8. Положение и распад атомных вакансий

8.1. Сдвиги атомных уровней и их ширина

Наблюдаемые на опыте энергии атомных уровней заметно отличаются от соответствующих ХФ значений. Причина отличия состоит в пренебрежении в ХФ существенно многоэлектронными эффектами, а именно изменения состояния всех электронов, т.е. в уже обсуждавшейся выше (см. Раздел 3.3) перестройке атомных оболочек вследствие образования вакансии в одной из них. Поправка к энергии уровня *i* - $E_{n_i l_i}$ - определяется совокупностью диаграмм, подобных (6.4) и отличающихся заменой входной и выходной электронных линий El на дырочные n_il_i [1]. Расчет вклада соответствующих корреляционных диаграмм во втором порядке теории возмущений приводит, как правило, к хорошему согласию с опытом для нейтральных атомов и положительных ионов. Так, для 3s оболочки Ar получено для разности $\left|E_{3s}^{\tilde{O}\tilde{O}}\right| - \left|E_{3s}^{\tilde{e}\tilde{t}\tilde{O}\tilde{O}}\right| = 0.45 \ eV$, что весьма близко к наблюдаемой на опыте разнице $\left|E_{3s}^{\tilde{O}\tilde{O}}\right| - \left|E_{3s}^{\tilde{y}\tilde{e}\tilde{n}\tilde{t}}\right| = 0.4 \ eV$. Сдвиг внутренних уровней выражается через монопольную статическую поляризуемость наружных оболочек $\alpha(0)$ [2]. Для более точного определения энергий атомных уровней можно использовать метод, который рассматривался в Разделе 7.1, а именно, решать интегральное уравнение (7.2) как задачу на собственные значения и собственные функции с вычисленным нелокальным потенциалом.

Ширина уровня или время жизни вакансии, созданной во внутренней оболочке атома, определяется процессами радиационного и Оже – распада. Рассмотрим роль многоэлектронных эффектов в этих процессах.

Хартри-фоковская амплитуда Оже-распада изображается диаграммой

С учетом многоэлектронных корреляций в ПСФО диаграмма Оже-процесса имеет вид

где энергия Оже–электрона равна $E_A = E_{jk} - E_i$, а энергия Оже–перехода - $\omega_{ji} = E_j - E_i$. Как и в предыдущих разделах, $\Gamma(\omega)$ есть эффективное взаимодействие в ПСФО, определяемое уравнением (3.19). Вероятность Оже - распада, или его ширина γ_A пропорциональна квадрату модуля амплитуд (8.1) или (8.2). В приближении ХФ она определяется выражением:

$$\gamma_i^{(A)HF} = 2\pi \sum_{j,k} |\langle iE_A | U | jk \rangle|^2 \delta(E_A - \varepsilon_j - \varepsilon_k + \varepsilon_i), \qquad (8.4)$$

где суммирование производится по всем состояниям j и k. Выражение для $\gamma^{(A)}$ в ПСФО получается заменой U в (8.3) на $\Gamma(\omega)$ из (3.20).

Ширина уровня количественно и качественно изменяется под влиянием многоэлектронных корреляций: в рамках ПСФО она может быть или увеличена по сравнению с ХФ значением, или существенно уменьшена. Особенно заметны эффекты ПСФО, если энергия распада близка к каким-либо характерным атомным частотам, к примеру, частоте гигантского резонанса. В качестве примера уместно привести ширины нескольких Оже - переходов в Хе. Для распада $4s^{-1}$ дырочного состояния по каналу $4s^{-1} \rightarrow 4p^{-1}5p^{-1}\varepsilon d$ его ширина $\gamma^{x\phi} = 3.48 \ eV$, а $\gamma^{\Pi C \phi O} = 0.47 \ eV$; для распада в другой канал $4s^{-1} \rightarrow 4p^{-1}5s^{-1}\varepsilon p$ имеем $\gamma^{x\phi} = 1.15 \ eV$, $\gamma^{\Pi C \phi O} = 0.1 \ eV$; для $4p^{-1} \rightarrow 4d^{-1}5p^{-1}\varepsilon d$ - $\gamma^{x\phi} = 0.87 \ eV$, а $\gamma^{\Pi C \phi O} = 0.22 \ eV$. Таким образом, под влиянием корреляций ширина γ значительно уменьшается. Однако в том же атоме имеется и пример противоположного действия – корреляции могут увеличивать вероятность Ожеэффекта. Так, для перехода $3s^{-1} \rightarrow 3p^{-1}5p^{-1}\varepsilon d$ его ширина $\gamma^{x\phi} = 0.52 \ eV$, а $\gamma^{\Pi C \phi O} = 1.24 \ eV$ [2].

Многоэлектронные корреляции существенно влияют и на вероятности радиационного распада, амплитуда которого в рамках ПСФО описывается двумя диаграммами

Выражение для радиационной ширины $\gamma_{\gamma i}$ в приближении XФ имеет вид

$$\gamma_{\gamma i}^{(r)HF} = \sum_{j} \frac{\omega_{ij}^{3}}{c^{3}} \Big| \langle i | d_{r} | j \rangle \Big|^{2} \delta \Big(\omega_{ij} - \varepsilon_{j} + \varepsilon_{i} \Big),$$
(8.5)

где оператор взаимодействия фотона с электроном взят в приближении «длины» d_r , согласно (4.3). Результаты расчётов радиационных ширин для ряда атомов в приближении ХФ $\gamma^{(r)HF}$ приведены в Таблице 1. Радиационная ширина в ПСФО $\gamma^{(r)RPAE}$ получается из (8.5) заменой d_r на D из (3.17).

Переход	ω_{ij} , Ry	$\gamma^{(r)HF}$	$\gamma^{(v)HF}$	ω_{ij} , Ry	$\gamma^{(r)_{HF}}$	$\gamma^{(v)HF}$
	Ne			Ar		
3s ⁻¹ - 3p ⁻¹				1.373	1.018	0.560
$2s^{-1} - 2p^{-1}$	2.160	1.449	0.9497	5.501	4.355	3.398
$2p^{-1} - 3s^{-1}$				16.59	2.658	2.313
$2s^{-1} - 3p^{-1}$				23.46	22.28	18.20
$1s^{-1} - 2p^{-1}$	63.841	355.7	309.6	218.07	6958	6493
$1s^{-1} - 3p^{-1}$				236.03	489.2	454.6
	Ca			Zn		
3s ⁻¹ - 3p ⁻¹	1.809	1.501	0.9048	3.597	4.022	3.189
3p ⁻¹ - 3d ⁻¹				6.114	14.370	10.98
$3p^{-1} - 4s^{-1}$	2.2903	0.1289	0.0770	7.094	0.6808	0.3971
$2s^{-1} - 2p^{-1}$	6.3879	5.214	4.109	10.871	9.720	8.115
$2p^{-1} - 3s^{-1}$	22.768	5.119	4.619	66.575	38.12	33.26
$2p^{-1} - 3d^{-1}$				76.286	711.5	628.5
$2p^{-1} - 4s^{-1}$	26.868	0.3277	0.2749	77.266	1.450	1.379
$2s^{-1} - 3p^{-1}$	30.965	55.50	46.93	81.043	574.1	516.5
1s ⁻¹ - 2p ⁻¹	271.48	11310	10641	628.73	68879	66251
$1s^{-1} - 3p^{-1}$	296.06	1065	997.9	698.90	8216	7869
	Kr			Xe		
$5s^{-1} - 5p^{-1}$				0.9748	0.7055	0.3523

Таблица 1. Вероятности радиационных переходов (в 10⁻⁵ eV)

$4s^{-1} - 4p^{-1}$	1.2573	1.034	0.553	3.696	5.114	4.041
$4d^{-1} - 5p^{-1}$				4.642	0.9397	0.6991
$4p^{-1} - 4d^{-1}$				6.461	20.36	15.63
$3s^{-1} - 3p^{-1}$	5.035	6.508	5.406	9.907	16.69	14.34
$4p^{-1} - 5s^{-1}$				10.128	3.005	2.251
$4s^{-1} - 5p^{-1}$				14.799	4.152	3.143
$3p^{-1} - 3d^{-1}$	9.013	23.86	19.70	18.207	55.10	48.63
$2s^{-1} - 2p^{-1}$	13.783	13.08	11.00	23.104	25.06	21.91
$3d^{-1} - 4p^{-1}$	6.602	0.9019	0.6709	40.221	23.75	22.87
$3d^{-1} - 5p^{-1}$				51.324	2.368	2.135
$3p^{-1} - 4s^{-1}$	14.358	3.794	2.979	54.732	61.21	55.09
$3p^{-1} - 4d^{-1}$				64.888	300.3	263.0
$3s^{-1} - 4p^{-1}$	20.650	9.756	7.643	68.334	387.6	348.7
$3p^{-1} - 5s^{-1}$				68.555	7.786	7.039
$3s^{-1} - 5p^{-1}$				79.437	41.26	36.77
$2p^{-1} - 3s^{-1}$	104.32	92.41	81.84	275.22	623.1	573.4
$2p^{-1} - 3d^{-1}$	118.37	2482	2259	303.33	23280	22044
$2s^{-1} - 3p^{-1}$	123.14	1608	1481	308.23	13539	12883
$2p^{-1} - 4s^{-1}$	123.72	9.052	8.484	339.86	130.5	119.4
$2p^{-1} - 4d^{-1}$				350.01	3208	3025
$2p^{-1} - 5s^{-1}$				353.68	15.77	14.79
$2s^{-1} - 4p^{-1}$	138.76	126.5	116.1	366.66	2791	2634
$2s^{-1} - 5p^{-1}$				377.76	265.2	250.2
$1s^{-1} - 2p^{-1}$	914.27	151100	146300	2093.12	841300	824300
$1s^{-1} - 3p^{-1}$	1023.62	21080	20340	2378.25	150700	147100
$1s^{-1} - 4p^{-1}$	1039.24	1525	1471	2436.67	28510	27800
$1s^{-1} - 5p^{-1}$				2447.78	2669	2603

Как и в Оже-распаде, многоэлектронные корреляции могут увеличить ширину радиационного распада или уменьшить ее [3], вплоть до фактически полного подавления, названного "радиационным самозапиранием оболочек" [4]. Сказанное иллюстрирует Таблица 2, где показано, сколь существенно ширины в ПСФО $\gamma_{\gamma}^{(r)RPAE}$ отличаются от ХФ значений $\gamma^{(r)HF}$.

Переход	ΧΦ-	Корреляц.	Амплитуда с	$\gamma^{(r)HF}$	$\gamma^{(r)I\tilde{N}\hat{O}I}$
	амплитуда	переход	корреляциями	•	·
$3s^{-1} - 3p^{-1}$	1.02	$3p - \varepsilon d, \varepsilon s$	-0.53	1.018	0.24
$4s^{-1} - 4p^{-1}$	1.02	4p - εd, εs	-0.62	1.034	0.16
$4p^{-1} - 4d^{-1}$	-3.6	4d - εf, εp	2.96	20.4	0.75

Таблица 2. Ширины радиационных переходов (в 10⁻⁵ *eV*)

Качественно важность корреляций может быть понята, если рассматривать проблему распада как своего рода внутренний фотоэффект. Виртуальный фотон,

испущенный при $i \rightarrow j$ переходе, проходит через атомные оболочки и, если его энергия близка к потенциалу ионизации одной из многоэлектронных оболочек, "застревает" в ней, что значительно влияет на вероятность распада.

8.2. Однофотонный распад двухдырочных состояний

Взаимодействие между атомными электронами приводит к сложному типу распада – одновременному распаду двух вакансий с испусканием одного фотона или одного электрона. В этом разделе обсудим первый из этих процессов, а второму посвятим следующий раздел. Интерес к подобным сложным процессам определяется тем, что, во-первых, они приводят к появлению новых спектральных линий, а вовторых, дают дополнительную информацию о межэлектронном взаимодействии.

При распаде вакансий во внутренних оболочках энергия испускаемого фотона примерно равна сумме энергий обеих вакансий и, следовательно, велика. Поэтому можно пользоваться теорией возмущений по межэлектронному взаимодействию Амплитуда процесса $M_{j_1 j_2 i_1 i_2}$ представляется диаграммой

и еще тремя другими диаграммами, где фотонная линия исходит из других дырочных линий диаграммы. Здесь энергия испускаемого фотона равна $\omega_{j_1 j_2 i_1 i_2} = E_{j_1 j_2} - E_{i_1 i_2}$. По промежуточным состояниям k, которое может быть как дырочным, так и электронным, в выражении для амплитуды производится суммирование (и интегрирование). Вероятность (парциальная ширина) распада находится с помощью формулы

$$\gamma_{j_1 j_2 i_1 i_2} = \frac{2}{3} \frac{\omega_{j_1 j_2 i_1 i_2}^3}{c^3} \left| M_{j_1 j_2 i_1 i_2} \right|^2$$
(8.7)

Полная ширина однофотонного распада двухдырочного состояния $\gamma_{i_1i_2}$ получается из парциальных $\gamma_{j_1j_2i_1i_2}$ суммированием по $j_{1,2}$ с учётом закона сохранения энергии $\omega_{j_1j_2i_1i_2} = E_{j_1j_2} - E_{i_1i_2}$.

Идеи о возможности существования такого распада высказывались еще в 30-х годах А. Зоммерфельдом, однако первые реальные вычисления были проведены лишь

в 1977 г. [5] после появления соответствующих экспериментальных данных [6]. Расчеты показали, что следует учесть все четыре диаграммы типа (8.6) и просуммировать по весьма широкому набору состояний k. Заметная роль большого числа состояний в сумме по k подчеркивает многоэлектронный характер процесса однофотонного распада двухвакантных состояний.

Оценки и вычисления показывают, что ширина $\gamma_{j_1 j_2 i_1 i_2}$, как правило, на шесть порядков меньше Оже-ширины каждого из уровней i_1 и i_2 . Отношение $\gamma_{j_1 j_2 i_1 i_2}$ к удвоенной ширине радиационного распада колебалось от 0.002 до 0.47. В качестве примера приведем результаты для следующих распадов:

Ne⁺⁺: распад $1s^{-2} \rightarrow 2s^{-1}2p^{-1}$, его ширина $\gamma = 1.3 \cdot 10^{-5} eV$,

Ar⁺⁺: распад $2s^{-2} \rightarrow 3s^{-1}2p^{-1}$, его ширина $\gamma = 4.06 \cdot 10^{-5} eV$,

Xe⁺⁺: распад
$$4d^{-2} \rightarrow 5s^{-1}5p^{-1}$$
, его ширина $\gamma = 0.43 \cdot 10^{-5} eV$,

Данные опыта по распаду в Ne - $1.4 \cdot 10^{-5} eV$ весьма близки к приведенному выше расчетному значению.

Вероятность однофотонного распада значительно возрастает, если энергия фотона относительно мала. Уменьшение $\omega_{j_1 j_2 i_1 i_2}$ в (8.7) легко компенсируется увеличением амплитуды, в которую входят состояния с большим перекрытием волновых функций. Это может иметь место при распаде двухдырочных состояний в промежуточных оболочках. Причем одна из конечных вакансий может быть и глубже, чем начальная [7,8], т.е. имеет место или "углубление", либо "встречное" движение вакансий. Распад двухвакантных состояний в промежуточных оболочках приводит к большому разнообразию в энергиях фотонов. В рассмотренном случае благородных газов – Ne, Ar, Kr – диапазон энергий $\omega_{j_1 j_2 i_1 j_2}$ изменяется от 1 до 60 *Ry*, а радиационных ширин – от 0.06·10⁻⁷ eV до 227·10⁻⁷ eV.

Таким образом, однофотонные распады в ионах с двумя и большим числом вакансий являются чисто корреляционными процессами, вероятность которых определяется межэлектронным взаимодействием и которые приводят к появлению значительного числа новых спектральных линий заметной интенсивности [9].

8.3. Одноэлектронный распад двухдырочных состояний

Теоретическое описание одноэлектронного распада двухдырочных состояний подобно описанию однофотонного распада, приведенного в Разделе 8.2. Наиболее

простое выражение для амплитуды процесса $M_{i_1i_2j_1j_2j_3}$ определяется набором диаграмм второго порядка по межэлектронному взаимодействию, число которых значительно больше, чем для однофотонного распада. В качестве примера приведем следующие диаграммы:

Другие диаграммы получаются из приведенных перестановкой элемента диаграммы, описывающего порождение электрона с энергией $\varepsilon = E_{j_1 j_2 j_3} - E_{i_1 i_2}$ (где $E_{j_1 j_2 j_3}$ и $E_{i_1 i_2}$ есть энергии состояний $j_1 j_2 j_3$ и $i_1 i_2$ соответственно) в разные дырочные линии - не только j_1 , но и $i_1 i_2 j_2$. Необходимо учитывать также как перестановки во времени линий кулоновского межэлектронного взаимодействия в диаграмме (8.66), так и взаимодействия перехода $i_2 \rightarrow j_2 (i_1 \rightarrow j_1)$ не только с вакансией, но и с электроном E_A . Как и для однофотонного распада, в одноэлектронном распаде [10-14] важны, как правило, все диаграммы (8.6), а при их вычислении существенный вклад вносит широкий набор состояний в сумме по промежуточным состояниям k. В результате расчетов обнаружена сильная чувствительность к выбору одноэлектронных функций непрерывного спектра. Так, в зависимости от того, брались ли они в поле двукратного или трехкратного иона, результат для Оже - ширины $\gamma_{i_1 i_2}$, определяемой соотношением

$$\gamma_{i_1 i_2}^{(A)} = 2\pi \sum_{j_1 j_2 j_3} \left| M_{i_1 i_2 j_1 j_2 j_3} \right|^2$$
(8.9)

изменился от 0.92·10⁻⁴ eV до 2.13·10⁻⁴ eV. Физически оправданным является результат, полученный с использованием волновой функции, найденной в поле трехкратного иона.

Если вакансии $i_{1,2}$ - внутренние, а $j_{1,2,3}$ - внешние, энергия Оже-перехода может быть оценена как $E_A \approx |\varepsilon_{i_1} + \varepsilon_{i_2}| >> \varepsilon_{j_{1,2,3}}$. Можно сказать, что в таком *трёхэлектронном переходе* обе вакансии "всплывают".

Наряду с трёхэлектронными Оже - переходами высокой энергии (типичная ширина ~10⁻⁴ eV), теоретически предсказаны и изучены специфичные трёхэлектронными Оже - переходы с (а) *углублением* и (б) встречным движением вакансий, энергия которых сравнительно мала, а ширина ~10⁻² eV сравнима с шириной Оже - переходов [15]. В переходах с *углублением* вакансии одна из энергий $|\varepsilon_{j_{1,2,3}}| > |\varepsilon_{i_{1,2}}|$. В переходах со встречным движением вакансий одна из них углубляется, а другая – всплывает.

В качестве примера приведём результаты изучения трёхэлектронных Оже – переходов $2p^{-2}[{}^{1}S,{}^{1}D] \rightarrow 3s^{-2}[{}^{1}S]2s^{-1}[{}^{2}S] + q_{s,d}$ в Аг с углублением вакансии, энергия и ширина которых составляют 9.626 *Ry* и 0.45×10⁻² *eV* для [${}^{1}S$] и 8.959 *Ry* и 0.22×10⁻⁴ *eV* для [${}^{1}D$] [15]. Напомним, что $|E_{2s}| > |E_{2p}|$. Ширина перехода из состояния $2p^{-2}[{}^{1}D]$ мала из-за взаимной компенсации (интерференции) парциальных амплитуд – доминирующего механизма указать нельзя.

Механизм встречного движения вакансий изучен в [16] на примере четырёх переходов $3s^{-1}4p^{-1}$ [^{1,3}*P*] $\rightarrow 4s^{-2}$ [¹*S*] $3d^{-1}$ [²*D*] $+q_{p,f}$ [^{1,3}*P*] в Кг с энергиями E_A =7.801 *Ry* и E_A =7.764 Ry для синглета и триплета, соответственно, которые хорошо отделены от основных линий Оже - распада 3s-вакансии. Напомним, что $|E_{3s}| > |E_{4s}|$ и $|E_{4p}| < |E_{4s}|$, т.е. одна вакансия в процессе распада всплывает, а другая – углубляется. Основные результаты расчета приведены в Таблице 3. Всего имеется восемь диаграмм типа (8.8), описывающих трёхэлектронный Оже - распад. В рассматриваемом случае вакансия в 4p оболочке углубляется, двигаясь тем самым навстречу всплывающей вакансии $3s^{-1}$, из чего видно, что "резонанс в континууме" является довольно хорошим приближением для оценки вероятности переходов (*a*), (*b*) и (*c*)

Таблица 3. Парциальные $M_{\alpha}^{(1)}$, полная амплитуда $M_{tot}^{(1)}$, вероятность $\gamma^{(A)}$, энергия *E*_A трёхэлектронного Оже-перехода в Kr. *l*_q - орбитальный момент Оже - электрона.

	<i>a</i>)	б)	6)	г)
M_{lpha}	$l_q=1$	$l_q=1$	$l_q=3$	$l_q=3$
$(10^{-3} Ry^{1/2})$	$E_q^{(1)}=7.801 \ Ry$	$E_q^{(1)}=7.764 Ry$	$E_q^{(1)}=7.801 \ Ry$	$E_q^{(1)}=7.764 Ry$
$M_1^{(1))}$	0.656	-3.956	-2.209	0.575
$M_2^{(1)}$	0.711	-4.014	-2.350	0.601
$M_3^{(1)}$	-0.237	-0.082	-0.030	0.041
$M_4^{(1)}$	-3.416 - <i>i</i> 5.912	-1.718 - <i>i</i> 3.100	1.838+ <i>i</i> 6.155	-0.252+ <i>i</i> 3.251
$M_{5}^{(1)}$	-3.555 - <i>i</i> 6.153	-1.852 - <i>i</i> 3.278	1.902+ <i>i</i> 6.060	-0.336+ <i>i</i> 3.221
$M_{6}^{(1)}$	0.075 - <i>i</i> 0.121	0.312 - <i>i</i> 0.008	0.843 - <i>i</i> 0.236	-0.222+ <i>i</i> 0.069
$M_{7}^{(1)}$	0.796	1.127	-0.831	0.140
${M_8}^{(1)}$	0.845	1.168	-0.849	0.162
$M_9^{(1)}$	-1.720	-3.337	-5.663	0.584
$M_{tot}{}^{(1)}$	-5.845 - <i>i</i> 12.186	-12.321 - <i>i</i> 6.386	-7.348+ <i>i</i> 11.979	1.293+ <i>i</i> 6.541
$\gamma^{(A)}(10^{-2} eV)$	1.562	1.646	1.694	0.380

Рассмотренные примеры трёхэлектронных Оже - переходов с углублением и встречным движением вакансий показывают, что распад возбужденных состояний ионов может происходить через весьма сложные промежуточные состояния. Нередко вероятность испускания низкоэнергетических электронов в трёхэлектронными Ожепереходах с углублением и встречным движением вакансий довольно велика (на порядок-два больше, чем в трёхэлектронных Оже-переходах с всплыванием вакансий) и сравнима с вероятностями обычных Оже-переходов. Вероятность трёхэлектронных Оже-переходов увеличивается с уменьшением энергии перехода, как это имеет место и при обычных Оже-распадах.

8.4. Корреляционные распады

Наличие изначальных дополнительных вакансий, просто из-за их взаимодействия с распадающимися вакансиями (даже без изменений состояний первых), приводит к новым линиям в спектре испускаемых атомом (или ионом) фотонов или электронов так называемым гиперсателлитам. В низшем порядке теории возмущений по межэлектронному взаимодействию гиперсателлиты изображаются диаграммами (8.6), в которых одна из вакансий не меняет своего состояния в процессе распада [11].

202

В конкретном рассмотренном случае атома Ne учет взаимодействия с дырками заметно изменяет вероятность распада в различных каналах, как увеличивая ее, так и уменьшая. Для исследованных случаев в Ne [12] вероятность распада увеличивается в два раза для перехода $1s^{-2} \rightarrow 1s^{-1}2p^{-1}$ или уменьшается примерно в 5.3 раза для перехода $2s^{-2} \rightarrow 2s^{-1}2p^{-1}$.

Наличие вакансии с $l' \neq 0$ снимает запрет с радиационного перехода в возбужденном атоме $nl \rightarrow n'(l \pm 3)$ [7,8]. Конкретным примером может служить радиационный переход $ns \rightarrow n'f + \omega$, который становится возможным благодаря наличию вакансии *p*. Последняя, взаимодействуя с *ns*, примешивает к нему *d*-уровень, который, испуская фотон, становится *f*-уровнем. Наличие *d*- вакансии снимает запрет с радиационного перехода $ns \rightarrow n'h$ [7,8].

Межэлектронное взаимодействие проявляется и в том, что одиночные вакансии могут распадаться одновременно с испусканием фотона и возбуждением или удалением атомного электрона [17]. Для примера приведем одну из диаграмм, описывающих данный процесс

(8.10)

Если *n* есть дискретный уровень возбуждения, то этот механизм приводит к целому набору новых спектральных линий, имеющих многоэлектронную природу (как и остальные, упоминаемые в данном разделе). Интенсивность таких линий может быть вполне значительной, иногда сопоставимой с интенсивностью просто радиационных распадов, уступая им всего примерно на порядок.

Оказалось, что заметный вклад в полную безрадиационную ширину вакансий вносит двойной Оже-эффект: процесс, в котором вся энергия распада передается двум, а не одному Оже-электрону [18]. Даже в низшем, т.е. втором порядке по межэлектронному взаимодействию, амплитуда этого процесса представляется значительным числом диаграмм. Примером может служить одна из них:

Энергетическое распределение электронов ε_1 и ε_2 в этом процессе, как и в двухэлектронной фотоионизации, несимметрично - один электрон уносит почти всю энергию перехода, а другой получает лишь малую ее часть. Значительна и вероятность того, что медленный электрон будет захвачен на дискретный уровень в поле состояния с тремя вакансиями $j_1 j_2 j_3$. Конкретные расчеты для $1s^{-1} \rightarrow 2s^{-2}2p^{-1}+e_1+e_2$ в Ne [19] позволили установить, что вероятность двойного Оже-эффекта составляет 4% от вероятности обычного. Оказалось также, что имеется существенная зависимость выхода электронов от относительного угла, а также от энергии Оже-электронов.

В качестве примера приведём результаты расчета и оценки энергетического спектра $\gamma(\varepsilon)$ электронов и вероятности двухэлектронных Оже-переходов $1s^{-1}[^2S] \rightarrow 2s^{-2}$ $2p^{-1}[^2P]+(q_1q_2), (l_{q_1},l_{q_2})=(l, l+1), l=0,1,2,..., E_{q_1q_2}=50.512 Ry$ в Ne [16]. Волновые функции Оже-электронов находились в поле "замороженного" атомного остова $2s^{-2} 2p^{-1}[^2P]$. Каскадный механизм, т.е. последовательный распад вакансий, сначала *i*, затем j_2 и т.д. в этом переходе невозможен, поэтому $\gamma(\varepsilon)$ имеет характерную U-образную форму. Она свидетельствует о том, что наиболее вероятным является такое распределение энергии перехода между двумя Оже-электронами, при котором один из них получает большую часть энергии, а другой оказывается медленным.

Суммарная ширина указанных двухэлектронных Оже-переходов составляет $0,342 \times 10^{-2} \ eV$, или примерно1.5% от полной ширины 1*s*-вакансии (0.23 eV). Модель *встряски*, т.е. такого процесса, при котором второй электрон вылетает вследствие быстрого изменения самосогласованного поля атома вследствие быстрого удаления первого электрона, дает, как и для трёхэлектронных Оже-переходов, весьма заниженное (в ~3 раза) значение плотности вероятности по сравнению со строгим расчетом. Если примерно с той же вероятностью двухэлектронный Оже -распад 1*s*-вакансии приводит к конфигурациям $2s^{-1}2p^{-2}$ и $2p^{-3}$, полная ширина 1*s*-вакансии в Ne

относительно двухэлектронного Оже-распада составляет $1,8 \times 10^{-2} eV$ (~7% полной ширины), что хорошо согласуется с экспериментальным значением ~8-10%.

Приведём результаты исследования двойного Оже-распада 3d-вакансии в Kr, где наблюдался ряд новых флуоресцентных линий слабой интенсивности при облучении Kr фотонами с энергией 90-100 eV (область возбуждения резонансов KrI 3 d^{-1} *пр*. Предположительно, линии связаны с переходами вида $4s^14p^4 \rightarrow 4s^24p^3$ в ионе Kr³⁺, начальные состояния которых могут заселяться по двухступенчатой траектории тройной фотоионизации через ионизацию 3*d*-оболочки. Изучены пять каналов двухэлектронного Оже - распада 3*d*-вакансии в Кr в состояния: (*a*) $4s^2 4p^3 [^2D]$, (б) $4s^{2}4p^{3}[^{2}P]$, (в) $4s^{2}4p^{3}[^{4}S]$, (г) $4s^{1}4p^{4}[^{2}D]$, (д) $4s^{1}4p^{4}[^{4}P]$ с довольно малыми энергиями переходов: E₁=16.81 eV, E₂=15.06 eV, E₃=19.11 eV, E₄=0.89 eV и E₅=4.03 eV. Наиболее вероятными найдены каналы *a* и *г*, в которых терм $[^{2}D]$ начального и конечного ионов совпадают, см. Таблицу 4. Далее идет канал б, в котором орбитальный момент ионаостатка изменяется на единицу, а спиновый момент сохраняется. Менее вероятны каналы e и d, приводящие к квартетным термам конечного иона $4p^3[{}^4S]$ и $4s^{1}4p^{4}[^{4}P]$ с изменением моментов иона-остатка, из-за чего испускаются только триплетные пары Оже-электронов. Суммарная плотность вероятности γ(ε), рис. 8.1, принимает наибольшее значение ~13×10⁻⁴ в низкоэнергетической части спектра, где суммируются симметричные U-образные плотности вероятности всех рассмотренных каналов.

Таблица 4. Энергия Е	и ширина $\Gamma^{L_{ic}S_{ic}}$	двухэлектронных	Оже -переходов в Kr.
1	1	1	1 / 1

	Конечный ион	E(eV)	$\Gamma^{L_{ic}S_{ic}}$ (eV)	η
а	$4s^2 4p^3(^2D)$	16,81	$4,93 \cdot 10^{-3}$	80
б	$4s^{1}4p^{4}(^{2}D)$	0,89	$7,34 \cdot 10^{-4}$	12
в	$4s^2 4p^3(^2P)$	15,06	$4,02 \cdot 10^{-4}$	7
г	$4s^2 4p^3(^4S)$	19,01	$4,15 \cdot 10^{-5}$	<1
д	$4s^{1}4p^{4}(^{4}P)$	4,03	$4,45 \cdot 10^{-5}$	<1
	$\Gamma = \sum \Gamma^{L_{ic}S_{ic}}$		6,15·10 ⁻³	100
	$\overline{L_{ic}S_{ic}}$			

Целесообразно выделить так называемые *сателлитные Оже-переходы*, которые подобны двухэлектронным Оже-переходам, однако в них в непрерывный спектр

излучается лишь один электрон q, а второй возбуждается на дискретный уровень nl двукратного иона. Поскольку часть энергии перехода затрачивается на возбуждение электрона на уровень nl, кинетическая энергия Оже-электрона уменьшается на соответствующую величину, что приводит к появлению сателлитных линий в Оже-спектре.

В работе [16] изучены переходы $1s^{-1} \rightarrow 2s^{-2}2p^{-1}nl+q$ (nl=3s, 3p; $\varepsilon \sim 52$ Ry) в Ne и $3d^{-1} \rightarrow 4s^{-1}4p^{-2}nl+q$ и $3d^{-1} \rightarrow 4p^{-3}nl+q$ (n=1,2,...,9; l=0,1,2,3; $\varepsilon \sim 2-35$ eV) в Kr. Установлено, что вероятность переходов в Ne имеет порядок $10^{-4}-10^{-5}$ eV (как у ТЭО-распадов двух 1*s*-вакансий) и быстро убывает с ростом *l* и l_q . Показано, что среди множества рассчитанных переходов, наиболее вероятными являются переходы в состояния $4s^{-1}4p^{-2}[^{2}D] 4d[^{1}S], 4p^{-3}[^{2}D] 4f[^{1}P], 4p^{-3}[^{2}P] 4f[^{1}D]$ (131.121) и $4p^{-3}[^{2}D] 4f[^{3}P]$.

8.5. Оже-распады возбуждённых состояний

В этом разделе мы коснемся совсем кратко вопроса об Оже-распаде возбуждённых состояний атомов. Начнём с простейших состояний, представляющих собой электрон - дырочную пару *ni*. Амплитуда такого процесса распада в низшем порядке по межэлектронному взаимодействию, вызывающему переход с испусканием Оже-электрона энергии E_A и образованием дырки *k* в какой-либо из внешних оболочек, может быть представлена в виде (8.10)

К тому же классу, что и обсуждавшиеся выше процессы, представленные в виде (8.12), относится распад электрон - дырочного возбуждения в присутствии вакансии [18]. Распад такого состояния может идти по ряду различных каналов, в том числе и с испусканием одного электрона [19] или фотона.

К обсуждаемому в данном разделе классу процессов относится резонансно возбужденных состояний (8.13) и автоионизации двукратно возбужденных состояний

(8.14). Автоионизационные процессы возможны при возбуждении дискретных резонансных состояний, лежащих выше порога однократной ионизации, а для двойной автоионизации требуется возбуждение резонансов выше порога двойной ионизации. Эти процессы представляют интерес сами по себе, а также зачастую входят как второй или даже третий-четвертый "элементарный" этап множественной ионизации атома или ионизации в возбужденное состояние иона.

Двойная автоионизация резонансно возбужденных состояний по сути подобна двухэлектронным Оже-переходам - испускаются два электрона с любыми значениями орбитальных моментов (l_1, l_2) . Энергия перехода произвольно распределяется между вылетающими электронами, а сам переход также имеет черты, характерные для "встречного движения" вакансий в трёхэлектронных Оже-переходах, если уничтожение электрона на дискретном уровне условно считать рождением дырки.

Представлены результаты изучения следующих каналов двойной автоионизации в Kr: (a) $3d^{-1}5p[^{1}P] \rightarrow 4s^{-2}[^{1}S] + (q_{1}q_{2})$, (б) $3d^{-1}5p[^{1}P] \rightarrow 4s^{-1}4p^{-1}[^{1}P] + (q_{1}q_{2})$ и (в) $3d^{-1}5p[^{1}P] \rightarrow 4s^{-1}4p^{-1}[^{3}P] + (q_{1}q_{2})$. Показано, что переход (a) может быть только прямым и поэтому имеет исключительно корреляционную природу. Каналы (б) и (в) осуществляются как прямо, так и двухступенчато, через промежуточное состояние $4s^{-2}$ 5p. В [16] приведены результаты строгого расчета ширин перечисленных каналов и построены канальные и суммарный электронные спектры, см. рис. 8.2a,6.

Автоионизация двукратно возбужденных состояний может приводить к появлению структур в сечениях однократной ионизации. Энергии этих состояний вполне достаточно для ионизации субвалентной оболочки, что при резонансной энергии фотона открывает дополнительный (к традиционно рассматриваемому $A + \omega \rightarrow A^{+} + e$) двухступенчатый канал $A + \omega \rightarrow A^{**} \rightarrow A^{+} + e$.

Применение многочастичной теории возмущений (МТВ) позволило рассмотреть и предсказать еще целый ряд корреляционных эффектов [20], ждущих своего изучения на эксперименте.

Выполнение расчетов с точностью большей, чем достигаемая в рамках МТВ, сопряжено с очень значительными вычислительными трудностями и потому, как правило, пока не проводится.

Литература к гл. 8

- Amusia M.Ya., Cherepkov N.A., Chernysheva L.V., Shapiro S.G. Phys. Lett A. 1974. V. 46, N 6. P. 387-388.
- 2. Амусья М. Я., Черепков Н. А, Шапиро С. Г. ЖЭТФ, 1972. V. 63. P. 889-898.
- 3. Амусья М.Я., Ли И.С. ЖЭТФ. 1977. V. 73, N 2. P. 430-438
- Amusia M.Ya., Kazachkov M.P., Cherepkov N. A., Chernysheva L.V. Phys. Lett. A. 1972.
 V. 39, N 2. P. 93-94.
- 5. Amusia M.Ya., Lee I.S., and Zinoviev A.N. Phys. Lett. A. 1977. V. 60, N 4. P. 300-302.
- 6. Афросимов В. В. Письма в ЖЭТФ. 1975. V. 21. Р. 555-556; Письма в ЖЭТФ. 1976.
 Т. 24. С. 273-274.
- 7. Амусья М.Я., Колесникова А.Н., Ли И.С. Изв. АН СССР, сер.физ. 1986. V. 50, N 7. P. 1279-1284.
- 8. Амусья М.Я., Колесникова А.Н., Ли И.С. ЖТФ. 1986. V. 56, N 7. P. 1428-1430.
- 9. Amusia M.Ya., Lee I.S. J Phys B. 1991. V. 24. P. 2617-2632.
- 10. Амусья М. Я., Ли И. С., Килин В. А. ЖТФ. 1984. Т. 54, № 5. С. 990-992.
- 11. Амусья М. Я., Килин В. А., Ли И. С. Опт. спектр. 1985. Т. 59. С. 261-264.
- 12. Амусья М. Я., Колесникова А. Н., Ли И. С. ЖТФ. 1985. Т. 55, № 1. С. 39-41.
- 13. Amusia M. Ya. Comments At. Mol. Phys. 1979. V. 9, N 1. P. 23-34.
- 14. Амусья М. Я., Колесникова А. Н., Ли И. С. ЖТФ. 1987. Т. 57, №3. С. 1726-1734.
- 15. Амусья М. Я., Колесникова А. Н., Ли И. С.. Письма в ЖТФ. 1985. Т. 11. С. 343-346.
- 16. *Килин В. А.* Корреляционные эффекты в процессах множественной ионизации атомов, Автореферат диссертации на соискание учёной степени доктора физикоматематических наук, Томск: ТПУ, 2004.
- 17. Амусья М. Я., Колесникова А. Н., Ли И. С. ЖТФ. 1988. Т. 58, №3. С. 442-451.
- 18. Amusia M. Ya., Lee I. S., Kilin V. A. Phys.Rev. A. 1997. V. 45. P. 4576-4587.
- 19. Amusia M. Ya., Lee I. S., Kilin V. A. J. Phys.B: At.Mol.Opt.Phys. 1992. V. 25. P. 657-666.
- 20. Amusia M. Ya., Lee I. S. Physica Scripta 1992. V. 41. P. 23-27.