.4. Параметр угловой анизотропии 3*d* электронов в Mn^+ . Сплошная линия – ПСФО с включением только $3p \rightarrow 3d$ перехода, пунктир – ПСФО с дополнительным включением $3p \rightarrow 4s$ перехода.

Рис.5.5. Недипольный параметр $\gamma_{1s}^{C}(\omega)$ для Не. Пунктир – ХФ, сплошная линия – ПСФО.

Рис.5.6. Недипольный параметр $\gamma_{2s}^{C}(\omega)$ для Ne. Пунктир – X Φ , *r*-форма, штрих - пунктир – Х Φ , *v*-форма, сплошная линия – ПС Φ О.

Рис. 5.7. Недипольный параметр $\lambda_{2p} = \gamma_p^C + 3\delta_p^C$ для **2р-электронов Ne**. Пунктир - ХФ, *r*-форма, сплошная линия - ПСФО.

Рис.5.8. Недипольный параметр угловой анизотропии γ_{3s}^C для Ar. Пунктир - ХФ, *r*-форма, сплошная линия - ПСФО.

Рис.5.9. **Недипольный параметр** λ_{3p} для **Ar**. Пунктир - ХΦ, *r*-форма, сплошная линия – ПСФО.

Рис. 5.10. Недипольный параметр γ_{4s}^{C} для Kr. Пунктир - ХФ, *r*-форма, сплошная линия – ПСФО.

Рис.5.11. Недипольный параметр для 4*р* электронов Kr. Пунктир - ХФ, *г*-форма, сплошная линия – ПСФО.

Рис.5.12. Недипольный параметр для 5s электронов в Xe. Пунктир - XФ, *r*-форма, сплошная линия – ПСФО.

Рис. 5.13. **Недипольный параметр** для **5**р электронов в **Хе.** Пунктир - ХФ, *r*-форма, сплошная линия – ПСФО.

Рис. 5.14. Дипольные параметры угловой анизотропии $\beta(\omega)$ $3d_{5/2}$ и $3d_{3/2}$ уровней **Хе.** $3d_{5/2}$ -уровень: штрих- пунктир – ХФ, сплошная линия – СП ПСФО; $3d_{3/2}$ - уровень: штрих – штрих – пунктир – ХФ, пунктир – СП ПСФО.

Рис. 5.15. Дипольные параметры угловой анизотропии $\beta(\omega)$ $3d_{5/2}$ и $3d_{3/2}$ уровней Cs. $3d_{5/2}$ -уровень: штрих - пунктир – ХФ, сплошная линия – СП ПСФО; $3d_{3/2}$ - уровень: штрих – штрих - пунктир – ХФ, пунктир – СП ПСФО.

Рис. 5.16. Дипольные параметры угловой анизотропии $\beta(\omega)$ $3d_{5/2}$ и $3d_{3/2}$ уровней Ва. $3d_{5/2}$ -уровень: штрих- пунктир – ХФ, сплошная линия – СП ПСФО; $3d_{3/2}$ - уровень: штрих – штрих – пунктир – ХФ, пунктир – СП ПСФО.

Рис.5.17. Недипольный параметр угловой анизотропии γ_{3d}^C для Xe. $3d_{5/2}$ -уровень: штрих- пунктир – XФ, сплошная линия – СП ПСФО; $3d_{3/2}$ - уровень: штрих – штрих – пунктир – ХФ, пунктир – СП ПСФО.

Рис.5.18. Недипольный параметр угловой анизотропии γ_{3d}^C для Cs. $3d_{5/2}$ -уровень: штрих- пунктир – ХФ, сплошная линия – СП ПСФО; $3d_{3/2}$ - уровень: штрих – штрих – пунктир – ХФ, пунктир – СП ПСФО.

Рис.5.19. Недипольный параметр угловой анизотропии δ_{3d}^C для Сs. $3d_{5/2}$ -уровень: штрих- пунктир – ХФ, сплошная линия – СП ПСФО; $3d_{3/2}$ - уровень: штрих – штрих – пунктир – ХФ, пунктир – СП ПСФО.

Рис.5.20. Недипольный параметр угловой анизотропии λ_{3d} для Cs. $3d_{5/2}$ -уровень: штрих- пунктир – ХФ, сплошная линия – СП ПСФО; $3d_{3/2}$ - уровень: штрих – штрих – пунктир – ХФ, пунктир – СП ПСФО.

Рис.5.21. **Недипольный параметр угловой анизотропии** λ_{3d} для **Ва.** $3d_{5/2}$ -уровень: штрих- пунктир – ХФ, сплошная линия – СП ПСФО; $3d_{3/2}$ - уровень: штрих – штрих – пунктир – ХФ, пунктир – СП ПСФО.

Рис.5.22. Спин - поляризационные параметры и параметр угловой анизотропии для фотоионизации атома Tl (6s²6p) в окрестности автоионизационного резонанса 6s6p². Сравнение экспериментальных данных [41] (точки) с предсказанными теоретическими зависимостями [40] (сплошные линии). Рис.5.23. Степень поляризации фотоэлектронов для 5*p*_{1/2} и 5*p*_{3/2} подоболочек Xe. (a) Спиновая поляризация *P*_{trans}. (б) Спиновая поляризация *P*_{dyn}. Пунктир – XФ, сплошная линия – ПСФО, штрих-пунктир – релятивистское ПСФО, точки – эксперимент [46].

Рис.5.24. Квадрупольные матричные элементы, умноженные на импульс фотона k (a), и фазы (б) для переходов $5p \rightarrow \varepsilon f$ в атомах Hg, Z=80 (сплошная линия) и Rn, Z=86 (пунктир). Расчеты X Φ [50].

Рис.5.25. Различные геометрии эксперимента для наблюдения недипольных эффектов в спиновой поляризации фотоэлектронов [50]. (а) и (г) – циркулярно поляризованный свет, (б) и (в) – линейно поляризованный свет, \vec{e} - вектор поляризации фотона, \vec{s} - вектор спина электрона, \vec{p} и \vec{k} – импульсы электрона и фотона соответственно.

Рис.5.26. (а) Дипольные поляризационные параметры для фотоионизации 5*p*_{1/2} подоболочки Hg. (б). Степени поляризации фотоэлектронов для различных геометрий эксперимента, определяемые уравнениями (5.24)-(5.26). Расчеты для дипольных переходов в ПСФО, для квадрупольных – в ХФ [50].

Рис. 5.27. Спиновая поляризация фотоэлектронов, определяемая уравнением (5.27) для линейно поляризованного света при геометрии эксперимента показанной на рис. 5.256 (сплошная линия), и параметр анизотропии углового распределения β (пунктир). Расчеты для дипольных переходов в ПСФО, для квадрупольных – в ХФ [50].

Рис. 5.28. Угловое распределение фотоэлектронов для циркулярно поляризованного света при геометрии эксперимента, показанной на рис. 5.25г. Пунктирная линия - расчет в дипольном приближении, сплошная линия - расчет с учетом квадрупольных поправок. Расчеты для дипольных переходов в ПСФО, для квадрупольных – ХФ [50].

Рис. 5.29. Спин-поляризационные параметры $A^{j}(\omega)$, $\alpha^{j}(\omega)$ и $\xi^{j}(\omega)$ для $3d_{5/2}$ и $3d_{3/2}$ уровней Хе в СП ПСФО и ХФ. $3d_{5/2}$ - уровень: штрих – пунктир – ХФ, сплошная линия – СП ПСФО; $3d_{3/2}$ -уровень: штрих-штрих-пунктир – ХФ, пунктир - СП ПСФО.

Рис. 5.30. Спин-поляризационные параметры $A^{j}(\omega)$, $\alpha^{j}(\omega)$ и $\xi^{j}(\omega)$ для $3d_{5/2}$ и $3d_{3/2}$ уровней Сs в СП ПСФО и ХФ. $3d_{5/2}$ - уровень: штрих – пунктир – ХФ, сплошная линия – СП ПСФО; $3d_{3/2}$ -уровень: штрих-штрих-пунктир – ХФ, пунктир - СП ПСФО.

Рис. 5.31. Спин-поляризационные параметры $A^{j}(\omega)$, $\alpha^{j}(\omega)$ и $\xi^{j}(\omega)$ для $3d_{5/2}$ и $3d_{3/2}$ уровней Ва в СП ПСФО и ХФ. $3d_{5/2}$ - уровень: штрих – пунктир – ХФ, сплошная линия – СП ПСФО; $3d_{3/2}$ -уровень: штрих-штрих-пунктир – ХФ, пунктир - СП ПСФО.