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We propose a macroscopic approach toward realistic simulations of the population activity of hippocampal
pyramidal neurons, based on the known refractory density equation with a different hazard function and on a
different single-neuron threshold model. The threshold model is a conductance-based model taking into ac-
count adaptation-providing currents, which is reduced by omitting the fast sodium current and instead using an
explicit threshold criterion for action potential events. Compared to the full pyramidal neuron model, the
threshold model well approximates spike-time moments, postspike refractory states, and postsynaptic current
integration. The dynamics of a neural population continuum are described by a set of one-dimensional partial
differential equations in terms of the distributions of the refractory density �where the refractory state is defined
by the time elapsed since the last action potential�, the membrane potential, and the gating variables of the
voltage-dependent channels, across the entire population. As the source term in the density equation, the
probability density of firing, or hazard function, is derived from the Fokker-Planck �FP� equation, assuming
that a single neuron is governed by a deterministic average-across-population input and a noise term. A
self-similar solution of the FP equation in the subthreshold regime is obtained. Responses of the ensemble to
stimulation by a current step and oscillating current are simulated and compared with individual neuron
simulations. An example of interictal-like activity of a population of all-to-all connected excitatory neurons is
presented.

DOI: 10.1103/PhysRevE.75.011924 PACS number�s�: 87.19.La, 87.18.Sn, 87.19.Nn, 05.10.Gg

I. INTRODUCTION

Individual cortical neurons operate within the background
activity of neuron populations occupying large areas of the
cortex. Relative to the single-cell activity, this background
activity is macroscopic, and therefore calls for independent
approaches for its mathematical description. Whereas de-
tailed single-neuron conductance-based models are well de-
veloped, there is no generally accepted derivation of a
conductance-based macroscopic model of neuronal ensemble
activity. Our approach considering a neural ensemble as a
continuum in a state parameter space is based on the ideas
and methods introduced in �1–3� and reviewed in �4�. The
implementation of the theory based on the notion of a prob-
ability density function for a reduced and experimentally
constrained single-neuron conductance-based model has
been recently proposed in �5�. However, two important addi-
tional details are presented here, completing the generaliza-
tion of the approach for a population of adaptive neurons,
mainly pyramidal-like cells. These are the description of
slow ionic currents and the extension of the hazard-function
approximation to the range of subthreshold stimulation.

Population models of the firing rate type �6–10� were pro-
posed to describe an infinite number of similar neurons as a
continuum. Strictly, these methods are valid only for quasis-
tationary states of ensemble activity, and only their modifi-
cation with the help of ad hoc parameter fitting can provide
good descriptions of transient regimes. One example is given

in �8�, where second-order filtering is used for the current
that takes part in the basic dependence between firing rate
and stimulus current. Another approach �10� is to separate
steady and nonstationary firing regimes. Applying the rate-
current dependence to the former regime and treating the
latter as a superthreshold regime of abrupt excitation, one
can get a rough approximation of the firing rate. However,
such approaches either do not allow a precise approximation
or work only in a limited range of stimulation parameters.

We apply the probability density approach �PDA� which,
in contrast to the firing-rate models, can take into account the
relaxation properties of neurons and thereby correctly calcu-
late the firing rate in nonstationary dynamical regimes �2�.
The PDA describes the evolution of a neuronal continuum in
the phase space of a specific choice of neuronal state vari-
ables. In general, if we consider a conductance-based-type
model of a single neuron, the state variables include the
membrane potential and those describing the ionic current
conductances. However, the large number of associated pa-
rameters for the conductance-based model necessarily com-
plicates the equations for the ensemble dynamics. This is a
major reason that many approaches consider only one state
variable, the membrane potential, governed by the integrate-
and-fire or the spike response model �e.g., �11��. Neverthe-
less, the membrane potential is only a weak predictor of the
neuron’s complete state, primarily because neurons with dif-
ferent refractory states can have the same potential. On the
other hand, the time elapsed since the last action potential
approximates the refractory state quite well. This relationship
motivates a refractory density approach ��2,4��, which con-
siders the evolution of a neuronal density distribution in the
space of a single parameter, the time elapsed since the last
spike, as a particular case of the probability density ap-
proach.
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The key element of the present work is that of implanting
a conductance-based neuron model into the probability den-
sity approach. To this end, following our previous work de-
voted to an interneuron population �5�, we first develop a
threshold version of the experimentally constrained
conductance-based model, and then derive the appropriate
system of equations of the refractory density approach
�RDA� for this model.

The threshold model is obtained in Sec. II A by omitting
the fast sodium current from the conductance-based model,
and in its place introducing a threshold criterion that depends
on the derivative of the membrane potential. The correspond-
ing membrane potential is referred to as the averaged sub-
threshold potential over the neurons of a given population,
under the assumption that the input current is equal for all
neurons. Advantages of the model in comparison with the
integrate-and-fire and spike response models are outlined in
this section and in Sec. IV. The approximating formulas for
the ionic currents are given in Appendix A. The approxima-
tion of the threshold as a function of the potential slope in
the present model is obtained by comparing the solutions
from both the biophysically detailed and reduced single-
neuron models in Sec. II B.

In Sec. II C we write the equations of the RDA. For a
large population of similar neurons we form a probability
density that represents the distribution of neurons across all
possible states. The state variables of a neuron are assumed
to be dependent on only one parameter, which is the time
elapsed since the last spike. This parametrization reduces the
dimension of the phase space of neural states, yielding a set
of one-dimensional partial differential equations. We calcu-
late the membrane potential and the gating variables of ionic
currents, along with the refractory density, by means of the
threshold conductance-based model mentioned above; and
these serve to define the term governing neural excitation in
the RDA, referred to in �4� as the hazard function.

The differences in intrinsic properties between neurons
within the given population, as well as fluctuations of any
stochastic currents affecting the neurons, are taken into ac-
count by the hazard function. In Appendix B we derive the
hazard function and show that it approximates well the firing
probability of a neuron fluctuating due to noise near the
mean state of the population for any regime of neuron stimu-
lation. The resulting hazard function as the source term in the
RDA is introduced in Sec. II C, which completes the compo-
sition of the full system of equations governing a single neu-
ral population.

In Sec. III we present the results of single-population
simulations and comparison with simulations of an ensemble
of noninteracting neurons. We discuss the results in Sec. IV.

II. GOVERNING EQUATIONS

Our implementation of the population density approach is
based on a threshold model constructed from the
conductance-based single-neuron model. Although the ap-
proach could be generalized or reduced to other neuron mod-
els �see �3,11,4��, the population model based on the pro-
posed threshold neuron model is low dimensional,

computationally efficient, biophysically meaningful, and
matched to experiments. Based on the threshold neuron, we
then make the main assumption that the state variables of the
neuron are parametrized by a single parameter, the time
elapsed since the last spike, which in turn allows the one-
dimensional population density description.

A. Single-neuron model

A precise model of a hippocampal pyramidal cell can
be found in �12�. Here we use a reduced version of the
model, considering a one-compartment neuron with voltage-
dependent sodium and potassium currents as well as an afte-
rhyperpolarization �AHP� current which describes the cumu-
lative activity of calcium-dependent potassium currents.
Thus the membrane potential V�t� is governed by the equa-
tion �in conventional notation�

C
dV

dt
= − INa − IDR − IA − IM − IH − IL − IAHP − Ia, �1�

where Ia is the applied current, IL is the linear leak current,
and the membrane capacitance C=0.37 nF. The approxima-
tions of the current kinetics for the sodium current INa, the
voltage-dependent potassium currents responsible for spike
repolarization, IDR and IA, the voltage-dependent potassium
current that contributes to spike frequency adaptation, IM,
and the voltage-dependent cation current IH, are adapted
from �12�; the approximation for the voltage and calcium-
dependent potassium current that also contributes to spike
frequency adaptation, IAHP, is given in �13�. The approxima-
tions are also given in Appendix A.

To obtain a threshold neuron model we note that the sig-
nificant role for the sodium current is for pulse generation,
and assume that it does not have a strong influence on the
total membrane current between spikes. Accordingly, we de-
fine a subthreshold potential U�t� as the membrane potential
of the neuron with blocked sodium current, i.e., according to
the equation

C
dU

dt
= − IDR − IA − IM − IH − IL − IAHP − Ia. �2�

When the potential U crosses the threshold UT, as defined
below, a spike occurs. To take into account the duration of a
spike the equations of the gating variables and the potential
are not integrated during the time interval �tAP=1.5 ms after
the spike initiation. Then the potential is reset to the value
Ureset=−40 mV under the assumption that at this point of the
repolarization phase INa is much smaller than the other mem-
brane currents. The gating variables for the fast currents IDR,
IA, and IH are also reset to their fixed values, whereas the
gating variables of the slow adaptation currents IM and IAHP
undergo jumps from their previous values, i.e.,

xreset = 0.26, yreset = 0.47 for IDR, �3�

xreset = 0.74, yreset = 0.69, for IA, �4�

yreset = 0.002, for IH, �5�
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�xreset = 0.18 �1 − x�, for IM , �6�

�wreset = 0.018 �1 − w�, for IAHP. �7�

These values were calculated by the full model based on �1�
in the descending phase of a spike, when U=Ureset, as shown
in Fig. 1.

As a result, the potential U satisfactorily approximates the
potential V of the full model on the interspike intervals, and
with the threshold criteria we accurately calculate the spike
times, as shown in Fig. 3 below.

We now define the firing threshold for the potential U.

B. Threshold potential UT

The kinetics of the sodium channel depends on both the
instantaneous value of the potential and its history. Here we
rely on the simplest description of this dependence in terms
of the functional expression of the sodium current, the action
potential, by characterizing the average threshold UT as a
function of dU /dt. To calculate this dependence we use both
the full neuron model �1� and its reduction �2�. The depen-
dence is obtained by applying different current steps Ia and
solving Eqs. �1� and �2� for the exact, V�t�, and subthreshold,
U�t�, potentials, respectively. We then define the threshold as
the value of the potential U at the first spike maximum for
the potential V, i.e., at t= tAP, where tAP is the time of the

spike peak. The value UT=U�t=tAP
and the corresponding

dU /dt�t=tAP
give one point of the desired threshold function.

We vary the input current to get a wide range of dU /dt. The
resulting dependence is

UT = f�dU/dt� �8�

shown in Fig. 2. The amplitude and the shape of the stimu-
lating current do not explicitly take part in the dependence
�8�, under the assumption that the result has a low sensitivity
to specific details such as the use of a current step and that
only the first spike in a spike train is considered.

With this estimated dependence of spike threshold on the
voltage derivative the threshold model based on Eq. �2� is
completed. This model gives correct spike times for both the

FIG. 1. �Color online� Action potential and underlying ionic
currents and conductances, obtained by the complete conductance-
based neuron model based on Eq. �1�; here Im= IDR+ IA+ IM + IH

+ IL+ IAHP. As well, the procedure of the parameter measurement for
the threshold model is illustrated, namely, measurement of the du-
ration of the spike-descending phase, �tAP=1.5, the reset value for
the IDR gating variable, xDR

reset, and the step for the IM gating vari-
able, �xM

reset, at the point of crossing the level Vreset.

FIG. 2. Threshold potential UT as a function of the potential
slope dU /dt, comparing the solutions of Eqs. �1� and �2�.

FIG. 3. �Color online� Comparison of spike trains calculated by
the full conductance-based neuron model and its threshold version
in the cases of stimulation by Ia=350, 500, and 1000 pA.
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first and subsequent spikes in a spike train in response to a
constant current step, when compared to the full neuron
model �Fig. 3�. Since Eq. �8� considers a local parameter of
the state of the neuron, the rate of change of the voltage, the
threshold model maintains its precision for different stimula-
tion amplitudes. The good agreement between threshold val-
ues for different spikes in Fig. 3 supports the choice of the
particular function �8� that is used.

We now use the described single-neuron threshold model
within a population density approach.

C. Population density approach

To describe the activity of a population of similar neurons
receiving the sum of a common input current term and a
noisy current term we consider the probability density �,
which characterizes the number of neurons that are in a simi-
lar state of activity. Strictly speaking, � is the fraction of
neurons per unit volume of the phase space �PS� of neuron
state parameters in the mathematical limit of an infinite num-
ber of neurons. As described, in order to avoid the complex-
ity of a high-dimensional description we reduce our consid-
eration to a one-dimensional version of the phase space.
Thus, let us introduce the one-dimensional phase space with
the state variable t*, which for any given neuron is the time
elapsed since its last spike �Fig. 4�. By that, we have two
independent variables t and t*, and one dependent variable
�=��t , t*�. At any time t a small volume of the PS, �t* , t*

+�t*�, contains a portion of neurons of the population equal
to ��t , t*��t*. The density ��t , t*� is referred to as the refrac-
tory density in �4�. The value ��t ,0� represents the firing rate
of the ensemble. Indeed, in accordance with �4�, the popula-
tion firing rate can be defined if we take a short time window
�t, count the number of spikes �summed over all neurons in

the group� that occur in an interval t , . . . , t+�t, nact, and
divide by the number of neurons, N, and �t. After taking the
limits of N→� and �t→0 �see Eq. �5.136� in �4��, the ac-
tivity �, or the rate, is ��t�=lim�t→0limN→��1/�t�nact�t ; t
+�t� /N. In the PS of the variable t* we have
limN→�nact�t ; t+�t� /N=�0

�t��t , t*�dt*, provided that �t is
smaller than the absolute refractory period. Thus, in the limit
of �t→0, we see that ��t����t ,0�.

To describe the temporal evolution of ��t , t*�, we note that
during periods in which the neurons do not fire the value of
the refractory density at �t1 , t1

*� would be equal to that at
�t1+�t , t1

*+�t� as �t→0, i.e., d� /dt=�� /�t+�� /�t*=0.
When neurons do fire, they instantly move to the point t*

=0. The rate of firing for neurons with some value of t* is
proportional to the density of neurons at that point, ��t , t*�,
and the probability for a single neuron to fire in a unit time,
H. Thus, d� /dt=−�H. The function H is referred to in �4� as
the hazard function or the spike-release probability density.
Substituting the total derivative d /dt=� /�t+� /�t*, we obtain
that the evolution of � is governed by the transport equation
with a source

��

�t
+

��

�t* = − �H . �9�

To define the spike-release probability density, H, we first
consider it to be a function of both U and UT; thus H
=H(U�t , t*� ,UT), i.e., the probability for a neuron to release a
spike during the interval �t , t+�t�, H�t, depends on its sub-
threshold membrane potential U=U�t , t*� and on the thresh-
old UT. This dependence implies comparison of U with the
threshold potential UT averaged over the ensemble, which
has been calculated in Sec. II B. Because the arguments of
UT are the voltage value U and its derivative dU /dt, we can
treat H as a function of the function U�t� only, i.e., H
=H�U�t��.

As stated, neurons return to the point t*=0 when they
spike. This fact is reflected by the boundary condition for Eq.
�9� which is the equation for the firing rate

��t� � ��t,0� = �
+0

�

�H dt*. �10�

Given the normalized �, the boundary condition �10� pro-
vides the conservation of the number of neurons,

�
0

�

� dt* = 1.

As mentioned above, the value ��t ,0� is the firing rate of
the ensemble. In a stationary or quasistationary regime,
��t ,0� corresponds to the firing rate of a single neuron with a
mean threshold UT.

To define the membrane potential U for all t*, we rewrite
Eq. �2� by substituting the total derivative d /dt=� /�t
+� /�t*:

C	 �U

�t
+

�U

�t*
 = − IDR − IA − IM − IH − IL − IAHP − Ia.

�11�

FIG. 4. Schematic representation of neuron evolution in the one-
dimensional space of the time elapsed since the last spike. The
density and voltage profiles are shown. Neurons move to the right
till the next spike generation. After their spikes neurons transfer to
the point t*=0. The stationary density profile is a plateau on the
interval since t*=0 till about the average interspike interval, t*

�1/��t ,0�, and then decays to zero.
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Similarly, we get the equations for the gating variables of
all the active ionic currents, i.e.,

�x

�t
+

�x

�t* =
x��U� − x

�x�U�
,

�y

�t
+

�y

�t* =
y��U� − y

�y�U�
�12�

with x��U�, �x�U�, y��U�, �y�U� taken from �12�.
According to the threshold model described above, the

voltage and the gating variables of the ionic currents are not
integrated within the interval 0� t*��tAP, i.e., the boundary
conditions for Eqs. �11� and �12� are U�t ,�tAP�=Ureset;
x�t ,�tAP�=xreset, y�t ,�tAP�=yreset, where xreset and yreset are
taken from Eqs. �3�–�5�. The reset values for the adaptation
current are calculated, incrementing the values at the peak of
spike-release distribution in the t* space:

�xreset = 0.18�1 − x�t,t*p��, for IM , �13�

�wreset = 0.018�1 − w�t,t*p��, for IAHP, �14�

where t*p is such that ��t , t*p�H�t , t*p�
=max0�t*�+���t , t*�H�t , t*�.

We now define the function H, given the membrane po-
tential U and its time derivative.

D. The spike-release probability density H

A formula to calculate the spike-release probability den-
sity H should consider a model of noise and the variation of
the cellular parameters and of the synaptic inputs over the
entire neuron population. Here we assume that the functional
impact of these factors may be expressed in an additive
Gaussian noise term affecting the potential of a given neu-
ron. The other parameters governing the neuron are given by
their average over all the neurons at t*. The expected firing
rate for this neuron is given by the spike-release probability
density for a population.

For the undisturbed subthreshold potential U�t� we write
down again Eq. �2�,

C
dU

dt
= − Itot�U,t� , �15�

where Itot= IDR+ IA+ IM + IH+ IL+ IAHP+ Ia is the total current.
For the disturbed subthreshold potential V��t� we write the

equation

C
dV�

dt
= − Itot�V�,t� + �gtot

0 ��t� , �16�

where ��t� is the Gaussian white noise characterized by its
mean value ���t�=0, and autocorrelation ���t���t��=�m

0 	�t
− t��; gtot�V� , t�=gDR+gA+gM +gH+gL+gAHP is the total con-
ductance, gtot

0 is the total conductance at the rest steady state,
and �m

0 =C /gtot
0 is the membrane time constant at the rest

steady state. The neuron fires when the potential V� crosses
the threshold UT. From the comparison of Eq. �2� with Eq.
�16� we can conclude that at least for stable solutions if the
noise amplitude � tends to 0 the expected value of V��t� is
equal to U�t�. Analogously, it holds for small noise that
gtot�V� , t��gtot�U , t�. In general, the expected values of the

channel conductances depend not only on the mean voltage
but on the voltage fluctuations as well. However, actually,
this effect is not significant. Rather, the greatest effect is on
the adaptation currents, when relatively fast positive voltage
fluctuations tend to increase the adaptation conductances,
which slowly decay afterward. Here we neglect these effects
and estimate the total conductance by its value in the zero-
noise case. Thus, we can linearize the current Itot�V� , t�
� Itot�U , t�+gtot�U , t��V�−U�. After subtraction of Eq. �15�
from Eq. �16� we obtain the equation for the voltage fluctua-
tions

C
d�V� − U�

dt
= − gtot�U,t��V� − U� + �gtot

0 ��t� . �17�

We then neglect the dynamics of gtot�U , t�, i.e., dgtot /dt�0,
d�m /dt�0, under the assumption that just prior to crossing
the threshold the voltage evolution depends only on the value
of gtot�U , t� and not on its temporal derivative. Dividing Eq.
�17� by gtot

0 �U , t�� and introducing the variable for the volt-
age fluctuations scaled by the noise amplitude, u�gtot�U , t�

�V�−U� /gtot

0 �, we obtain the equation

�m�U,t�
du

dt
= − u + ��t� , �18�

where �m�U , t�=C /gtot�U , t� is the membrane constant. The
value � /�2 corresponds to the membrane potential disper-
sion in the steady state, i.e., �V=� /�2. The neuron fires at
the threshold T�t��gtot�U , t��UT−U�t�� /gtot

0 �.
We can find the expected firing rate for the neuron by

considering the corresponding Fokker-Planck equation for
the probability density of a neuron to be in the state u,
�̃�t ,u�, which is

�m�U,t�
� �̃

�t
+

�

�u
	u�̃ −

1

2

� �̃

�u

 = 0 �19�

with the boundary conditions �̃�t ,−� �= �̃�t ,T�t��=0 and the
initial Gaussian distribution. The expected firing rate is given
by the flux term written in large parentheses calculated at the
threshold u=T�t� and divided by �m. It is thus defined as

H„U�t�… = −
1

2�m
� � �̃

�u
�

u=T�t�
. �20�

A good approximation for the function H(U�t�) can be found
by considering two particular cases, the self-similar solution
A for the case of a slow change in the voltage U, and the
frozen Gaussian solution B for the case of fast-increasing
voltage U. The self-similar solution means that the probabil-
ity density distribution changes in amplitude but not in
shape. The stationary equation for the shape of �̃�t ,u� is an
ordinary differential equation and can be solved analytically.
The frozen Gaussian solution is valid when the difference
between the mean and threshold potentials changes faster
than the probability density distribution reshapes due to dif-
fusive influence of noise. The considered particular cases are
limit cases in the sense that B is zero in the unvarying U�t�
regime, and A is negligible in the fast-varying U�t� regime.
By their physical meanings, the activity B occurs due to the

POPULATION MODEL OF HIPPOCAMPAL PYRAMIDAL… PHYSICAL REVIEW E 75, 011924 �2007�

011924-5



“movement” of the threshold boundary u=T�t� toward the
probability density function �PDF�, whereas the activity A
occurs due to “flow” through a threshold boundary u=T be-
cause of transfer and diffusion processes changing the PDF.
These processes providing “sources” of neuron leakage are
independent. Relying on this fact, we suppose and find to be
true that the activities are additive, i.e., the sum of the solu-
tions A+B gives a satisfactory approximation for H in any
arbitrary case of neuron stimulation. The result is the follow-
ing formula:

H„U�t�… =
1

�m
�A„T�U�… + B�U,dU/dt�� , �21�

where A�T� is given by the curve in Fig. 5�a� and

B�U,dU/dt� = − �2�m�dT

dt
�

+
F̃�T�, F̃�T� =� 2

�

exp�− T2�
1 + erf�T�

.

�22�

The function F̃�T� is shown in Fig. 5�b�; �x�+=x for x�0 and
zero otherwise.

Thus, we have obtained the system of equations �9�–�12�,
�3�–�5�, �13�, �14�, �21�, and �22� governing the activity of a
neuronal ensemble. The numerical method to solve this sys-
tem is described in Appendix C

III. RESULTS

For justification of the proposed method we compare it to
simulations of a discrete set of individual neurons given a
step stimulation, thus illustrating the quality of the transient
regime approximation. Furthermore, we analytically derive
the rate-current curve from the proposed population model
and compare with the known analytical result in the case of
integrate-and-fire neurons. Finally, as a demonstration of
how to apply the model to an interconnected population and
as an independent result consistent with experiment, we
present simulations of interictal-like bursts.

A. Population and individual neuron simulations

In this section, we present simulations for a population of
uncoupled neurons, all of which receive common input from
an external source and noise with the dispersion �
=0.2�2UT to get �V�0.2UT, where this value estimates typi-
cal voltage fluctuations or dispersion of voltage thresholds.
Thus in the Eq. �1� we consider an extra term �gtot

0 ��t�,
where ��t� is the Gaussian white noise characterized by its
mean value ���t�=0 and autocorrelation ���t���t��=�m

0 	�t
− t��. We compare the population density approach with di-
rect individual neuron simulations. The population density
equations with the same dispersion � were solved numeri-
cally.

As a response to a rapid change in input, the firing rate
transiently jumps up before returning to a new steady-state
response as seen in Figs. 6�a�–6�e�. The distributions of the
potential U and the density � in the PS at one instant in time
are shown in Fig. 6�f�. The steep gradient of the density
corresponds to near-threshold potentials. Shown in Figs.
6�a�–6�c� are the simulations without adaptation currents IM
and IAHP for Ia=200, 300, and 500 pA, correspondingly. Tak-
ing into account only IM, or both IM and IAHP, changes the
rate as shown in Figs. 6�d� and 6�f�, respectively. With adap-
tation, the population model slightly exaggerates this dissi-
pation effect. On the whole, the rate obtained by the popula-
tion model well approximates the rate of a set of individual
neurons for different stimulus strengths. As a comparison, we
also plot the rate obtained by the firing-rate model in Fig.
6�b� �dashed line�, calculated by the steady-state rate-voltage
dependence �=�SS(U�t , � �).

The responses to oscillating input current are shown in
Fig. 7 for the cases of taking into account only IM adaptation
current �Fig. 7�a�� or both IM and IAHP adaptation currents
�Fig. 7�b��. The adaptation currents, oscillating input, and
noise result in high variability of the individual neuron volt-
age traces �examples are shown in Fig. 7�b�� and, conse-
quently, different amplitudes of population rate peaks. The
population model firing rate compares well with the aver-
aged firing rate of individual neurons.

B. Predictions: A model of interictal-like bursts

The proposed formulation may also be applied for synap-
tically connected networks. To demonstrate this point we
simulate the activity of a recurrent pyramidal cell network
including all-to-all connectivity by excitatory synapses. Syn-

FIG. 5. Components of approximate hazard function. �a� Func-
tion A characterizes the firing probability of a neuron at given di-
mensionless distance to threshold T in the regime of slow changes

of T. �b� Dimensionless function F̃�T�, defined by Eq. �21�, charac-
terizes the firing probability in the regime of fast changes of T.
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aptic noise is approximated by an additive white noise term,
as described in Sec. III A. In this case the input current con-
sists of two terms, Ia�t�= Iext�t�+ IS�t�. The first term Iext is the
applied external current, taken to be 150 pA and starting at
t=0. The second term IS�t� is the synaptic current governed
by the population firing rate, i.e.,

IS�t� = gS�t��U�t� − VS� , �23�

�S
2d2gS�t�

dt2 + 2�S
dgS�t�

dt
+ gS�t� = ḡS���t − �d� , �24�

where ��t� is the presynaptic population firing rate. As noted
previously for the population model ��t�=��t ,0�, whereas
for the direct simulation ��t� is given by the spike rate, nor-
malized over the total number of neurons. The remaining
terms are equivalent for the two models: �S is the synaptic
time constant, �d is the synaptic delay, ḡS is the maximum
synaptic conductance, VS is the synaptic current reversal po-
tential, and � is the scaling time constant fixed to be equal to
1 ms. For purposes of illustration the following values were
used: �S=5.4 ms, �d=1 ms, VS=5 mV, ḡS=1 mS/cm2. As
shown in Fig. 8 the population model shows quite similar
behavior to simulations of a recurrent network made of
explicit individual neurons. In the considered situation the

neural network is very sensitive to any changes of its param-
eters, because a weak disturbance of the network might pro-
voke an excitation of a small fraction of neurons which
evoke a cascade activation of the total population. When this
instability is taken into account the simulations by the two
models may be considered quite similar, with an error in the
interburst interval of only 14%. As mentioned in Sec. II D
the main source of the solution deviation is that in contrast to
the supposition made the total conductance is governed not
only by the mean potential but by the potential fluctuations
as well. Mainly, the adaptation ionic current conductances
are underestimated. Thus a correction could be made, intro-
ducing an increment to the maximum conductance of AHP
current, ḡAHP, depending on �V.

Taking into account that the choosen values of �S and VS

correspond to the characteristics of somatically measured
aminomethylphosphonic acid �AMPA�-receptor-mediated
current �14�, we propose that this population activity relates
to the physiological interictal activity, given that one sug-
gested mechanism involves a population of pyramidal cells
recurrently connected by AMPA-receptor-mediated synapses.
The shape of the bursts is similar to one observed in the
disinhibited cornus ammonis sector 1 �CA1� minislices �15�.
Under these conditions an important prediction of the model
is that the key mechanism for shaping the bursts are the
adaptation currents.

FIG. 6. Transient response of
the population firing rate to a
rapid change in input. Beginning
at t=0, the excitatory input cur-
rent to the uncoupled nonadapting
neurons of a single population is
stepped up to 200, 300, and
500 pA, respectively, in �a�, �b�,
and �c�. Similar simulations which
take into account the slow adapta-
tion current IM alone, and both IM

and IAHP, are shown in �d� and �e�.
The firing rate transiently jumps
up before returning to a new
steady-state response. The popula-
tion model firing rate �solid line�
compared with the averaged firing
rate of individual neurons. �f� Dis-
tributions of the potential U�t1 , t*�,
the density ��t1 , t*�, and the
threshold potential UT changing
with dU /dt across the time
elapsed since the last spike, t*,
corresponding to �e� at the time
t1=35 ms. For comparison, the
rate obtained by the firing-rate
model is shown in �b� �dashed
line�, calculated by the steady-
state rate-voltage dependence �
=�SS(U�t , � �).
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C. Verification by an analytical solution: Steady-state
firing of integrate-and-fire neurons

For the verification of the proposed approach based on the
assumptions made for the derivation of the hazard function,
we compare the steady-state population firing rate calculated
by the proposed RDA to the known analytical solution �16�
obtained for linear integrate-and-fire neurons with constant
thresholds, receiving, as above, an injected current Ia and an
additive white Gaussian noise with the dispersion �. Here we
also set the reset potential equal to VL.

The solution from �16� is as follows:

� = 	�m
�����

�VL−x�/�

�UT−x�/�
exp�u2��1 + erf�u��du
−1

�25�

where �m=C /gL and x=VL+ Ia /gL is the asymptotic poten-
tial.

In this particular case the equations of the RDA can be
written as follows:

du

dt�
= − u + a ,

d�

dt�
= − �A�T� + �

dT

dt�
�2F̃�− T� ,

�
0

�

� dt� = 1, u�0� = 0,

� � ��0� ,

with u= �U−VL� / �UT−VL�, t�= t* /�m, T= �UT−U� /�, a
= Ia /gL�UT−VL�. The solution by the RDA for ��Ia� is ex-
pressed by

� = ��m�
0

a

exp	− �
0

u� H̃�u�
a − u

du
��a − u��du��−1

,

H̃�u� = A�T� + �a − u��UT − VL�/��2F̃�− T� . �26�

FIG. 7. Responses to oscillating input current. The population
model firing rate �solid line� compares well with the averaged firing
rate of individual neurons �dotted line�. �a� Only IM adaptation cur-
rent was taken into account; the parameters of the input were
1000 pA, 10 Hz. �b� Both IM and IAHP adaptation currents, 20 Hz
oscillating input current of 500 pA amplitude, and noise result in
high variability of the individual neuron voltage traces �examples
are shown in gray lines� and, consequently, different amplitudes of
population rate peaks.

FIG. 8. Repeating bursts in the population of interconnected
pyramidal cells, obtained by direct simulation �DS� of a great num-
ber �4000� of all-to-all interconnected neurons and by the popula-
tion model. The two parameters, the constant external current Iext

=150 pA and the maximum synaptic conductance ḡS=1 mS/cm2,
were arbitrarily chosen. The synaptic conductance time constant
�S=5.4 ms corresponds to known kinetics of AMPA-receptor syn-
aptic conductance �14�. Shown in two time scales are �a�,�c� spike
trains for the representative neuron in the population model �solid
line� and in DS �gray line�, as well as the dimensionless conduc-
tances of adaptation currents IM and IAHP �dashed and dotted lines,
respectively�; �b�,�d� firing rate in the population model �solid line�
and in DS �dotted line�. The effect of the adaptation currents pro-
vides interburst pauses, whereas refractory and excitation properties
provide complex five-peak shapes of the population spikes.
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The results of comparison of the formulas �25� with �26�
are shown in Fig. 9. Good agreement of the solutions justi-
fies that the derived formulas for the hazard-function works
well in the arbitrary regimes of neural stimulation.

IV. DISCUSSION

We have generalized the known refractory density ap-
proach for the case of realistic, adaptive, neurons. The ob-
tained system of equations is intended to approximate an
infinite set of similar pyramidal neurons receiving a common
input and dispersed by noise, including the case of a synap-
tically connected network. Here we outline the advantages of
the model and its possible extensions.

Previous population density approaches for studying the
dynamics of neuronal populations have considered distribu-
tions of neurons across either the membrane voltage or the
time passed since the last spike. The former method has been
based on the integrate-and-fire neuron �11,4,17,3,18�. The
latter method, that is the refractory density approach, is
based on the spike response model �SRM� �2,4,19�. As a
more general single-neuron model than the integrate-and-fire
neuron, the SRM can more precisely describe the neuron
dynamics. Moreover, in contrast to the membrane potential,
the time since the last spike monotonically changes with time
�modulo spike times� and better describes the state of a neu-
ron, in particular, its refractory properties. However, the
SRM considers only input current �4,19�, while in general
neuronal input is composed of a current term and a conduc-
tance term �20�. Thus, the SRM approach neglects shunting
effect of the input. Also, a generalization of the SRM on the
case of adaptive neuron is not known to the authors.

The refractory density approach proposed in the present
paper is based on a single-neuron model which is different
from the SRM. The SRM supposes that the membrane po-
tential is the sum of a term reflecting the evoked spike and a
postsynaptic term reflecting the synaptic input. In contrast,

the present paper states that instead of the decomposition it is
sufficient to omit the sodium current when calculating the
potential relative to the spike threshold. As a consequence,
the approach has several advantages in comparison to the
SRM-based RDA and other known one-dimensional popula-
tion models. First, the threshold calculated as a one-
parametric dependence on the potential slope provides better
accuracy because it implicitly reflects the activity of the
omitted sodium channels. Second, using the current approach
it is possible to take into account additional fast ionic cur-
rents as well as slow currents, due to the explicit
conductance-based formulation of the approach. Third, the
current model is described by partial differential equations,
which are easier to solve than integral-differential equations
such as used in �4,11�. Finally, due to the obtained analytical
solutions of the Fokker-Planck equation in the particular
cases of weak and strong stimulation, the proposed approxi-
mation for the spike-release probability density function H,
or hazard function, is quite precise and does not contain free
parameters. As a result, the full system of equations of the
population model does not contain free parameters, when
derived from a full single-neuron model and assuming a
fixed noise amplitude.

The computational efficiency of the population modeling
in the framework of the density equation is significantly bet-
ter than that of the direct simulation of explicit individual
neurons. In particular, for the proposed model this follows as
it belongs to the class of one-dimensional density equation
approaches, for which estimations of computation efficiency
can be found in �11,4�. These results, which are consistent
with our observations for the simulations presented here,
demonstrate that the population density approach is between
10 and 100 times faster than the individual neuron simula-
tions. For instance, our simulation of 4000 individual neu-
rons, shown in Fig. 6�e�, lasted 20 min and still holds fluc-
tuations in the firing-rate curve, whereas the similar
simulation by the population model on the finest grid lasted
about 1 min.

In the present paper we have shown how the approach
may be used to reproduce known network behavior, such as
inter-ictal spikes. We suggest that when the proposed model
is linked with a similar model for interneuron population �5�,
one can simulate additional network dynamics, for example
gamma oscillations. Furthermore, by taking into account the
topology of spatial connections, the model should reproduce
inhomogeneous network phenomena, such as the propaga-
tion of activity along the cortical slice, and postsynaptic po-
tentials evoked by extracellular stimulation. Future work
could also generalize the presented model to consider con-
ductance noise when the neurons interact synaptically.

Thus, the proposed model of a single population of neu-
rons can be used as a core of a population model of cortical
tissue that can be quantitatively fitted to intracellular experi-
mental recordings. The reduced evaluation time of the pro-
posed refractory density approach should facilitate modeling
more complex neural networks, as compared to the evalua-
tion of networks based on explicit individual neuron models.
The refractory density approach may be an important tool for
the implementation of truly large-scale models of the net-
works in the brain.

FIG. 9. �Color online� Steady-state firing of a linear leak
integrate-and-fire neuron with and without noise. The proposed
RDA model �blue solid curve� in this particular case quite well
reproduces the green dotted curve—the analytical solution known
for this case �16�.
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APPENDIX A: THE INTRINSIC CURRENTS

The single-compartment pyramidal neuron was described
by the conventional equation �1�. Different types of ionic
currents were inserted, including the leak current IL, the fast
sodium current INa, the voltage-dependent potassium currents
responsible for spike repolarization, IDR and IA, the voltage-
dependent potassium current that contributes to spike fre-
quency adaptation, IM, the voltage-dependent cation current
IH, and the calcium-dependent potassium current that also
contributes to spike frequency adaptation, IAHP. The approxi-
mating formulas for the currents INa, IDR, IA, IM, and IH were
adapted from �12�; the approximation for IAHP was taken
from �13�.

The sodium current INa is given by

INa�t� = ḡNax1�t��V�t� − VNa� , �A1�

x1 + x2 + x3 + x4 = 1, �A2�

dxi

dt
= �

j=0, j�i

4

Aj,ixj − xi �
j=0, j�i

4

Ai,j, i = 1,2,3, �A3�

A1,2 = 3 ms−1, A1,3 = f1
1,3�V�, A1,4 = f1

1,4�V� ,

A2,1 = 0, A2,3 = f2
2,3�V�, A2,4 = 0,

A3,1 = f1
3,1�V�, A3,2 = 0, A3,4 = f2

3,4�V� ,

A4,1 = f1
4,1�V�, A4,2 = 0, A4,3 = 0,

f1
i,j�V� = ��min

i,j + 1/exp	V − V1/2
i,j

ki,j 
�−1

,

f2
i,j�V� = ��min

i,j + ���max
i,j − �min

i,j �−1 + exp	V − V1/2
i,j

ki,j 
�−1�−1

.

Note that there is an implicit coefficient of the exponential
term of 1/ms in the equations for f1

i,j�V� and f2
i,j�V�. Also

�min
1,3 = 1/3 ms, V1/2

1,3 = − 51 mV, k1,3 = − 2 mV,

�min
1,4 = 1/3 ms, V1/2

1,4 = − 57 mV, k1,4 = − 2 mV,

�min
2,3 = 1 ms, V1/2

2,3 = − 53 mV, k2,3 = − 1 mV,

�max
2,3 = 100 ms,

�min
3,1 = 1/3 ms, V1/2

3,1 = − 42 mV, k3,1 = 1 mV,

�min
3,4 = 1 ms, V1/2

3,4 = − 60 mV, k3,4 = − 1 mV,

�max
3,4 = 100 ms,

�min
4,1 = 1/3 ms, V1/2

4,1 = − 51 mV, k4,1 = 1 mV.

The voltage-dependent potassium current IDR is given by

IDR�t� = ḡDRx�t�y�t��V�t� − VDR� , �A4�

dx

dt
=

x��V� − x

�x�V�
,

dy

dt
=

y��V� − y

�y�V�
,

�x = 1/�a + b� + 0.8 ms, x� = a/�a + b� ,

a = 0.17 exp��V + 5� 
 0.090� ms−1,

b = 0.17 exp�− �V + 5� 
 0.022� ms−1,

�y = 300 ms, y� = 1/�1 + exp��V + 68� 
 0.038�� .

The voltage-dependent potassium current IA is given by

IA�t� = ḡAx4�t�y3�t��V�t� − VA� , �A5�

dx

dt
=

x��V� − x

�x�V�
,

dy

dt
=

y��V� − y

�y�V�
,

�x = 1/�ax + bx� + 1 ms, x� = ax/�ax + bx� ,

ax = 0.08 exp��V + 41� 
 0.089� ms−1,

bx = 0.08 exp�− �V + 41� 
 0.016� ms−1,

�y = 1/�ay + by� + 2 ms, y� = ay/�ay + by� ,

ay = 0.04 exp�− �V + 49� 
 0.11� ms−1,

by = 0.04 ms−1.

The voltage-dependent potassium current IM is given by

IM�t� = ḡMx2�t��V�t� − VM� , �A6�

dx

dt
=

x��V� − x

�x�V�
,

�x = 1/�a + b� + 8 ms, x� = a/�a + b� ,

a = 0.003 exp��V + 45� 
 0.135� ms−1,

b = 0.003 exp�− �V + 45� 
 0.090� ms−1.

The cation current IH is given by

IH�t� = ḡHy�t��V�t� − VH� , �A7�

dy

dt
=

y��V� − y

�y
,
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�y = 180 ms, y� = 1/�1 + exp��V + 98� 
 0.075�� ms−1.

The adaptation current IAHP is given by

IAHP�t� = ḡAHPw�t��V�t� − VAHP� , �A8�

dw

dt
=

w��V� − w

�w�V�
,

�w = 400 
 5/�3.3 exp��V + 35�/20�

+ exp�− �V + 35�/20�� ms,

w� = 1/�1 + exp�− �V + 35�/10��;

where the reversal potentials and maximum conductances are

VDR = − 70 mV, VA = − 70 mV, VM = − 80 mV,

VH = − 17 mV, VAHP = − 70 mV,

ḡNa = 1.2 S, ḡDR = 0.4 S, ḡA = 2.3 S,

ḡM = 0.4 S, ḡH = 0.003 S, ḡAHP = 0.32 S,

ḡL = 0.025 S �i.e., �m = 14.4 ms� ,

VL = − 61.22 mV �i.e., Vrest = − 65.7 mV� .

APPENDIX B: APPROXIMATION OF THE HAZARD
FUNCTION FOR THE REFRACTORY DENSITY

EQUATION OF A NEURAL POPULATION MODEL

The problem to be solved is to find the proper approxima-
tion for the spike release probability density function H, or
the hazard function. To this end, we build a linearized model
of voltage fluctuations near a time-varying mean value of
U�t� due to noise. The equation describes the voltage evolu-
tion until its first passage of the threshold UT. As we do not
follow the neuron after its first spike-time moment, we refer
to this as the first-passage problem. Then, we write the cor-
responding Fokker-Planck equation for the first-passage
problem, find its self-similar solution for the case of the so-
called subthreshold regime of stimulation �4�, or, more pre-
cisely, for a slow-varying U�t�, and furthermore describe the
known stationary, “frozen” Gaussian solution for the case of
superthreshold regime, that is, a fast-varying U�t�. Since the
neuron activity in the first-passage problem coincides with
the hazard function, the solutions in these two particular
cases give two simple dependences of the hazard function H
on the voltage U�t�, denoted as A for the slow-varying U�t�
regime and B for the fast-varying U�t� regime. The particular
cases that we consider are limit cases in the sense that B is
zero in the unvarying U�t� regime, and A is negligible in the
fast-varying U�t� regime. By their physical meanings, the

activity B occurs due to the movement of the threshold
boundary towards the probability density function, whereas
the activity A occurs due to flow of the PDF through a
threshold boundary due to transfer and diffusion processes
changing the PDF. We then suppose and find to be true that
the sum of the solutions A+B gives a satisfactory approxi-
mation for H for arbitrary stimulation regimes. This result is
verified by comparison with the numerical solution of the
Fokker-Planck equation.

Let us consider the linearized single-neuron model for the
nondimensional voltage fluctuations, u�t�, about the mean
voltage U�t� with the membrane time constant �m�t�, given a
white noise amplitude �. The model is described by Eq. �18�.
The nondimensional voltage crosses the threshold when u
=T�t� The corresponding Fokker-Planck equation for the
probability density distribution �̃�t ,u� is as follows:

�m
� �̃

�t
+

�

�u
	− u�̃ −

1

2

� �̃

�u

 = 0 �B1�

with the boundary conditions �̃(t ,T�t�)=0, �̃�t ,−� �=0, and
the initial condition

�̃�0,u� = 1/�� exp�− u2� . �B2�

We can explicitly describe the shape p�t ,u� and the am-
plitude ��t� of the probability distribution �̃�t ,u� by the sub-
stitution

�̃�t,u� = ��t�p�t,u� �B3�

such that

��t� = �
−�

T�t�

�̃�t,u�du �B4�

is the integral characterizing the probability for a neuron to
remain in the inactive state. According to Eq. �B1�, the am-
plitude ��t� decreases due to crossing the threshold T. The
shape p�t ,u� is renormalized, i.e., it is governed by Eq. �B1�
with the added source term proportional to p�t ,u� itself, i.e.,

�m�t�
�p

�t
+

�

�u
	− up −

1

2

�p

�u

 = H̃�t�p�t,u� , �B5�

where H̃�t� is the activity,

FIG. 10. Shapes p of self-similar distributions for three given
values of T=−2,0 ,2 according to Eq. �B6�.
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H̃�t� =
1

2
� �p

�u
�

u=T

. �B6�

The boundary conditions are p�t ,T�=0, p�t ,−� �=0, and
the initial condition p�0,u�=1/�� exp�−u2�.

The amplitude of the probability distribution, ��t� is de-
scribed by the equation

�m�t�
d�

dt
= − �H̃�t� , �B7�

and the activity H̃�t� plays the role of the hazard function in

the population model, i.e., H� H̃ /�m for Eq. �9�.

1. Self-similar solution

When the potential difference between the mean potential
U and the threshold UT is slowly changing, the diffusion
process described by the Fokker-Planck equation prevails
over the transfer process. The limit case is when T is con-
stant. The solution of Eq. �B1� in this case is self-similar
with decreasing amplitude ��t� and constant shape p�t ,u�,
described by the stationary variant of Eq. �B5�,

d

du
	− up −

1

2

dp

du

 = Ap, A�t� =

1

2
� �p

�u
�

u=T

, �B8�

FIG. 11. �Color online� Com-
parison of the firing rate ��t�
=�� /�t calculated by the full
Fokker-Planck equation �B1�
�black solid lines� with the
approximations by �md� /dt
=−�A�T� �green dotted line�,
�md� /dt=−�B�T ,dT /dt� �blue
dot-dashed line� and �md� /dt
=−�(A�T�+B�T ,dT /dt�) �red
long-dashed line�. The evolution
of T�t� is defined by the input
U�t�=Umax�1−exp�−t /�m��, UT

=5�, corresponding to the
current-step stimulation. The sub-
threshold �a�, near-threshold �b�,
and suprathreshold �c� regimes
were set by Umax /�=4, 6, or 10,
respectively.
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with the same boundary conditions. The solution can be
found analytically and expressed by the infinite series de-
scribed by Kummer’s functions. Examples of such solutions
are demonstrated in Fig. 10. We are interested in the depen-

dence of the activity, A� H̃, on T, shown in Fig. 5�a�.

2. Frozen Gaussian distribution

In the opposite limit case, when T�t� is decreasing rapidly,
the initial Gaussian distribution remains almost unchanged
except for a cutting off at the threshold u=T. The hazard

function in this particular case, B� H̃, depends on T�t� and
its time derivative dT /dt, i.e., B=B�T ,dT /dt�. According to
Eq. �B7�, this function can be derived as

B = −
�m

�

d�

dt
, �B9�

where � is governed by Eq. �B4�.
For simplicity, we consider the case of monotonically in-

creasing but otherwise arbitrary T�t�. Substituting the Gauss-
ian distribution �̃�t ,u�= �̃�0,u� according to Eq. �B2� into
Eq. �B4� and then into Eq. �B9�, we obtain

B�T,dT/dt� = −
�m

�

d�

dT
�dT

dt
�

+
= − �m

�2
dT

dt
F̃�T�,

�B10�

where F̃�T� =� 2

�

exp�− T2�
1 + erf�T�

and �x�+=x for x�0 and zero otherwise. The obtained di-

mensionless function F̃ is shown in Fig. 5�b�.

3. Approximation of hazard function in arbitrary case

It is proposed to consider the following approximation of
the hazard function:

H̃ = A + B �B11�

where A�T� is given by Fig. 5�a�, and B�T ,dT /dt� is given by
Eq. �B10�.

Comparison of the exact and approximate solutions is
shown in Fig. 11. Three cases of neuron stimulation by the
injected current steps of three different amplitudes were
simulated. As seen, the approximation by Eq. �B11� works
well in different regimes of neuron stimulation. In fact, the

approximation H̃=A works well only in the subthreshold

stimulation regime and the approximation H̃=B does well
only in the superthreshold stimulation regime, whereas Eq.
�B11� gives a good approximation in all three regimes.

APPENDIX C: NUMERICAL METHOD

For numerical integration of the governing equations �9�,
�11�, and �12� we write the numerical scheme. These equa-

tions are one-dimensional transport equations of the hyper-
bolic type, which can be written as follows:

�z

�t
+

�z

�t* = Sz�t,t*� , �C1�

where z=z�t , t*� is one of the functions �, U, x, or y; Sz�t , t*�
is the source term corresponding to the right-hand side of the
one of these functions.

For this equation we use the finite-difference total varia-
tion diminishing scheme �21�, which provides the second
order of approximation in both directions of the independent
coordinates t and t*, and monotonicity of the solution, i.e., it
avoids artificial extremums. The time and the t* space are
discretized with the intervals �t and �t*, respectively. We
consider N−1 equal intervals in the t* space and cumulate
the rest of the space in the Nth numerical cell. The scheme is
written for the nth time step and the ith cell in t* space as
follows:

zi
n+1 = zi

n −
�t

�t*�zi
n − zi−1

n +
1

2
	1 −

�t

�t*
�wi
z − wi−1

z ��
+ �t�Sz�i

n for i = 1, . . . ,N − 1, �C2�

where

wi
z = lim�zi+1 − zi,zi − zi−1� ,

lim�a,b�

= �0 if ab � = 0;

− min„�a + b�/2,2 min��a�, �b��… if a � 0, ab � 0;

min„�a + b�/2,2 min��a�, �b��… otherwise
�

with the boundary values w0
z =0, wN

z =0.
The boundary conditions at the left are given in Sec. II C.

At the right, to provide neuron number conservation the den-
sity in the last �Nth� cell is calculated by

�N
n+1 = �N

n +
�t

�t*	�N−1
n +

1

2
	1 −

�t

�t*
wN−1
� � + �t�S��N

n .

�C3�

The firing rate is calculated as

�0
n+1 = �0

n −
�t

�t*�0
n − �t�

i=1

N

�S��i
n. �C4�

The voltage and the gating variables of ionic currents in the
last �Nth� cell are calculated as follows:

zN
n+1 = zN

n + �t�Sz�N
n , �C5�

where z=z�t , t*� is one of the functions U, x, or y.
For the simulations described in Sec. III we used the fol-

lowing values for numerical parameters: �t=0.1 ms, �t*

=0.5 ms, N=400.
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