6. Рассеяние на атомах и ионах

6.1 Упругое рассеяние медленных электронов

Сечение упругого рассеяния электронов, как и любых других частиц с энергией E и импульсом $p = \sqrt{2mE}$ (в атомной системе единиц m – масса налетающей частицы в единицах электронных масс), выражается через фазы рассеяния $\delta_{\ell}(E)$ парциальных волн ℓ с помощью следующей формулы [ЛЛ]:

$$\sigma^{el}(E) = \sum_{\ell=0}^{\infty} \sigma_{\ell}^{el}(E) = \frac{\pi}{p^2} \sum_{\ell=0}^{\infty} (2\ell+1) \left| 1 - e^{2i\delta_{\ell}(p)} \right|^2, \qquad (6.1)$$

где $\delta_{\ell}(p)$ есть фаза упругого рассеяния парциальной волны ℓ , вообще говоря, комплексная. Она определяется асимптотикой волновой функции рассеивающейся частицы [ЛЛ]:

$$\psi_{\vec{p}}(\vec{r}) = \frac{i}{2pr} \sum_{\ell=0}^{\infty} (2\ell+1) P_{\ell}(\cos\theta) \Big[(-1)^{\ell} e^{-ipr} - e^{+ipr+2i\delta_{\ell}} \Big]$$
(6.2)

Имея выражение для волновой функции при $r \to \infty$, можно найти фазы рассеяния и с их помощью сечение рассеяния.

Для определенности, рассмотрим рассеяние электронов. Расчет радиальных волновых функций с данным орбитальным моментом ℓ проводится нами сначала в приближении ХФ. Налетающий электрон рассеивается на ядре и N атомных электронах. Для описания налетающего электрона используется функция $\varphi_{E\ell}^{N+1}(\vec{r})$ (см. Раздел 3.1). Ее радиальная часть $P_{E\ell}^{N+1}(r)$ имеет асимптотику:

$$P_{E\ell}^{N+1}(r) \approx \frac{1}{\sqrt{\pi p}} \sin\left(pr - \frac{\pi\ell}{2} + \delta_{\ell}^{HF}(E)\right), \tag{6.3}$$

определяя тем самым ℓ -ую фазу рассеяния.

Роль электронных корреляций сводится к тому, что появляется дополнительное по сравнению с хартри - фоковским, *поляризационное* воздействие со стороны атома мишени на налетающий электрон. В ПСФО поляризационное взаимодействие включает следующую последовательность диаграмм

+ более высокие порядки теории возмушений +

+ соответствующие обменные члены и члены с "обращением времени".

Приведенные диаграммы описывают взаимодействие налетающего электрона с атомными электронами, в процессе которого происходит виртуальное, т.е. временное возбуждение последних.

Поляризационное взаимодействие на больших расстояниях от атома сводится к потенциалу (см. например, [AM]) $U_{pol}(r) = -\alpha/2r^4$, где α есть точная дипольная статическая поляризуемость атома-мишени. Однако эта формула справедлива лишь на очень больших расстояниях от атома. Вне этой области, включая расстояние порядка радиуса атома, поляризационное взаимодействие Σ не сводится просто к потенциалу, это взаимодействие является нелокальным, т.е. зависит от двух координат \vec{r} и \vec{r}' , а также от энергии налетающего электрона $\Sigma = \Sigma(r, r', E)$. Напомним, что этот потенциал является собственно-энергетической частью функции Грина, которая обсуждалась в Главе 3 (см формулы (3.27)-(3.29)).

Расчет ПСФО поправок к фазе рассеяния производится с помощью комплекса программ АТОМ (см. Главу 11) следующим образом [1,АМ]. Сначала рассчитываются матричные элементы поляризационного взаимодействия $\langle E\ell | \hat{\Sigma}(E_1) | E'\ell \rangle$, учитывающие диаграммы (6.4). Вычисление этого матричного элемента (от неприводимой собственно-энергетической части функции Грина) проводится ПО формуле аналогичной формуле (3.29). При этом вместо входящих и выходящих дырочных состояний (i, i') рассматриваются электронные состояния $(E\ell, E'\ell)$, а учет диаграмм высших порядков, входящих в (6.4), происходит при замене матричного элемента $\langle |\hat{U}| \rangle$ на эффективное взаимодействие $\langle |\hat{\Gamma}(\omega)| \rangle$ из (3.20). С помощью полученных матричных элементов $\langle E\ell | \hat{\Sigma}(E_1) | E'\ell \rangle$ решается интегральное уравнение, которое позволяет точно учесть выбранное поляризационное взаимодействие [АЧ,1]:

$$\left\langle E\ell \Big| \hat{\Sigma}(E_1) \Big| E'\ell \right\rangle = \left\langle E\ell \Big| \hat{\Sigma}(E_1) \Big| E'\ell \right\rangle + \sum_{E'} \left\langle E\ell \Big| \hat{\Sigma}(E_1) \Big| E''\ell \right\rangle \frac{1}{E_1 - E'' + i\delta} \left\langle E''\ell \Big| \hat{\Sigma}(E_1) \Big| E'\ell \right\rangle$$
(6.5)

Решение этого уравнения позволяет найти матричный элемент приводимой собственно-энергетической части функции Грина и соответственно поправки ПСФО к ХФ фазам упругого рассеяния с помощью формулы [1]:

$$e^{i\Delta\delta_{\ell}(E)}\sin\Delta\delta_{\ell}(E) = -\pi \left\langle E\ell \middle| \widehat{\Sigma}(E) \middle| E\ell \right\rangle.$$
(6.6)

Полное значение фазы упругого рассеяния $\delta_{\ell}(E)$ есть сумма ХФ и ПСФО вкладов:

$$\delta_{\ell}(E) = \delta_{\ell}^{HF}(E) + \Delta \delta_{\ell}(E) . \qquad (6.7)$$

Предложенный подход позволил впервые описать с высокой точностью экспериментальные данные по упругому рассеянию медленных электронов на значительном числе атомов без использования феноменологического поляризационного потенциала. В расчетах с феноменологическими потенциалами параметры выбираются обычно так, чтобы обеспечить наилучшее согласие с экспериментом.

Если поляризационное взаимодействие невелико, его достаточно учесть по теории возмущений в первом порядке в уравнении (6.5), а ПСФО поправки к ХФ фазе в этом случае малы. Поэтому они могут находиться с помощью соотношения, прямо следующего из (6.6):

$$\delta_{\ell}(E) \approx -\pi \left\langle E\ell \left| \hat{\Sigma}(E) \right| E\ell \right\rangle \tag{6.8}$$

Впервые эта формула была использована в работах [2,3] для описания рассеяния медленных электронов на атомах благородных газов. Качество расчетов иллюстрируется рис. 6.1, где сравниваются результаты ПСФО [3] с данными опыта [4] для атома Хе. Многоэлектронные корреляции при малых энергиях налетающих электронов *E* качественно изменяют сечение упругого рассеяния, объясняя существование минимума Рамзауэра [4], экспериментально обнаруженного еще в начале 30-х годов прошлого века.

Определенный интерес представляет собой исследование упругого рассеяния на атомах с полузаполненными оболочками [5], где был успешно применен метод СП ХФ и СП ПСФО. Результатом проведенных вычислений явилась существенная разница при рассеянии электронов с различными проекциями спинов.

Решение уравнения (6.5) для случая рассеяния медленных электронов на

щелочноземельных атомах, в частности Са, результаты для которого представлены на рис.6.2, привело к предсказанию существования минимума Рамзауэра при очень малой энергии E = 0.03 эВ [6-8]. Сравнение расчета с экспериментальными данными [9] показывает неплохое согласие при небольших импульсах налетающего электрона.

Уравнение (6.5), если поляризационное взаимодействие достаточно велико, может описывать и связанные состояния электрона в поле атома A, т.е. уровни основного состояния и, если таковые существуют, дискретные возбуждения отрицательного иона A^- . Было показано, что поляризационное взаимодействие в рамках ПСФО достаточно сильно, чтобы обеспечить существование щелочноземельных отрицательных ионов Ca⁻, Sc⁻, Ba⁻. Расчет дал разумные значения для энергии их связи [10].

6.2. Неупругое рассеяние электронов

Полное сечение неупругого рассеяния $\sigma_{inel}(p)$ выражается через мнимую часть фазовых сдвигов $Im \delta_{\epsilon}(E)$ [ЛЛ]:

$$\sigma_{inel}(E) = \frac{\pi}{p^2} \sum_{\ell=0}^{\infty} (2\ell + 1) \left[1 - e^{-4 Im \delta_l(E)} \right]$$
(6.9)

Мнимая часть фазовых сдвигов в ПСФО находится из решения уравнения (6.5). Для атомов с малой поляризуемостью $Im \delta_{\ell}(E)$ пропорциональна $Im \Sigma(E)$:

$$Im \delta_{\ell}(E) = -\pi \left\langle E\ell \Big| Im \hat{\Sigma}(E) \Big| E\ell \right\rangle$$
(6.10)

Обычно рассматривается процесс неупругого рассеяния электрона с возбуждением определенного уровня или ионизацией определенной оболочки. В этих случаях непосредственно рассчитывается амплитуда интересующего процесса в так называемом приближении искаженных волн без учета и с учетом многоэлектронных корреляций. К примеру, амплитуда ионизации *i* оболочки электронным ударом в одночастичном приближении представляется диаграммой

$$\begin{array}{c}
E,v & E',v' \\
\hline
E'',v'' \\
i \\
\end{array}$$
(6.11)

а с учетом многоэлектронных корреляций в рамках ПСФО - в виде:

Здесь $\Gamma(\omega)$ есть эффективное межэлектронное взаимодействие, определяемое уравнением (3.20), $\omega = E - E'$. Волновые функции налетающего электрона $\varphi_E(x)$ и рассеянного электрона $\varphi_{E'}(x)$ суть решения уравнения (3.1), обозначаемые как $\varphi_v^{N+1}(x)$ (см. Раздел.3.2). Волновая функция выбитого электрона $\varphi_{E''\ell''}(x)$ обычно есть решение уравнения (3.1), имеющее вместе с вакансией *i* определенный полный момент *L* и спин $S - \varphi^{N(LS)}(x)$.

В амплитудах (6.11) и (6.12) выполняется закон сохранения энергии $E = E' + E'' + E_i$. Как и при исследовании фотоионизации в Главах 4 и 5, интегрирование по угловым и суммирование по спиновым переменным осуществляется аналитически. Вычисление радиальных матричных элементов, соответствующих амплитудам (6.11) и (6.12), осуществляется с помощью программного комплекса АТОМ (см. Главу 11). Сечение неупругого рассеяния $d\sigma(E)/d\omega$ пропорционально квадрату модуля его амплитуды $A_{FF'F''}$:

$$\frac{d\sigma(E)}{d\omega} \approx \frac{1}{E} \left| A_{EE'E''_{l}} \right|^{2}$$
(6.13)

Конкретные расчеты проводились для значительного числа различных неупругих процессов в ряде атомов [11], в частности, вычислено сечение ионизации 3*s* оболочки Ar [12]. Достигнуто хорошее согласие с экспериментально полученной энергетической зависимостью, однако измеренное и рассчитанное сечения существенно (в 2.1 раза) отличаются по величине [13]. Роль виртуальных возбуждений $3p^6$ электронов в сечении неупругого рассеяния значительно меньше, чем в фотоионизации – более существенным оказывается влияние выбора самосогласованного поля, обмена между электронами и примешивания " $3p^{-2}3d^p$ " конфигурации к состоянию " $3s^{-1}$ " (см. Раздел 4.8).

6.3. Обобщенные силы осцилляторов

При высоких энергиях *E* налетающего электрона его волновая функция может быть заменена плоской волной. В этом случае при рассеянии электронов обмен с атомными электронами становится несущественным. В результате исчезает прямая зависимость сечения от вида рассеиваемой частицы. Дифференциальное по переданной атому-мишени энергии ε и углу рассеяния налетающей частицы Ω сечение $d^2\sigma/d\varepsilon d\Omega$ выражается через так называемую *обобщенную силу осциллятора* (OCO) $F_{v_1v_2}(q,\varepsilon)$:

$$\frac{d^2\sigma}{d\varepsilon d\Omega} = \frac{4p'}{q^2 p\varepsilon} F_{\nu_1\nu_2}(q,\varepsilon)$$
(6.14)

где переданный атому импульс $q = |\vec{p} - \vec{p}'|$. Импульсы налетающей и рассеянной частиц *p* и *p*' определяются энергиями *E* и *E*': $p = \sqrt{2mE}$ и $p' = \sqrt{2mE'}$, где *m* – масса налетающей частицы в единицах электронных масс. В одноэлектронном приближении ОСО определяется следующей формулой:

$$F_{\mathbf{v}_{1}\mathbf{v}_{2}}(q,\varepsilon) = \frac{2\varepsilon}{q^{2}} \left| \left\langle \mathbf{v}_{1} | exp(i\vec{q}\vec{r}) | \mathbf{v}_{2} \right\rangle \right|^{2}$$
(6.15)

Эта величина содержит информацию о реакции атома на передачу ему энергии и импульса. При малых переданных импульсах q все кроме дипольной компоненты ОСО пропорциональны q^2 или еще более высоким степеням q, и, следовательно, малы. Дипольная компонента ОСО пропорциональна сечению фотоионизации. Многоэлектронные корреляции в ПСФО учитываются уравнением (3.17), где вместо оператора d подставляется экспонента $exp(i\vec{q}\vec{r})$ из (6.15). Эта экспонента может быть разложена по угловым полиномам Лежандра $P_{\ell}(\cos \theta)$ [ЛЛ]:

$$e^{i\vec{q}\vec{r}} = \sum_{\ell=0}^{\infty} i^{\ell} (2\ell+1) j_{\ell}(qr) P_{\ell}(\cos\theta)$$
(6.16)

Здесь $j_{\ell}(qr)$ есть сферическая функция Бесселя, а θ - угол между векторами \vec{q} и \vec{r} . После подстановки (6.16) в (3.17), используя представление (3.5) и проводя интегрирование по угловым и суммирование по спиновым переменным, получаем отдельно уравнение ПСФО для каждой компоненты ОСО с данным ℓ - $F_{v_1v_2}^{\ell}(q,\omega)$. В рамках ПСФО уравнение для функции $F(q,\omega)$ подобно уравнению (3.17), и в символической форме может быть представлено аналогично уравнению (3.12)

$$\hat{F}(q,\omega) = f(q) + f(q)\hat{\chi}(\omega)\hat{F}(q,\omega)$$
(6.17)

Были проведены исследования роли многоэлектронных корреляций в дипольной, монопольной и квадрупольной компонентах ОСО. Они показали сильное влияние внутри- и межоболочечных корреляций во всех компонентах ОСО $F_{v_1v_2}^{\ell}(q,\omega)$, начиная от малых и вплоть до весьма больших значений q (q = 2) [14].

6.4. ОСО атомов благородных газов. Результаты расчета

Остановимся подробнее на результатах вычислений ОСО, поскольку они весьма чувствительны к электронным корреляциям. Эти данные существенны, так как позволяют увидеть зависимость роли корреляций не только от переданной энергии ω атому как при фотопоглощении, но и от переданного импульса *q*.

Расчеты ОСО для атомов благородных газов Ne, Ar, Kr и Xe были проведены в широкой области энергий, переданных атому (до 120 *Ry*), и моментов q (до q = 2 *a.e.*) (см. также [14]). Результаты получены в одноэлектронном приближении XФ и с учетом многоэлектронных корреляций в ПСФО. При расчете ОСО рассматривались три мультипольности с $\ell = 0,1,2$, соответствующие монопольным, дипольным и квадрупольным переходам, соответственно.

Зависимость от переданной энергии ω для дипольных ОСО при $q \rightarrow 0$ хорошо известна, так как для q = 0 ОСО прямо пропорциональны сечению фотоионизации (4.1). В этом сечении были обнаружены очень сильные многоэлектронные эффекты, как описано в Главе 4, в широкой области энергий фотона, от порогов внешних оболочек вплоть до значений ω далеко над порогами внутренних оболочек. Известно, что большое разнообразие корреляционных эффектов, в частности внутри- и межоболочечное взаимодействие, играет важную роль в процессе фотоионизации. Наиболее существенным среди них являются гигантские дипольные резонансы. Однако почти ничего не известно об изменениях этих резонансов в ОСО с ростом q даже в дипольном канале. Монопольные и квадрупольные же ОСО с этой точки зрения совсем не исследовались.

Расчеты ОСО в [14] проводились для электронов внешних и промежуточных оболочек, а именно, для $2p^6$, $2s^2$, $1s^2$ в Ne, $3p^6$, $3s^2$ в Ar, $4p^6$, $4s^2$ и $3d^{10}$ в Kr, $5p^6$, $5s^2$ и $4d^{10}$ в Xe, причем учитывалось взаимодействие всех этих электронов. Для проверки точности расчетов они выполнялись в двух формах оператора перехода A(q), а именно в форме длины $A^{\{r\}}(q)$ и скорости $A^{\{v\}}(q)$. В ПСФО, так же как при расчетах с точными волновыми функциями, результаты в этих двух формах должны совпадать [АЧ].

Расхождение на 1-2 % между двумя этими формами считалось приемлемым для всех наших расчетов. Поэтому достаточно привести результаты только в форме длины. Они демонстрируют неожиданное многообразие эффектов межэлектронного взаимодействия, которые продолжают играть заметную роль при росте энергии ω и момента *q* для всех рассматриваемых ОСО (монопольных, дипольных, квадрупольных) и во всех атомах.

Многоэлектронные эффекты в Кг и особенно в Хе особо сильны. С ростом q гигантские и интерференционные резонансы существенно меняются. Кроме них, с ростом q появляются новые максимумы для всех, т.е. монопольных, дипольных и квадрупольных ОСО. С одной стороны, межэлектронное взаимодействие оказывает сильное влияние на ОСО малоэлектронных субвалентных ns^2 оболочек. С другой стороны, при высоких ω эти оболочки существенно воздействуют на ОСО соседних многоэлектронных оболочек, подобно тому, как это имеет место при фотоионизации – см. Разделы 4.2 и 4.7.

Исследование корреляционных эффектов в ОСО монопольных, дипольных и квадрупольных переходов Ne, Ar, Kr и Xe требовало вычисления ОСО плотностей в XФ и ПСФО и их отношения. На рисунках 6.3(a,б,в)–6.6(a,б,в) приведены результаты расчётов в ПСФО плотностей ОСО для Ne, Ar, Kr и Xe, монопольных, дипольных и квадрупольных переходов, соответственно, для переданных импульсов $q \le 2.0$.

Обсудим, в качестве примера, атом Кг. ОСО в Кг для монопольного канала изображены на рис. 6.5а. Анализ результатов демонстрирует, что монопольные ОСО, в соответствии с общей теорией, с ростом q растут как q^2 . Достигнув своих максимумов при $q_{max,n} \sim \frac{1}{r_n}$, где r_n – радиус ионизуемой оболочки, ОСО должны убывать с дальнейшим ростом q. Такое поведение имеет место вблизи порога ионизации, где вклад дает наружная 4p оболочка. Вблизи порога ионизации ОСО сначала быстро растут с увеличением q до q = 0.7 *a.e.*, а затем быстро убывают. Соответствующий максимум при q > 0.7 *a.e.*, с ростом q перемещается по направлению к более высоким энергиям. Вторая группа максимумов при $\omega_{max} \cong 7.5$ *Ry*, не меняющих положение с ростом q, появляется на пороге ионизации 3d оболочки Кг. Высота этих максимумов монотонно возрастает с ростом q вплоть до q = 1.9 *a.e.*, так как радиус этой оболочки меньше чем радиус 4p оболочки. Заметим, что с ростом q монопольные ОСО наружной $4p^6$ оболочки превращается в мощный и симметричный резонанс. На рис. 6.3a, 6.4a, и 6.6a показывает поведение монопольных ОСО в Ne, Ar и Xe.

Интересно изменение отношения ОСО, найденных в ПСФО и ХФ приближениях, $\eta_{4p-\varepsilon d,s}(\omega,q) = F_{4p-\varepsilon d,s}(\omega,q)/f_{4p-\varepsilon d,s}(\omega,q)$, показанное на рис. 6.7. Вариация этого отношения от 0.4 до 2.0 с изменением ω подтверждает сильное влияние многоэлектронных корреляций, а именно, гигантского резонанса в переходе $3d \rightarrow \varepsilon f$.

Рис.6.5б показывает изменение дипольных ОСО в Кг как функции ω и q. Они характеризуются двумя группами максимумов, возникающих на порогах ионизации 4p и 3d оболочек. Эти максимумы монотонно уменьшаются с ростом q. На рис. 6.36, 6.46, и 6.66 показывает поведение дипольных ОСО в Ne, Ar и Xe.

В качестве примера квадрупольных ОСО рассмотрим результаты расчета для Хе, приведенных на Рис.6.6в. Анализ результатов демонстрирует, что их зависимость от qпри малых переданных импульсах такая же, как и для монопольных ОСО. С ростом qони сначала быстро растут как q^2 , а затем, достигнув максимума при $q_{max,n} \sim \frac{1}{r_n}$, начинают уменьшаться. ОСО в Хе характеризуются тремя группами максимумов для всех рассматриваемых значений q. В первой группе максимумы быстро возрастают с ростом q вплоть до q = 1.1 *a.e.*, после чего они начинают убывать с дальнейшим ростом q. Положение максимума перемещается от 1.3 Ry при q=0.1 *a.e.* к 2.0 Ry при q=1.9 *a.e.* У второй группы максимум, соответствующий $\omega_{max} \approx 2.9$ Ry при q=0.3 *a.e.*, перемещается к $\omega_{max} \approx 5.7$ Ry при q=1.9 *a.e.* В третьей группе максимумы растут монотонно по амплитуде с ростом q и перемещаются от $\omega_{max} \approx 11$ Ry при q=0.3 *a.e.* до $\omega_{max} \approx 14.8$ Ry при q=1.9 *a.e.* И опять, как и в дипольных ОСО для Kr, возникает с ростом q мощный резонанс при больших переданных энергиях ω . На рис. 6.3в, 6.4в, и 6.5в показано поведение монопольных ОСО в Ne, Ar и Kr.

Обобщая приведенные результаты для ОСО благородных газов, отметим, что с ростом q относительная роль корреляций, особенно межоболочечных, изменяется очень заметно. Качественное объяснение этого – в осцилляциях оператора $exp(i\vec{q}\vec{r})$ как функции \vec{r} , который воздействует по-разному на матричные элементы переходов из внешних, субвалентных и внутренних оболочек рассматриваемых атомов. В результате, относительная роль второго и первого членов в уравнении (6.17) различна, что ведет к значительным расхождениям ОСО для заданных значений ω и q.

Из полученных в [14] результатов для атомов благородных газов следует, что электронные корреляции, как внутри-, так и межоболочечные, важны в ОСО для всех рассматренных значений ω и *q*. Дополнительные максимумы и минимумы,

обусловленные влиянием многоэлектронных корреляций, появляются не только в дипольных, но также в монопольных и квадрупольных ОСО. Большой интерес представляет также зависимость ОСО от q в дипольном канале. Все приведенные результаты расчетов не тривиальны и заслуживают тщательной экспериментальной проверки. Результаты этих и подобных расчетов будут стимулировать экспериментальные исследования неупругого рассеяния быстрых электронов.

Другой источник интереса к *ab initio* OCO, представленных выше, происходит из исследований их поведения при малых *q*. Действительно, хотя известно, что при $q \rightarrow 0$ OCO должны стремиться к оптическим силам осцилляторов, прямое приближение к этому пределу, используя экспериментальные данные по неупругому рассеянию, очень трудно, если не невозможно вообще [15]. Чтобы достигнуть предела $q \rightarrow 0$ для данного значения ω , нужно иметь значения сечений неупругого рассеяния при $p \rightarrow \infty$, что невозможно реализовать экспериментально. Вместо этого разработаны методы полуфеноменологического и аналитического продолжения с использованием техники полюсов Редже [16,17] с тем, чтобы прояснить поведение ОСО при малых *q* [15]. Однако эти исследования были сконцентрированы в основном на оптически разрешенных атомных переходах в области малых *q*. С другой стороны, расчеты в рамках ПСФО дают довольно точные результаты, по крайней мере, так было в случае процессов фотоионизации. Поэтому совершенно естественно сравнить поведение ОСО при малых *q*, полученное с использованием ПСФО, с расчетами в технике полюсов Редже.

Весьма подробные расчеты в ПСФО [14] включают изучение поведения ОСО при малых q для дипольных, монопольных и квадрупольных атомных переходов, поскольку многоэлектронные корреляционные эффекты существенны уже при малых значениях q. Подобное исследование важно в контексте нормировки измеренных относительных дифференциальных сечений и проведения их надежных измерений в этой области, где они трудно выполнимы.

Учет многоэлектронных корреляций в ПСФО сильно влияет на зависимость ОСО от q и ε . Их роль значительна и для дискретных, как обычных, так и автоионизационных переходов [18]. На рис.6.8 приведены результаты расчетов ОСО для $5s^2$ оболочки Хе [13,19], иллюстрирующие большую роль межоболочечных корреляций, как $5p^6$, так и $4d^{10}$ оболочек.

6.5. ОСО дискретных уровней как способ определения их углового момента

Недавно оказалось [20], что ОСО дискретных уровней данной мультипольности могут служить для определения углового момента исследуемого уровня. С помощью формул (6.15) и (6.16), получаем выражение для ОСО дискретного перехода $f_{fi}^{L}(q, \omega_{if})$ мультипольности L с уровня i на уровень f, с энергией перехода ω_{if} :

$$f_{f_{i}}^{L}(q) = \frac{2\omega_{if}}{q^{2}} \left| \int_{0}^{\infty} P_{n_{i}l_{i}}^{*}(r) j_{L}(r) P_{n_{f}l_{f}}(r) dr \right|^{2}, \qquad (6.18)$$

где $P_{n_{i}l(n_{f}l_{f})}(r)$ - радиальные одноэлектронные ХФ функции начального (конечного) состояний, определённые в (3.5). Учёт ПСФО корреляций достигается подстановкой $f_{fi}^{L}(q)$ в уравнение (6.17), что позволяет получить $F_{fi}^{L}(q)$ и новую энергию перехода $\omega_{if}^{R,L}$ - с учётом ПСФО корреляций.

В экспериментальной работе [21] впервые была измерена абсолютная величина ОСО недипольного перехода $3p \rightarrow 4p$ в Ar. Авторы интерпретировали его как квадрупольный. Однако в работе [20] было отмечено, что рядом с квадрупольным $\omega_{if}^{R,2} = 13.70eV$ имеется ещё и монопольный переход $\omega_{if}^{R,0} = 13.45eV$, тогда как экспериментально они неразличимы и имеют энергию 13.4eV. Что касается абсолютной величины вклада, то монопольный в полтора раза больше квадрупольного, что видно из рис. 6.9. Роль ПСФО корреляций оказалась небольшой. На рис. 6.10 результаты расчёта сравнены с результатами эксперимента [20] и из него видно разумное согласие, достигнутое, только если считать наблюдаемый на опыте уровень комбинацией квадрупольного и монопольного переходов, с преобладающим вкладом последнего. Заметим, что на рис. 6.10, в соответствие со сравнительно низкой энергетической разрешающей способностью в эксперименте, к расчётному значению добавлен и небольшой вклад $3p \rightarrow 5p$, L = 0,2 уровней.

Аналогичные расчёты были проведены для всех низших, и последующих за ними переходов наружных электронов в атомах благородных газов [22], где ситуация для Ne, Kr и Xe оказалась качественно, в смысле доминирования монопольного перехода, сходной с имеющей место в Ar. Это демонстрируется на рис. 6.11, 6.12 и 6.13 для Ne, Kr и Xe, соответственно.

Существенный дополнительный вклад вносит и ОСО октупольных уровней [23]. Разумеется, при малых переданных импульсах *q* полностью доминирует

дипольный вклад, но с $q \ge 1$ ситуация меняется кардинально, и вклад октупольного перехода близкой энергии оказывается доминирующим, а, следовательно, этот уровень может быть обнаружен и исследован.

6.6. Комптоновское рассеяние на дискретные уровни и в сплошной спектр

В настоящем разделе рассмотрено комптоновское, т.е. неупругое рассеяние фотонов. В простейшем приближении оно представляется двумя диаграммами (6.19)

Сечение этого процесса выражается через ОСО. В (6.19) учтено, что для нерелятивистских электронов оператор, определяющий эффект Комптона упрощается и сводится к взаимодействию атомного электрона с внешним полем ~ $\exp(i\vec{q}\vec{r})$, а сечение этого процесса выражается, таким образом, через ОСО.

Действительно, хорошо известно [БЛП], что оператор, который описывает взаимодействие фотонов с *N* атомными электронами в нерелятивистском приближении, выглядит следующим образом:

$$\hat{\mathbf{K}} = \sum_{i=1}^{N} \left(-\frac{1}{c} \, \hat{\vec{p}}_i \, \vec{A}(\vec{r}_i) + \frac{1}{2c^2} \, \vec{A}^2(\vec{r}_i) \right), \tag{6.20}$$

где $\vec{A}(\vec{r}_i)$ - вектор - потенциал электромагнитного поля. Сечение неупругого или комптоновского рассеяния фотонов выражается через операторы $\hat{\vec{p}}_i \vec{A}(\vec{r}_i)/c$ и $\vec{A}^2(\vec{r}_i)/2c^2$. Но вклад члена $\hat{\vec{p}}_i \vec{A}(\vec{r}_i)/c$ в комптоновское рассеяние нерелятивистскими электронами мал. Для внешнего электромагнитного поля имеем $\vec{A}(\vec{r}_i) \sim \vec{e} \exp(i\vec{k}\vec{r}_i)$.

Поэтому дифференциал сечения комптоновского рассеяния по углу рассеяния фотона $d\Omega$ означает атомный переход из начального состояния $|i\rangle$ в конечное $\langle f|$, и $d\sigma_{if}^{C}(\omega)/d\Omega$ может быть выражено через матричные элементы оператора $\exp(i\vec{k}\vec{r}_{i})$:

$$\frac{d\sigma_{if}^{C}(\omega)}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{0} \frac{E-\omega}{E} \sum_{f} \left| \left\langle f \left| \sum_{j=1}^{N} e^{i\vec{q}\vec{r}_{j}} \right| i \right\rangle \right|^{2}.$$
(6.21)

Здесь Е есть энергия налетающего фотона, а ω - энергия, переданная атому в процессе

рассеяния, $(d\sigma/d\Omega)_0$ классическое сечение томпсоновского рассеяния света на электроне (см. [БЛП]). Вектор \vec{q} есть момент импульса, переданный атому в процессе комптоновского рассеяния и равный $\vec{q} = \vec{k} - \vec{k'}$, где $\vec{k'}$ - момент импульса вылетающего фотона. Суммирование по конечным состояниям *f* выполняется с учетом закона сохранения энергии, $\omega = \varepsilon_f - \varepsilon_i$.

Последний член справа в (6.21) пропорционален, согласно (6.15) ОСО, что позволяет придти к выражению дифференциальных по углу рассеяния фотона сечению

$$\frac{d\sigma_{f_i}^C(\omega)}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{cl} \frac{E-\omega}{E} \frac{q^2}{2\omega} \sum_{L} F_{f_i}^L(\omega, q) \equiv \left(\frac{d\sigma}{d\Omega}\right)_{cl} \xi(\omega_{if}, q).$$
(6.22)

Комптоновское рассеяние интересно при больших энергиях *E*. Помня ограничение по ω , $\omega \le 20Ry$, имеем $\omega/E << 1$. Поэтому, пренебрегая поправками порядка $\omega/E << 1$, получаем следующее отношение

$$q \approx (2E/c)\sin\vartheta, \qquad (6.23)$$

где $\vartheta = \theta/2$ и θ угол рассеяния вылетающего фотона.

В приближении ХФ дифференциальное сечение рассеяния Комптона получается подстановкой туда (6.18) вместо ОСО в рамках ПСФО - $F_{fi}^{L}(q)$.

В работе [24] приведены результаты расчётов $\xi(\omega_{fi},q)$ (см. (6.21)) для двух наиболее низколежащих монопольных, дипольных, квадрупольных и октупольных возбуждённых уровней наружных электронов Ne, Ar, Kr и Xe. Результаты этой работы иллюстрируются рисунками 6.14a,б и 6.15a,б, где приведены значения $\xi(\omega_{if},q)$, определённой (6.22). Из рисунков первых два относятся к Ne, а вторые два – к Ar. Ввиду близости уровней с разной мультипольностью, приведены суммы вкладов. Обращает внимание двугорбая структура в Ne – рис. 6.14a,б, которая отсутствует в Ar – рис. 6.15a,б. Для других уровней 3p - 4s и 3p - 5s, однако, двугорбая структура проявляется и в Ar.

В [25] формула (6.22) применена для вычисления сечения Комптоновской ионизации атома. В качестве примера рассмотрены атомы Ne и Xe. Рассмотрено дифференциальное по углу рассеяния фотона и по переданной атому энергии сечение Комптоновского рассеяния.

6.7. "Атомное" или "поляризационное" тормозное излучение

Электрон или другая заряженная частица, рассеиваясь на атоме, может терять энергию, испуская фотон. Соответствующий процесс называется тормозным излучением (ТИ). Вероятность этого неупругого процесса и сечение испускания фотона приводятся во всех учебниках по электродинамике. Если мишенью является структурная частица, к примеру, атом, составляющие его электроны, возбуждаясь виртуально или реально вследствие взаимодействия с налетающей частицей, становятся источником излучения. Интенсивность последнего, называемого "атомным" или "поляризационным" тормозным излучением (ПТИ), особенно просто вычислить в первом приближении по взаимодействию налетающей частицы с атомными электронами. На языке диаграмм полная амплитуда ТИ, обычного и поляризационного, представляется двумя членами $E_{\bar{p}\bar{p}'}(\omega)$, соответственно:

Здесь заштрихованный блок есть амплитуда оператора взаимодействия фотона с атомным электроном в ПСФО. Существование ПТИ было впервые предсказано в [26], где в качестве атома-мишени рассматривался водород, и в [27] для многоэлектронных атомов, в частности Ar.

Аналитическое выражение для амплитуды ТИ может быть записано в символической форме, подобно (3.12)

$$\hat{F}(\omega) = \hat{f} + \hat{U}\hat{\chi}(\omega)\hat{D}(\omega)$$
(6.25)

Аналогично (3.12), уравнение (6.19) может быть представлено в матричной форме. ПТИ описывается вторым членом в (6.25). Оно значительно, иногда на порядки, больше обычного, если дипольный матричный элемент $\langle |\hat{D}(\omega)| \rangle$ велик, т.е. если атоммишень обладает сильными резонансными возбуждениями, и/или если взаимодействие налетающей частицы с атомными электронами велико. Спектр ТИ становится простым и допускающим прозрачный качественный анализ для достаточно быстрых налетающих электронов [28]

$$\frac{d\sigma}{d\omega} \approx \frac{16}{3} \frac{Z^2}{c^3 p^2 \omega} ln \, 2pR + \frac{16}{3} \frac{\omega^3 |\alpha(\omega)|^2}{c^3 p^2} ln \frac{p}{\omega R}, \qquad (6.26)$$

где Z - заряд ядра, а $\alpha(\omega)$ - дипольная поляризуемость атома-мишени (см. Раздел 4.11). Первый член описывает обычное ТИ, а второй – поляризационное, R - радиус атома. Поскольку вероятность ПТИ пропорциональна $|\alpha(\omega)|^2$, его вклад усиливается всюду, где поляризуемость атома-мишени велика, т.е. при частотах, близких к гигантским резонансам и гигантским автоионизационным резонансам.

ПТИ универсально в том смысле, что оно генерируется не только в электронатомном столкновении, но и в столкновениях атома или иона с другими заряженными или нейтральными частицами, к примеру, атомами, протонами, нейтронами, нейтрино и т.п. В последнее время изучение ПТИ превратилось в отдельную область физики, где опубликовано множество статей, несколько обзоров и монографий. Многие теоретические предсказания собраны в книгах [28,29].

Интенсивность обычного ТИ обратно пропорциональна квадрату массы налетающей частицы m_{μ} , тогда как ПТИ практически не зависит от m_{μ} . Поэтому для тяжелой налетающей частицы, протона или иона, полностью доминирующим механизмом генерации электромагнитного излучения сплошного спектра является ПТИ. Абсолютные измерения спектра ТИ отсутствуют. Однако наличие максимума в сечении испускания фотонов при энергии, близкой к частоте гигантского резонанса, можно считать установленной. На рис.6.16 приведен полный спектр ТИ, генерируемого в столкновении электрона энергии 44 *Ry* с атомом Xe. Видно, что в спектре доминирует вклад ПТИ (экспериментально измеренный спектр [30] нормирован на результаты вычислений). Результаты большого числа сравнительно новых расчетов собраны в [31].

Значительный интерес представляет сравнение спектра ТИ, возникающего в столкновении электрона, α -частицы и Не при одинаковых скоростях, для конкретности расчета, v = 5 *a.e.*, с атомом Хе, что иллюстрируется на рис. 6.17. Именно вклад ПТИ приводит к тому, что спектры для столь различных по массе и заряду налетающих частиц оказываются одного порядка величины.

ПТИ представляет собой мощный механизм генерации электромагнитного излучения. Его теоретическое исследование, проведенное в многочисленных работах (см. список в [29,31]), привело к целому ряду предсказаний, ждущих своей проверки на эксперименте. Так, было обнаружено, что ПТИ позволяет предсказать существование

нового механизма ускорения атомов под действием потока электромагнитного излучения [32]. Этот механизм принципиально отличается от обычного, определяемого упругим рассеянием фотона на изолированном атоме. Другим примером служит предсказание и расчет интенсивности черенковского излучения нейтральных атомов, движущихся через прозрачную среду [33].

6.8. Взаимодействие после столкновения

Межэлектронное взаимодействие приводит к изменению формы автоионизационного профиля вблизи порога его образования. Эффект этот, названный "взаимодействие после столкновения" (ВПС), был открыт в работах Ф. Рида [34]. Впервые квантово - механическая теория этого эффекта предложена в [35]. Эта теория позволяет проводить достаточно аккуратно расчеты формы и абсолютных величин параметров автоионизационного профиля. Простейшая диаграмма теории многих тел, описывающая амплитуду неупругого рассеяния электрона вблизи порога ионизации атома с учетом эффекта ВПС, представляется в виде следующей диаграммы

Здесь сдвоенная линия изображает электрон, движущийся на больших расстояниях от атома в поле вакансии *i* с асимптотикой (-1/*r*), тогда как линия *E*" представляет электрон в поле нейтрального атома, возбужденного на дискретный автоионизационный уровень *nj*. Внезапная смена поля в момент распада этого состояния проявляется во внезапном же изменении волновой функции электрона и появлении в соответствующем аналитическом выражении для амплитуды интеграла перекрытия $\langle R_{E''} | \tilde{R}_{E'} \rangle$ одноэлектронных волновых функций, вычисленных в поле возбужденного атома и иона соответственно.

Аналитическое исследование амплитуды (6.27) [35] показало, что под влиянием ВПС происходит перераспределение энергии между электронами: «быстрый» электрон ε_f ускоряется, а «медленный» \tilde{E}' - тормозится. При этом автоионизационный контур

деформируется и расширяется. Кроме того, теория ВПС предсказывает возможность появления дополнительной осцилляции в профиле автоионизационной линии. ВПС Абсолютная величина эффектов растет с увеличением ширины автоионизационного уровня Гавт. Вследствие ВПС медленный электрон может оказаться захваченным на высоко расположенный дискретный уровень в поле атома с вакансией *i*. ВПС проявляется и в рассеянии быстрых электронов, если рассматривается сечение, дифференциальное по энергии, переданной атому вблизи порога его возбуждения. Теория ВПС, сформулированная в [35], успешно развивалась и привела к предсказанию большого числа эффектов, обнаруженных впоследствии экспериментально (см. обзор [36]).

6.9. Рассеяние медленного позитрона

Метод, описанный в Разделе 6.1, может быть применен к описанию рассеяния позитронов на атомах. На первый взгляд эта задача проще, чем рассеяние электронов, поскольку взаимодействие позитрона с атомом не включает обменных членов. Однако реальная ситуация заметно сложнее. Действительно, поляризационное взаимодействие включает диаграмму, подобную (3.21)

(6.28)

где сдвоенная линия обозначает позитрон. В промежуточном состоянии возбужденный электрон и позитрон находятся далеко от атома с вакансией *i*. Они могут образовать связанное состояние – типа позитрония - и потому, наряду с (6.28), следует принять во внимание И бесконечную последовательность диаграмм, учитывающую взаимодействие виртуально возбужденного электрона и позитрона. Точно эту задачу трех тел - взаимодействие двух частиц (электрона и позитрона) в поле атома с вакансией і - решить крайне трудно. Вместо этого было предложено [37] учитывать образование позитрония изменением энергии промежуточного состояния, смещая его $I_{ns} = 0.5 \ Ry$. Без учета образования на величину энергии связи позитрония позитрония описать данные опыта при низкой энергии невозможно. В результате использования предложенного метода удалось успешно описать сечение упругого рассеяния позитронов на атоме *He* [38]. На рис 6.18 представлены результаты расчета в сравнении с различными экспериментальными данными [39-42]. Учет образования позитрония привел к уменьшению сечения рассеяния при малых энергиях на порядок величины. С ростом энергии позитрона этот эффект ослабевает, однако и при энергии позитрона 18 *эB* сечение уменьшается в два раза. В расчете учитывались *s*-, *p*- и *d*-парциальные волны. Виртуальное образование позитрония существенно сказывается на всех трех парциальных волнах. Это иллюстрируется на рис. 6.19 и 6.20.

Сечение рассеяния медленных позитронов на *He* существенно меньше, чем сечение рассеяния медленных электронов. Это объясняется качественно следующим образом: в то время как самосогласованное поле, действующее на налетающий позитрон, является отталкивающим, поляризационный потенциал оказывается притягивающим. Эти два взаимодействия компенсируют друг друга, что и приводит к уменьшению сечения. В рассеянии электронов эти два взаимодействия являются притягивающими, в результате чего их воздействия складываются, и сечение оказывается большим.

Этот же простой подход в применении к атому с большой поляризуемостью *Li* (см. Рис 6.21) позволил предсказать качественно новый важный результат – появление поляризационного отталкивания вместо обычного притяжения, что обусловлено отрицательной величиной поляризуемости *Li*. Этот результат ждет своей проверки на эксперименте. Результаты расчетов в ПСФО с учетом образования позитрония оказались сравнимыми с результатом гораздо более сложных расчетов, выполненных в работе [43].

Кроме того, данный метод был применен к атомам благородных газов (см. puc.6.22-6.24). В Ne, как и в He, сечение рассеяния при учете виртуального образования позитрония при малых энергиях уменьшается на порядок величины. В Ar этот эффект выражен более слабо, а в Kr и Xe сечение не уменьшается, а возрастает. Расчеты для благородных газов находятся в разумном согласии с данными различных экспериментов [41,44-46], также приведенных на рисунках.

На рис.6.25 приведены результаты расчета сечений упругого рассеяния позитронов на атомах *Na*. Как и в случае пары *He* и *Li*, сечение рассеяния на атомах *Na* на один-два порядка величины превышает сечение рассеяния на предшествующем атоме благородного газа. В настоящее время нет экспериментальных данных для рассеяния позитронов на щелочных атомах. Результаты расчета в приближении

сильной связи [47] находятся в хорошем согласии с расчетами в ПСФО.

Представляет интерес сравнить группу из трех атомов: *He, Li, Be* (рис. 6.18, 6.21, 6.26). Роль образования позитрония в рассеянии на *Be* очень велика, а сечение рассеяния имеет тот же порядок величины, что и на *Li*. Это является следствием того факта, что поляризуемости этих атомов близки по величине.

Изложенный выше метод позволяет найти также мнимую часть фазы рассеяния, через которую выражается сечение неупругого рассеяния в соответствии с формулой (6.9). Основную часть сечения неупругого рассеяния составляет сечение образования позитрония. На рис. 6.27 приведены результаты расчета сечения неупругого рассеяния позитрона на атомах *Na* вместе с экспериментальным сечением образования позитрония. При энергиях выше 3 э*B* имеется неплохое согласие с экспериментом [48].

Литература к гл. 6.

- 1. Чернышева Л. В., Амусья М. Я., Давидович Д., Черепков Н. А. Препринт ФТИ № 663, Л.: ЛИЯФ, 1980.
- Amusia M. Ya., Cherepkov N. A., Chernysheva L. V., Shapiro S. G. Phys. Lett A. 1974. V. 46, N 6. P. 387-388.
- 3. Амусья М. Я., Танчич А., Черепков Н. А., Чернышева Л. В., Шапиро С. Г. ЖЭТФ. 1975. Т. 68, N 6. C. 2023-2031.
- 4. Ramsauer C., Kollath R. Ann. Phys. 1932. V. 72. P 345-351.
- 5. Амусья М. Я., Долматов В. К. ЖЭТФ. 1990. Т. 97, № 4. С. 1129-1139.
- *Грибакин Г. Ф., Иванов В. К., Кучиев М. Ю., Чернышева Л. В.* Препринт ФТИ им А.Ф.Иоффе №1096, Л.: ЛИЯФ, 1987.
- 7. Физика электронных и атомных столкновений / Грибакин Г. Ф., Иванов В. К., Кучиев М. Ю. №12. Санкт-Петербург, 1991. С. 77-88.
- Gribakin G. F., Gultsev B. V., Ivanov V. K., Kuchiev M. Yu. J. Phys. B: At. Mol. Opt. Phys. 1990. V. 23. P. 4505-4519.
- Романюк Н. И., Шпеник О. Б., Запесочный И. П. Письма в ЖЭТФ. 1980. Т. 32. С. 472-475.
- 10. Грибакин Г. Ф., Гульцев Б. В., Иванов В. К., Кучиев М. Ю. Письма в ЖТФ. 1989.
 Т. 15. С. 32-36; Грибакин Г. Ф., Гульцев Б. В., Иванов В. К., Кучиев М. Ю. Изв.
 ВУЗов. Физика. 1990. Т. 33. С. 86-96.
- 11. Amusia M. Ya., Sheinerman S. A. J. Phys. B. 1979. V. 12, N 4. P. 649-662.
- 12. Запесочный И. П., Жуков И. Г., Фельцман П. В. ЖЭТФ. 1973. Т. 65. С. 1357.
- 13. Amusia M. Ya., Ivanov V. K., Sheinerman S. A. J. Phys. B. 1976. V. 9, N 9. P. 1537-1553.
- Amusia M. Ya., Chernysheva L. V., Felfli Z., Msezane A. Z. Phys.Rev.A.2001. V. 64.
 P. 032711
- 15. Felfli Z., Embaye N., Ozimba P., Msezane A. Z. Phys. Rev A. 2001. V. 63. P. 012709.
- 16. Felfli Z., Msezane A. Z., Bessis D. Phys. Rev. Lett. 1998. V. 81. P. 963-966.
- 17. Haffad A., Felfli Z., Msezane A. Z., Bessis D. Phys. Rev. Lett.1996. V. 76. P. 2456 2459.
- 18. Амусья М. Я., Иванов В. К., Шейнерман С. А. ЖТФ. 1976. Т. 46, №10. С. 2207-2209.
- 19. *Amusia M. Ya, Chernysheva L. V.* Computation of Atomic Processes, Bristol-Philadelphya: IOP Publishing, 1997, 253 p.

- Amusia M. Ya., Chernysheva L. V., Felfli Z., Msezane A. Z. Phys. Rev. A. 2002. V. 65
 (5). P. 054701/1-4.
- 21. Fang X. W. and Leung K. T. Phys. Rev. A. 2000. V. 60. P. 062703.
- Amusia M. Ya., Chernysheva L. V., Felfli Z., Msezane A. Z. Phys. Rev. A. 2003. V. 65, P. 022703-1-8.
- 23. Bulletin of the American Physical Society. / Amusia M. Ya., Chernysheva L. V., Felfli Z., Msezane A. Z. Tucson (USA): DAMOP04, 2004. P. D1 125.
- 24. Amusia M. Ya., Chernysheva L. V., Felfli Z., Msezane A. Z. Phys. Rev. A. 2002. V. 65(6). P. 062705/1-8.
- 25. Amusia M. Ya., Chernysheva L. V., Felfli Z., Msezane A. Z. Surface Review and Letters. 2002. V. 9, N 2. P. 1155-1160.
- 26. Буймистров В. М., Трахтенберг Л. И. ЖТФ. 1975. Т. 69. С. 108-114.
- 27. Амусья М. Я., Балтенков А. С., Пайзиев А. А. Письма в ЖЭТФ. 1976. Т. 24, №6.
 С. 366-369.
- 28. Амусья М. Я. Тормозное излучение. М.: Энергоиздат, 1990.
- 29. Амусья М. Я., Буймистров В. М., Зон Б. А., Цытович В. Н. Поляризационное тормозное излучение частиц и атомов. М.: Наука, 1987. 335с.
- 30. Verkhovtseva E. T., Gnathenko E. V., Pogrebnjak P. S. J. Phys. B. 1983. V. 16. P. L613-L620.
- Korol A. V., Solov'yov A. V. J. Phys. B: At. Mol. Opt. Phys. 2000. V.30. P. 1105-1150.
- 32. Амусья М. Я., Балтенков А. С. Письма в ЖТФ. 1986. Т. 12. С. 1123-1124.
- 33. Амусья М. Я., Соловьев А. В. Письма в ЖТФ. 1986. Т. 12. С. 1369-1373.
- 34. Read F. H. Radiat. Res. 1975. V. 54. P. 23-35.
- 35. Амусья М. Я., Кучиев М. Ю., Шейнерман С. А. ЖЭТФ. 1979. Т. 76. С. 470-481.
- 36. Кучиев М. Ю., Шейнерман С. А. УФН. 1989. Т. 32. С. 569-580.
- Amusia M. Ya., Cherepkov N. A., Chernysheva L. V., Shapiro S. G. J. Phys. B. 1976.
 V. 9. P. L531-534.
- 38. Амусья М. Я., Черепков Н. А., Чернышева Л. В. ЖЭТФ. 2003. Т. 124. С. 39-45.
- 39. Canter K. F., Coleman P. G., Griffith T. C., Heyland G. R. J. Phys B. 1973. V. 6. P. L201-L205.
- 40. Jaduszliwer E., Paul D. A. L. Can. J. Phys. 1973. V. 51. P. 1565-1573.
- 41. Sinapius G., Raith W., Wilson W. G. J. Phys. B. 1980. V. 13. P. 4079-4083.

- 42. Mizogava T., Nakayama Y., Kawaratan T., Tosaki M. Phys. Rev. A. 1985. V. 31. P. 2171-2183.
- 43. *McAlinden M. T., Kernoghan A. A, Walters H. R. J.* J. Phys. B: At. Mol. Opt. Phys. 1997. V. 30. P. 1543-1552.
- 44. Dababneh M. S., Kauppila W. E., Downing J. B., Lapierre F., Pol V., Smart J. H., Stein T.S. Phys. Rev. A. 1980. V. 22. P. 1872-1884.
- 45. Stein T. S., Kauppila W. E. Adv. At. Mol. Phys. 1982. V. 18. P. 53-65.
- 46. Charlton M. Rep. Prog. Phys. 1985. V. 48. P. 737-755.
- 47. *Hewitt R. N., Noble C. J., Bransden B. H.* J. Phys. B: At.Mol.Opt.Phys. 1993. V. 26.
 P. 3661-3673.
- 48. Zhou S., Parikh S. P., Kauppila W. E., Kwan C. K., Lin D., Surdutovich A., Stein T. S. Phys. Rev. Lett. 1994. V. 73. P. 236-239.