Рисунки к главе 7



Рис. 7.1.



Рис. 7.2.



Рис. 7.3.



Рис. 7.4.



Рис.7.5.



Рис.7.6.



Рис.7.7.



Рис. 7.8



Рис. 7.9



Рис. 7.10



Рис. 7.11.



Рис. 7.12



Рис.7.13



Рис.7.14

## Подписи к рисункам гл.7

**Рис.7.1.** Сечение фотоотрыва электрона из  $5p^6$  оболочки Г. Точки - одночастичный модельный расчет [18], тонкий пунктир и штрих-пунктир – ХФ сечения  $5p \rightarrow \varepsilon d$  перехода в форме длины и скорости, соответственно, жирный пунктир и штрих-пунктир -  $5p \rightarrow \varepsilon d$  и  $5p \rightarrow \varepsilon s$  в ПСФО, сплошная линия - полное сечение  $5p^6$  оболочки в ПСФО [14,15].

**Рис.7.2.** Сечение фотоотрыва электрона из  $5s^2$  оболочки Г. Пунктир – приближение ХФ, полученное с оператором длины, штрих-пунктир - приближение ПСФО с учетом влияния только  $4d^{10}$  оболочки, сплошная линия - приближение ПСФО с учетом влияния  $5p^6$  и  $4d^{10}$  оболочек [14], штрих-штрих-пунктир – релятивистское приближение ПСФО с учетом статической перестройки [19].

**Рис.7.3.** Сечение фотоотрыва для 3s<sup>2</sup> оболочки Na<sup>-</sup>. Пунктир, штрих-штрих-пунктир – приближения XФ в форме длины и скорости, соответственно, штрих-пунктир - приближение ПСФО [15], точки - приближение ПСФО с учетом поляризационных поправок для вылетающего электрона [20], сплошная линия – метод сильной связи [21].

Рис.7.4. Околопороговое сечение фотоотрыва электронов от отрицательного иона палладия Pd<sup>-</sup>. Пунктир и сплошная линия – парциальное сечение фотоотрыва наружных 5s электронов без учета и с учетом взаимодействия с  $4d^{10}$  оболочкой соответственно; штрихпунктир – парциальное сечение фотоотрыва 4d электронов в ПСФО [5].

Рис.7.5. Сечение фотоотрыва 4р электрона Са<sup>-</sup>. Теория: штрих-пунктир – метод уравнения Дайсона с учетом поляризационного взаимодействия фотоэлектрона и остова [11]; пунктир – многоконфигурационное приближение ХФ [25]; сплошная линия – метод R-матрицы [26]. Эксперимент из работ [27-29]. Вертикальные линии показывают положение различных порогов.

Рис.7.6. Сечение фотоотрыва 3*р* электронов от отрицательного иона кремния Si<sup>-</sup> в окрестности порога 3*s*<sup>2</sup> оболочки. Сплошная линия – ПСФО, взаимодействие только 3*p*<sup>3</sup> электронов; пунктир – ПСФО, с учетом взаимодействия между "3*s*3*p*<sup>4</sup>" резонансом и 3*p* электронами [15,16]; точки – эксперимент [34].

Рис.7.7. Сечение фотоотрыва 2*p* электронов от отрицательного иона бора В<sup>-</sup> в окрестности порога 2*s*<sup>2</sup> оболочки. Точки- эксперимент из [42,43]. Теория: пунктир – метод R-матрицы [44]; сплошная линия и штрих-пунктир – комбинированный метод: ПСФО + уравнение Дайсона с операторами длины и скорости, соответственно [38].

Рис.7.8. Поляризационные эффекты в сечении фотоотрыва 4*s* электронов от ОИ хрома Cr<sup>-</sup>. Вычисления проведены в рамках комбинированного метода [40]. Штрих-пунктир – учет поляризации только в основном состоянии для  $4s \downarrow$  электрона; сплошная линия и пунктир – метод ПСФО + уравнение Дайсона с 17 каналами при вычислении  $\Sigma$  и с операторами длины и

скорости, соответственно; штрих-штрих-пунктир – то же с учетом только 5 переходов из  $4s^{\uparrow}$  уровня.

**Рис.7.9.** Сечение фотоотрыва 2*s* электрона от ОИ гелия Не<sup>-</sup>. Точки- эксперимент из [45]. Теория: штрих-пунктир и штрих-штрих-пунктир – расчет с скорректированной 2s волновой функцией и ХФ функциями для фотоэлектрона єр с операторами длины и скорости, соответственно; пунктир и сплошная линия – с учетом динамической поляризации комбинированный метод: ПСФО + уравнение Дайсона с операторами длины и скорости, соответственно [39].

Рис.7.10. Сечение фотоотрыва 4*d* электронов от ОИ йода Г. Штрих-пунктир и пунктир – ХФ и ПСФО для 4*d*  $\rightarrow \varepsilon f$  парциального сечения соответственно; пунктир с точками – ПСФО для парциального 4*d*  $\rightarrow \varepsilon p$  сечения (умноженное на 5); сплошная линия – полное сечение для 4*d* [14,15]; штрих-штрих пунктир – релятивистское ПСФО с учетом статической перестройки [19]. Треугольники – экспериментальные результаты [49]умножены на фактор 1.7.

**Рис.7.11.** Сечение фотоотрыва 3*d* электронов от Ge<sup>-</sup> [46]. Штрих-пунктир и пунктир – спинполяризованный метод ПСФО для  $3d\downarrow$  и  $3d\downarrow$  уровней, соответственно; штрих-штрих-пунктир и сплошная линия – учет статической перестройки в рамках ОПСФО для  $3d\downarrow$  и  $3d\downarrow$  уровней, соответственно

Рис.7.12. Сечение фотоотрыва для Cr<sup>-</sup> в окрестности порога внутренней 3р оболочки. Штрих-пунктир и пунктир – парциальное сечение  $3d \uparrow \rightarrow \varepsilon f \uparrow$  канала, полученное без учета и с учетом взаимодействия с  $3p \downarrow \rightarrow \varepsilon d \downarrow$  переходом, соответственно; сплошная линия – полное сечение фотоотрыва, полученное в рамках ПСФО + уравнение Дайсона с учетом перестройки [40]. Стрелка показывает положение резонанса в  $3p \downarrow \rightarrow \varepsilon d \downarrow$  канале.

**Рис.7.13.** Сечение фотоотрыва 1*s* электронов Li<sup>-</sup>. Точки, квадраты - эксперимент из работ [51,52]. Штрих-пунктир – расчет в рамках R –матрицы [50,51]. Результаты расчета настоящей работы [53] с различными волновыми функциями: пунктир –  $\varepsilon s$ ,  $\varepsilon p$ ,  $\varepsilon d$  волновые функции в поле Дайсоновского замороженного остова. Сплошная линия -  $\varepsilon p$  функция в поле замороженного остова и перестроенные  $\varepsilon s$ ,  $\varepsilon d$  волновые функции в поле 1*s*2*s*2*p* Li. Положение теоретического порога 1*s*2*s*2*p* возбуждения сдвинуто на 0.5 эВ.

**Рис.7.14.** Сечение фототрыва 1*s* электронов С<sup>-</sup>. Сплошная линия - расчет по теории многих тел [55]. Точки- экспериментальные данные из работы [54], нормированные на теоретическое значение сечения фототрыва в максимуме.