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The expected firing probability of a stochastic neuron is approximated by a function of the expected
subthreshold membrane potential, for the case of colored noise. We propose this approximation in order to
extend the recently proposed white noise model �A. V. Chizhov and L. J. Graham, Phys. Rev. E 75, 011924
�2007�� to the case of colored noise, applying a refractory density approach to conductance-based neurons. The
uncoupled neurons of a single population receive a common input and are dispersed by the noise. Within the
framework of the model the effect of noise is expressed by the so-called hazard function, which is the
probability density for a single neuron to fire given the average membrane potential in the presence of a noise
term. To derive the hazard function we solve the Kolmogorov-Fokker-Planck equation for a mean voltage-
driven neuron fluctuating due to colored noisy current. We show that a sum of both a self-similar solution for
the case of slow changing mean voltage and a frozen stationary solution for fast changing mean voltage gives
a satisfactory approximation for the hazard function in the arbitrary case. We demonstrate the quantitative
effect of a temporal correlation of noisy input on the neuron dynamics in the case of leaky integrate-and-fire
and detailed conductance-based neurons in response to an injected current step.
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I. INTRODUCTION

Individual cortical neurons operate within the background
activity of neuron populations. Relative to the single-cell ac-
tivity this background activity is macroscopic, and therefore
calls for independent approaches for its mathematical de-
scription. Computationally efficient approaches, which are
alternatives to the Monte Carlo simulation of a great number
of single neurons, include probability density methods
�PDMs� �1–5�, etc. A fundamental problem of the theory of
these methods is how to reduce the dimension of the neu-
ron’s state variable space. Because of this problem, efficient
application has been restricted to the consideration of simple
integrate-and-fire-like neurons receiving a common input
and a white noise term, resulting in one-dimensional �1D�
PDMs. However, a more realistic model can consider the
finite bandwidth of synaptic currents, i.e., synaptic noise has
a nonzero correlation time and thus becomes colored noise.
Considerations of more elaborate neurons or noninstanta-
neous synaptic kinetics generally lead to multidimensional
PDMs, that reduces the efficiency of the solution. Known
solutions of 2D PDMs �4,6,7�, etc., are constrained by strict
limitations on the ratios of characteristic time constants of
the membrane and synapses, but still provide fruitful math-
ematical analysis of population response properties, neuronal
synchronization, etc. We have recently proposed a method to
reduce a multidimensional PDM approach for conductance-
based neurons to a 1D PDM �8� in the case of white input
noise. The question whether a similar approach could allow
construction of a one-dimensional PDM in the case of col-
ored noise is addressed in the present paper.

In our previous works we have proposed a macroscopic
approach towards realistic simulations of the population ac-
tivity of adaptive �8� or nonadaptive �9� neurons, based on
the refractory density approach with a hazard function, ap-
plied to a conductance-based single neuron threshold model.
The dynamics of a neural population continuum are de-
scribed by a set of one-dimensional partial differential equa-
tions in terms of the distributions of the refractory density �
�2,10�, where the refractory state is defined by the time
elapsed since the last action potential t*, the mean membrane
potential U, and the gating variables of the voltage-
dependent channels, across the entire population. The source
term in the density equation is a probability density of firing,
or a hazard function H, which was derived from the
Kolmogorov-Fokker-Planck �KFP� equation, assuming that a
single neuron is governed by a deterministic average-across-
population input and a white noise term. Simulations showed
that this model quite precisely and computationally effi-
ciently reproduces the activity of a large number of discrete
conductance-based neurons. The applicability of the RDA to
biophysically detailed neuron models is the main reason why
the hazard function is useful. Thus the hazard function de-
scribes the noise influence on the firing for any threshold
model of a neuron independently on the intrinsic neuron
properties, and therefore allows splitting of the problem. To-
gether with the fact that the state variables of the threshold
neuron can be parametrized by a single variable, especially
the time elapsed since the last spike time moment, this ap-
proach leads to the reduction of the multidimensional prob-
ability density description of a neural population to a set of
one-dimensional equations in partial derivatives �9,8�. Based
on the fact that in the case of white noise �8� there was a
close correspondence between the refractory density ap-
proach and individual neuron simulations for both integrate-*Anton.Chizhov@mail.ioffe.ru
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and-fire neurons and generic conductance-based neurons, in
the present paper we explicitly derive the colored-noise haz-
ard function for integrate-and-fire neurons and then present
simulations verifying this approach for conductance-based
neurons.

Refractory density approach for integrate-and-fire neu-
rons. A simple example of RDA for leaky integrate-and-fire
neurons �LIF� is given below. The LIF neuron is given by the
equation

C
dV

dt
= − gL�V − Vrest� + Ia + ���t� , �1�

where ��t� is a gaussian white noise process characterized
by its mean value, ���t��=0, and autocorrelation ���t���t���
=C /gL��t− t��; � is the noise amplitude. The neuron fires
when the potential V crosses the threshold UT. Immediately
after, the spike V is reset to Vreset.

As justified in �8�, Eq. �1� is well approximated by the
system of equations for the refractory density ��t , t*� and
mean membrane potential U�t , t*�, which are as follows:

��

�t
+

��

�t*
= − �H , �2�

C� �U

�t
+

�U

�t*
� = − gL�U − Vrest� + Ia, �3�

where Ia is the applied current; gL is the leak conductance
and the membrane capacitance C. The boundary conditions
are ��t�	��t ,0�=
+0

� �Hdt* and U�t ,0�=Vreset, where ��t� is
the population firing rate. In the case of the white noise, the
hazard function H is approximated in �8� as a function of U
varying in time t at a given t*, depending as well on � and
UT. When calculating the dynamics of a neural population,
the integration of Eq. �3� defines at each time moment t the
distribution of not-noisy voltage U across t*. Then, the effect
of threshold crossing and diffusion by noise are taken into
account by the H function, and the result of the integration of
Eq. �2� is expressed in the distribution of � across t* and the
firing rate �.

Here we generalize our approach to the case of colored
noise. The effects of noise in the refractory density approach
is contained in the hazard function H which must evaluate
the probability density of firing, given the mean membrane
potential U over all refractory states parametrized by t*. The
exact solution of this problem requires integration of the cor-
responding KFP equation. We show here that for colored
noise, in the same way as was done for the white noise case,
the hazard function can be well approximated by a sum of
two particular solutions of the equation. Comparisons with
numerical simulations reveal the quality of the approxima-
tion.

The effects of input correlations on the response of spik-
ing neurons have been thoroughly analyzed in previous work
�see, for example, �11–13,4,7��. The present work is mainly
aimed at the extension of the refractory density formalism
developed for conductance-based neurons in the case of in-
put correlations, rather than the analysis of the effect of these
correlations.

II. DERIVATION OF THE HAZARD FUNCTION

The hazard function H is defined as the probability for a
neuron to release a spike during the infinitely small interval
�t , t+�t� per �t. Generally, to estimate this quantity for any
considered group of neurons, one needs to calculate the rate
of the decrease of the number of silent neurouns, divided by
their number. If we consider only those neurons of the entire
population which are characterized by the state t*, their num-
ber is given by ��t , t*�. Thus taking into account that � /�t
+� /�t*=d /dt. we rewrite Eq. �2� as

d�

dt
= − �H�t� , �4�

which can be considered as a definition of the hazard func-
tion H. The spike-release probability density for a single
neuron is equivalent to the firing rate of such population,
scaled by the number of neurons, which follows from the
boundary condition to Eq. �2�, i.e., H�t�=��t� /�.

In the framework of the threshold neuron approach, con-
sideration of the hazard function depends on the membrane
potential U�t� and on the threshold UT, specifically the com-
parison of U with UT. This dependence implies comparison
of U with the threshold potential UT. As in our earlier work
�9,8�, we assume that UT depends only on U and dU /dt, we
can treat H as a function of the function U�t� only, i.e.,
H=H�U�t��.

A formula to calculate the spike-release probability den-
sity H should consider a model of noise and the variation of
the cellular parameters and of the synaptic inputs over the
entire neuron population. Here we assume that the functional
impact of these factors may be expressed in an additive col-
ored noise term affecting the potential of a given neuron. The
other parameters governing the neuron are given by their
average over all the neurons at the time elapsed since the last
action potential t*.

Single neuron model. When noise is not present, for the
undisturbed potential U�t� we write

C
dU

dt
= − Itot�U,t� , �5�

where Itot is the total current; C is the capacitance. We do not
specify the explicit components of Itot, in particular those due
to various active conductances, instead we refer the reader to
previous work �4� where we described how this term can
include the conductances of an adaptive pyramidal neuron.
Overall it seems that this approach is valid for a wide range
of membrane conductances whose dynamics are either of the
same time scale or slow compared to the duration of a single
spike. However, the approach may be limited in the case of
conductances of intermediate time scale such as the calcium
currents postulated to underly bursting dynamics.

When noise is present, for the disturbed potential V�t� we
write the equations

C
dV

dt
= − Itot�V,t� + h�t� , �6�
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dh

dt
= − h + �2	���t� , �7�

where ��t� is the gaussian white noise characterized by its
mean value, ���t��=0, and autocorrelation ���t���t���=	��t
− t��; 	 is the time constant of noise correlations; � is the
noise amplitude. The neuron fires when the potential V
crosses the threshold UT. Importantly, we do not consider the
reset of neuron states after firing, meaning we solve only the
first passage problem. The justification for this simplification
is as follows: We assume that the time scale of voltage dif-
fusion is much faster than any interspike interval. This con-
dition implies that voltage fluctuations in the vicinity of the
reset state immediately after a spike will be forgotten by the
time the subsequent near-threshold state is reached. There-
fore the reset level associated with the preceding spike is
unimportant and may be ignored.

We introduce the conductance as gtot�V , t�=�Itot�V , t� /�V,
and the membrane time constant as 	m�V , t�=C /gtot�V , t�.
From the comparison of Eq. �5� with Eq. �6� we can con-
clude that at least if the noise amplitude � tends to 0 the
expected value of V�t� is equal to U�t�. Analogously, it holds
for small noise that gtot�V , t��gtot�U , t�. Thus we can linear-
ize the current Itot�V , t�� Itot�U , t�+gtot�U , t��V−U�. After
subtraction of Eq. �5� from Eq. �6� we obtain the equation for
the voltage fluctuations,

C
d�V − U�

dt
= − gtot�U,t��V − U� + h�t� . �8�

We then neglect the dynamics of gtot�U , t�, i.e., dgtot /dt�0,
d	m /dt�0, under the assumption that just prior to crossing
the threshold the voltage evolution depends only on the value
of gtot�U , t� and not on its temporal derivative. Dividing Eq.
�8� by gtot�U , t� /� and introducing the dimensionless vari-
able u	gtot�U , t��V−U� /� reflecting the voltage fluctuations
and q�t�	h�t� /� as the noisy current scaled by the noise
amplitude, we obtain the equations

	m�U,t�
du

dt
= − u + q�t� , �9�

	
dq

dt
= − q + �2	��t� . �10�

The neuron fires at the threshold T̃�t�=gtot�U , t��UT

−U�t�� /�.
Kolmogorov-Fokker-Planck equation. We can find the ex-

pected firing probability for the neuron by considering the
corresponding KFP equation �14� for the probability density
of a neuron to be in the state u, �̃�t ,u ,q�, which is

��̃

�t
+

�

�u

− u + q

	m
�̃� +

�

�q

−

q

	
�̃� −

1

	

�2�̃

�q2 = 0 �11�

with the boundary conditions �̃�t ,−� ,q�= �̃�t ,u ,−��
= �̃�t ,u , +��= �̃(t , T̃�t� ,q
 T̃�t�)=0, where the inequality
takes into account that the equation of transfer in the direc-
tion of coordinate u requires the condition of an inflow

boundary, i.e., when the factor �−u+q� /	m in the second term
is nonpositive. The initial distribution corresponds to the sta-
tionary solution found below. This assumption holds because
in practice the neuron trajectory always starts from its silent
or reset state, rather than near threshold, i.e., the difference
of the mean and threshold voltages is larger than any char-
acteristic voltage dispersion. Taking also into account the fast
voltage diffusion mentioned above, we conclude that during
the evolution of the voltage towards threshold, the distribu-
tion of voltages would approach a gaussian distribution re-
gardless of the initial distribution. Moreover, the large differ-
ence of the mean and threshold voltages compared to the
voltage dispersion allows us to neglect the tail of the distri-
bution at voltages above the threshold.

The expected firing rate of the population, scaled by the
number of neurons, or the spike-release probability density
for a single neuron H�t�, is given by the flux through the

boundary at u= T̃, i.e.,

H̃�U�t�� 	 	mH�U�t�� = − 	m
1

�

d�

dt
=

1

�
�

T̃

�

�q − T̃��̃�t,T̃,q�dq ,

�12�

where � is the integral characterizing the probability for a
neuron to remain in the inactive state,

��t� = �
−�

T̃ �
−�

�

�̃�t,u,q�dqdu . �13�

Note that ��t , t*� in Eq. �2� is the same quantity as ��t� in Eq.
�13�, however, for the derivation presented in this section it
is unimportant whether the neurons are discriminated by the
parameter t* or not, and whether � is scaled by the units of t*

or not.
Introducing the ratio of membrane and noise time con-

stants, k�U , t�		m�U , t� /	, we rewrite Eq. �11� as follows:

	m�U,t�
��̃

�t
=

�

�u
�u − q��̃ + k�U,t�
 �

�q
q�̃ +

�2�̃

�q2� . �14�

As mentioned above, in the case of white noise �k=�� we

have obtained a good approximation for H̃ as a sum of self-
similar A and frozen stationary B solutions of the KFP equa-
tion for the firing probability density �8�. The physical inter-
pretation of the these solutions is that the activity B is due to

the “movement” of the threshold boundary u= T̃�t� towards
the probability density function �pdf�, whereas the activity A

results from “flow” through a threshold boundary u= T̃ be-
cause of transfer and diffusion processes changing the pdf.
These processes, which provide “sources” of neuron leakage,
are independent. Relying on this fact, we supposed and then
verified that the activities are additive, i.e., the sum of the

solutions A+B gives a satisfactory approximation for H̃ in
any arbitrary case of neuron stimulation. An approximation
in the case of colored noise is constructed in the same way.
The considered particular cases are limit cases in the sense
that B is zero in the unvarying U�t� regime, and A is negli-
gible in the fast-varying U�t� regime.
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Stationary solution. The form of Eq. �14� in the stationary
case, d� /dt=0, is as follows:

�1 + k��̃ + �u − q�
��̃

�u
+ kq

��̃

�q
+ k

�2�̃

�q2 = 0. �15�

Its solution is

�̃�u,q� =
1 + k

2��k
exp�1 + k

2k
�− �1 + k�u2 − q2 + 2qu�� .

�16�

The marginal distribution is

�̃�u� = �
−�

�

�̃�u,q�dq =
1

�u
�2�

exp�−
1

2

u2

�u
2�, �u =

1
�1 + k

.

�17�

The stationary voltage dispersion depends on � as follows:
�V=� / �gtot

�1+k�.
For the sake of consistency between the following formu-

las and the results from �4� for the white noise case, we

introduce the parameter T�t�= T̃�t� /�2�u.
Frozen stationary distribution. In the case when the

threshold T̃�t� is decreasing rapidly, the initial stationary dis-
tribution remains almost unchanged except for a cutting off

at the threshold u= T̃. The hazard function in this particular

case, B	 H̃, depends on T�t� and its time derivative dT /dt,
i.e., B=B�T ,dT /dt�. We will find B according to Eq. �12�
where � is governed by Eq. �13�. For simplicity, we consider
the case of a monotonically decreasing but otherwise arbi-
trary T�t�. Substituting the stationary distribution Eq. �16�
into Eq. �13� we get

��t� =
1

2
�erf�T� + 1� . �18�

According to Eq. �12�, B is obtained as follows:

B�T,
dT

dt
� = −

	m

�

d�

dt
= − �2	m
dT

dt
�

+
F̃�T� , �19�

where

F̃�T� =� 2

�

exp�− T2�
1 + erf�T�

, �20�

and �x�+=x for x�0 and zero otherwise, which annihilates
the hazard function when T increases.

Self-similar solution. We can explicitly describe the shape
p�t ,u ,q� and the amplitude ��t� of the probability distribu-
tion �̃�t ,u� by the substitution

�̃�t,u,q� = ��t�p�t,u,q� . �21�

As seen from Eqs. �13� and �21� the shape p is normalized as


pdqdu=1. The amplitude of the probability distribution
��t� decreases due to crossing the threshold T and is de-
scribed by the equation

	m
d�

dt
= − �H̃�t� . �22�

The shape p�t ,u ,q� is renormalized, i.e., it is governed by
Eq. �14�, with the added source term proportional to p�t ,u ,q�
itself, i.e.,

	m�U,t�
�p

�t
=

�

�u
�u − q�p + k�U,t�
 �

�q
qp +

�2p

�q2� + H̃�t�p ,

�23�

H̃�U�t�� = �
T̃

�

�q − T̃�p�t,T̃,q�dq . �24�

The boundary conditions are �̃�t ,−� ,q�= �̃�t ,u ,−��
= �̃�t ,u , +��= �̃(t , T̃�t� ,q
 T̃�t�)=0.

When the potential difference between the mean potential
U and the threshold UT is changing slowly, the diffusion
process described by the KFP equation dominates the trans-
fer between nonspiking and spiking neurons. The limit case
is when T is constant. The solution of Eq. �23� in this case is
self-similar with decreasing amplitude ��t� and constant
shape p�t ,u�, described by the stationary variant of Eq. �24�,

�

�u
�u − q�p + k�U,t�
 �

�q
qp +

�2p

�q2� + H̃�t�p = 0, �25�

with the same boundary conditions. Setting different values
of T, the solution of the equation is obtained numerically. To
get a convergent solution, we applied the total-variation-
diminishing �TVD� scheme of the second order approxima-
tion �15�. Of particular interest is the resulting dependence of

the activity H̃, denoted for the constant T case as A, on T and
k, shown in Fig. 1. The dependence on k can be approxi-
mated as

T

A

-2 -1 0 1 2
0

1

2

3

4

5

6

7 white noise
k=1/4, approximation
k=1, approximation
k=4, approximation
k=8, approximation
k=16, approximation
k=1/4, num.data
k=1, num.data
k=4, num.data
k=8, num.data
k=16, num.data

A(T,k)=A∝(T) (1-(1+k)-0.71+0.0825(T+3))

FIG. 1. �Color online� The function A is the component of the
approximate hazard function which characterizes the spike-release
probability density for a neuron in the regime of constant T, the
dimensionless distance between the membrane potential and
threshold.
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A�T,k� = A��T��1 − �1 + k�−0.71+0.0825�T+3�� ,

A��T� = exp�6.1 
 10−3 − 1.12T − 0.257T2

− 0.072T3 − 0.0117T4� . �26�

The term A��T� is the solution for the hazard function in the
self-similar case for white noise, i.e., limk→� A�T ,k�=A��T�.
The function A��T� has been obtained as an approximate
formula of the exact but complicated analytical solution of
the Kolmogorov-Fokker-Planck equation in the self-similar
case for white noise �8�. The approximation holds for the
significant range of T, �−2,3�. The factor in the formula for

A�T ,k� has been obtained as an approximation of the numeri-
cally calculated points shown in Fig. 1.

Cumulative result: Approximation of hazard function in
the arbitrary case.The result is the following formula:

H�U�t�� =
1

	m
�A„T�U�,k… + B�U,dU/dt�� , �27�

where A�T ,k� is given by Eq. �26� and shown in Fig. 1�a�;

T =�1 + k

2

gtot�UT − U�
�

, k = 	m/	 ,

and
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FIG. 2. �Color online� Comparison of the firing rate, ��t�=�� /�t, calculated by the full Fokker-Planck Eq. �14� �black solid lines� with
the approximations by 	md� /dt=−�A�T ,k� �green dotted line�, 	md� /dt=−�B�T ,dT /dt� �blue dot-dash line�, and 	md� /dt=−��A�T ,k�
+B�T ,dT /dt�� �red long-dash line�; � is scaled by 	m. The evolution of T�t� is defined by the input U�t�=Umax�1−exp�−t /	m��, UT

=5� /gtot, correspondent to the current-step stimulation. The subthreshold �a,d�, near-threshold �b,e�, and supra-threshold �c,f� regimes were
set by Umax / �� /gtot�=4, 6, or 10, correspondingly, for the two values of k: k=1 for �a,b,c� and k=8 for �d,e,f�.
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B�U,dU/dt� = − �2	m
dT

dt
�

+
F̃�T�, F̃�T� =� 2

�

exp�− T2�
1 + erf�T�

,

�28�

�x�+=x for x�0 and zero otherwise.
This approximation of H for arbitrary conditions is then

applied to the refractory density model describing a popula-
tion of integrate-and-fire neurons by using Eqs. �2� and �3�,
or by using the equations developed in �8� for neurons with
various active conductances.

III. RESULTS

We now verify the approximation of the hazard function
and its application in the refractory density approach for lin-
ear integrate-and-fire neurons with colored synaptic noise,
i.e., when Itot=gtot�V−Vrest�, gtot=gL=const, 	m=const. All
the neurons receive the same current step input.

RDA and full KFP for the first passage problem. To check
the approximation of the hazard function we consider the
first passage problem. Because the full KFP equation �14� in
this case is strictly equivalent to the initial statement of the
problem based on Eqs. �6� and �7�, we compare its solution
with the solution using the approximated hazard function,
based on Eqs. �4� and �26�–�28�. Comparison of the numeri-
cal solutions of the full KFP equation �14� �black solid line�
with the solutions of Eqs. �4� and �26�–�28� is shown in Fig.
2; all governing parameters are given in the figure caption.
We simulated three cases of neuron stimulation, correspond-
ing to injected current steps of three different amplitudes. As
can be seen in the figure, the approximation by Eq. �27�
works well in different regimes of neuron stimulation and
with different ratios of noise and membrane time constants,
thus corresponding to different spectrums of the colored

noise. In fact, the approximation H̃=A works well only in the

subthreshold stimulation regime, and the approximation H̃
=B does well only in the superthreshold stimulation regime,
whereas Eq. �27� gives a good approximation in all three
regimes. Note that the sum of the “A” and “B” solutions do
not give the “A+B” solution.

RDA and individual neuron simulation for step current
stimulation problem. We demonstrate an effect of temporal
noise correlations by consideration of the responses of a
population to an injected current step in the cases of white
and colored �	m /	=4� noise, as shown in Fig. 3. The direct
simulation �DS� of individual neurons based on Eq. �1� and
the population model based on Eqs. �2�, �3�, and �26�–�28�
give similar qualitative results, and both show a quantitative
change in the responses depending on the input noise spec-
trum.

RDA and known analytical expressions for steady-state
firing. In the steady-state regime the RDA approach based on
Eqs. �2� and �3� is reduced to the following ordinary differ-
ential equations:

d�

dt*
= − �H , �29�

C
dU

dt*
= − gL�U − Vrest� + Ia, �30�

with the conditions U�0�=Vreset, 
0
��dt*=1, and the param-

eter Vreset=Vrest. The solution by the RDA for �	��0� as a
function of Ia is expressed �8� by

� = 
	m�
0

a

exp�− �
0

u� 	mH�u�
a − u

du���a − u��du��−1

,

�31�

with a= Ia /gL�UT−VL�.
We compare this solution given by the RDA and the new

hazard function Eq. �27� to the steady-state firing rate com-
puted by Moreno-Bote and Parga �MB� �13�, by both direct
simulations and approximate analytical expression. The pa-
rameters from the earlier work of �13� correspond to ours,

	m=10 ms, a=	m�MB, � / �UTgL�=	m��MB
2 / �2	�, for three

regimes with �i� a=0.8, �MB
2 =4 Hz �bottom�; �ii� a=0.8,

�MB
2 =12 Hz �middle�; and �iii� a=1.05, �MB

2 =1 Hz �top�.
Figure 4 presents the firing rate vs the time scale of the noise
	. The comparison of the solutions shows that the quality of
the RDA approach with the new approximation of the hazard
function is consistent with the previous analytical results. In
particular, the residual errors are of the same scale as the
errors of the hazard function approximation �26� and the er-
rors of the numerical solution of the integral �31�.

RDA for full coductance-based model of cortical adaptive
neurons. We now demonstrate the approximation of the
colored-noise hazard function into a full conductance-based
model of a population of adaptive neurons. The full models
for a single neuron and for a population have been intro-
duced in �8�, and here we substitute the white-noise approxi-
mation of the hazard function by its colored-noise generali-
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FIG. 3. The transient response of the firing rate of a population
of LIF neurons after a step of injected current Ia=400 pA. Re-
sponses were obtained by both direct simulation of 8000 of indi-
vidual neurons �DS� and by evaluating the population model �PM�.
The parameters of the LIF neurons are Vrest=−65.7 mV, Vreset

=−75.1 mV, C=1 �F /cm2, 	m=14.4 ms, UT=Vrest+10 mV, the
membrane area S=5.27
10−4 cm2. The amplitude of noise was
such that the stationary voltage dispersion would be �V=2 mV; the
time parameter of the colored noise was such that 	m /	=4. The
initial conditions corresponded to steady-state gaussian distribution
of V and h.
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zation given by Eqs. �27� and �28�. The response of a
population to an injected current step �400 pA� in the case of
colored �	m /	=4� noise, shown in Fig. 5, corresponds well to
the direct simulation �DS� of individual neurons.

IV. DISCUSSION

The results of our present and previous works show that a
population of similar conductance-based neurons with first-
order synaptic noise kinetics can be precisely described by a
one-dimensional PDM. In particular, the present paper shows
that in the case of noninstantaneous noise, instead of a 2D
nonstationary KFP equation, the system can be evaluated by
solving a set of 1D transport equations derived from the re-
fractory density approach, with the hazard function param-
etrized by the ratio of membrane and noise time constant.

Simulations show only quantitative but not qualitative effect
of noise correlations in time, and only for rather weak inten-
sities of stimulation.

These results support the use of the proposed population
model based on Eqs. �2� and �3� for either integrate-and-fire
neurons or neurons described by the equations from �8� for
conductance-based neurons, with the hazard function given
by Eqs. �27� and �28�. In particular, the model should sim-
plify analyses such as that proposed in �4�, or simplify net-
work simulations such as described in �6�.
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FIG. 4. The firing rate vs the time scale of the noise in the
steady state. The solution by Eq. �31� �solid line� that incorporates
the proposed hazard function approximation �26� is compared to the
individual neuron simulations �dots� and the known analytical ex-
pression from �13�. The curves for superthreshold �top� and two
subthreshold �middle and bottom� regimes are shown; the param-
eters are given in text.
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Full conductance-based neurons:

FIG. 5. The transient response of the firing rate of a population
of conductance-based neurons after a step of injected current Ia

=400 pA. Responses were obtained by both direct simulation of
8000 of individual neurons �DS� and the evaluation of the popula-
tion model �PM�. The parameters of the models are given in �8�.
The amplitude of noise was such that the stationary voltage disper-
sion would be �V=2 mV; the time parameter of the colored noise
was such that 	m /	=4.
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