9.1. 99-02-16796 9.2. Асрян Левон Володяевич; 1; Россия; ФТИ им.А.Ф. Иоффе РАН 9.3.1. Сурис Роберт Арнольдович; 1; Россия; ФТИ им.А.Ф. Иоффе РАН 9.4. Фотовозбуждение носителей с уровней в квантовых точках в состояния континуума в процессе лазерной генерации 9.5. 1 9.6. Физика и техника полупроводников 9.7. 4 9.8. 1 9.9. 2001 9.10. 35 (3) 9.11. 357-360 9.12. Российская Академия Наук 9.13. Дается теоретический анализ фотовозбуждения носителей с уровней в квантовых точках в состояния непрерывного спектра в процессе лазерной генерации. Используется простейший подход, дающий верхнюю оценку коэффициента поглощения и сечения фотовозбуждения. Показано, что поглощение и сечение в процессе фотовозбуждения носителей существенно для работы лазера на квантовых точках только при очень низких полных потерях, например, в случае длинных резонаторов. 9.14. 9.1. 99-02-16796 9.2. Асрян Левон Володяевич; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.1. Grundmann M.; 2; Germany; Technical University of Berlin 9.3.2. Леденцов Николай Николаевич; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.3. Stier O.; 2; Germany; Technical University of Berlin 9.3.4. Сурис Роберт Арнольдович; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.5. Bimberg D.; 2; Germany; Technical University of Berlin 9.4. Effect of excited-state transitions on the threshold characteristics of a quantum dot laser 9.5. 2 9.6. IEEE Journal of Quantum Electronics 9.7. 4 9.8. 1 9.9. 2001 9.10. 37 (3) 9.11. 418-425 9.12. Institute of Electrical and Electronics Engineers 9.13. The general relationship between the gain and spontaneous emission spectra of a quantum dot (QD) laser is shown to hold for an arbitrary number of radiative transitions and an arbitrary QD-size distribution. The effect of microscopic parameters (the degeneracy factor and the overlap integral for a transition) on the gain is discussed. We calculate the threshold current density and lasing wavelength as a function of losses. The conditions for a smooth or step-like change in the lasing wavelength are described. We have simulated the threshold characteristics of a laser based on self-assembled pyramidal InAs QDs in the GaAs matrix and obtained a small overlap integral for transitions in the QDs and a large spontaneous radiative lifetime. These are shown to be a possible reason for the low single-layer modal gain, which limits lasing via the ground-state transition for short (several hundreds of micrometers) cavity lengths. 9.14. <>@1 Y. Arakawa and H. Sakaki, @2 Multidimensional quantum well laser and temperature dependence of its threshold current, @3 Appl. Phys. Lett., @4 1982 @5 40, 11, 939-941 <> @1 N. Kirst\"adter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. G\"{o}sele, and J. Heydenreich @2 Low threshold, large T$_0$ injection laser emission from (InGa)As quantum dots @3 Electron. Lett. @5 30, 17, 1416-1417, @4 1994 <> @1 D. Bimberg, N. Kirst\"adter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop'ev, and V. M. Ustinov @2 InGaAs--GaAs quantum-dot lasers @3 IEEE J. Select. Topics Quantum Electron. @5 3, 2, 196-205, @4 1997 <> @1 M. V. Maximov, Yu. M. Shernyakov, I. N. Kaiander, D. A. Bedarev, E. Yu. Kondrat'eva, P. S. Kop'ev, A. R. Kovsh, N. A. Maleev, S. S. Mikhrin, A. F. Tsatsul'nikov, V. M. Ustinov, B. V. Volovik, A. E. Zhukov, Zh. I. Alferov, N. N. Ledentsov, and D. Bimberg @2 Single transverse mode operation of long wavelength ($\sim 1.3 \, \mu$m) InAs GaAs quantum dot laser @3 Electron. Lett. @5 35, 23, 2038-2039, @4 1999 <> @1 V. P. Evtikhiev, I. V. Kudryashov, E. Yu. Kotel'nikov, V. E. Tokranov, A. N. Titkov, I. S. Tarasov, and Zh. I. Alferov @2 Continuous stimulated emission at $T = 293\,$K from separate- confinement heterostructure diode lasers with one layer of InAs quantum dots grown on vicinal GaAs(001) surfaces misoriented in the [010] direction in the active region @3 Semicond. @5 32, 12, 1323-1327, @4 1998 <> @1 H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa @2 Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer @3 IEEE J. Select. Topics Quantum Electron. @5 3, 2, 188-195 @4 1997 <> @1 W. Zhou, O. Qasaimeh, J. Phillips, S. Krishna, and P. Bhattacharya @2 Bias-controlled wavelength switching in coupled-cavity In$_{0.4}$Ga$_{0.6}$As/GaAs self-organized quantum dot lasers @3 Appl. Phys. Lett. @5 74, 6, 783-785 @4 1999 <> @1 P. M. Smowton, E. J. Johnston, S. V. Dewar, P. J. Hulyer, H. D. Summers, A. Patane, A. Polimeni, and M. Henini @2 Spectral analysis of InGaAs/GaAs quantum-dot lasers @3 Appl. Phys. Lett. @5 75, 15, 2169-2171 @4 1999 <> @1 G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe @2 Room-temperature continuous-wave operation of a single-layered $1.3 \, \mu$m quantum dot laser @3 Appl. Phys. Lett. @5 75, 21, 3267-3269, @4 1999 <> @1 K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa @2 $1.3$-$\mu$m CW Lasing of InGaAs--GaAs quantum dots at room temperature with a threshold current of $8\,$mA @3 IEEE Phot. Technol. Lett. @5 11, 10, 1205-1207 @4 1999 <> @1 L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy @2 Optical characteristics of $1.24$-$\mu$m InAs quantum-dot laser diodes @3 IEEE Phot. Technol. Lett. @5 11, 8, 931-933, @4 1999 <> @1 O. Stier, M. Grundmann, and D. Bimberg @2 Electronic and optical properties of strained quantum dots modeled by 8-band {\bf k$\cdot$p} theory @3 Phys. Rev. B @5 59, 8, 5688-5701 @4 1999 <> @1 L. V. Asryan and R. A. Suris @2 Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser @3 Semicond. Sci. Technol. @5 11, 4, 554-567 @4 1996 <> @1 L. V. Asryan and R. A. Suris @2 Charge neutrality violation in quantum dot lasers @3 IEEE J. Select. Topics Quantum Electron. @5 3, 2, 148-157 @4 1997 <> @1 L. V. Asryan and R. A. Suris @2 Temperature dependence of the threshold current density of a quantum dot laser @3 IEEE J. Quantum Electron. @5 34, 5, 841-850 @4 1998 <> @1 C. H. Henry, R. A. Logan, and F. R. Merritt @2 Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers @3 J. Appl. Phys. @5 51, 6, 3042-3050 @4 1980 <> @1 J. J. Coleman and K. J. Beernink @2 Experimental gain characteristics and barrier lasing in strained-layer InGaAs--GaAs--AlGaAs quantum well heterostructure lasers @3 J. Appl. Phys. @5 75, 4, 1879-1882, @5 1994 9.1. 99-02-16796 9.2. Maximov M.V.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.1. Асрян Левон Володяевич; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.2. Shernyakov Yu.M.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.3. Tsatsul'nikov A.F.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.4. Kaiander I.N.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.5. Nikolaev V.V.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.6. Kovsh A.R.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.7. Mikhrin S.S.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.8. Ustinov V.M.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.9. Zhukov A.E.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.10. Алферов Жорес Иванович; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.11. Леденцов Николай Николаевич; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.12. Bimberg D.; 2; Germany; Technical University of Berlin 9.4. Gain and threshold characteristics of longwavelength lasers based on InAs/GaAs quantum dots formed by activated alloy phase separation 9.5. 2 9.6. IEEE Journal of Quantum Electronics 9.7. 4 9.8. 1 9.9. 2001 9.10. 37 (5) 9.11. 676-683 9.12. Institute of Electrical and Electronics Engineers 9.13. Experimental and theoretical study was made of injection lasers based on InAs/GaAs quantum dots (QDs) formed by the activated alloy phase separation and emitting at about 1.3 mkm. Electoluminescence and gain spectra were investigated. The maximum modal gain is measured experimentally using two different techniques. The threshold current density as low as 22 A/cm2 per QD sheet was achieved. A step-like switch from the ground- to the excited-state transition lasing was observed with an increasing cavity loss. The characteristic temperatures for a sample with four cleaved sides and a 2 mm long stripe device at 300 K were 140 and 83 K, respectively. Single lateral mode continuous wave operation with the maximum output power of 210 mW was realized. Threshold characteristics of a laser were simulated taking into account the radiative recombination in QDs, wetting layer, and optical confinement layer. The dependence of the threshold current density on the cavity length was shown to be extremely sensitive to the QD-array parameters determining the maximum gain for the ground- and excited- state transitions and to the waveguide design. Our analysis reveals that nonradiative recombination channels may play an important role in the laser operation. 9.14. <> @1 Y. Arakawa and H. Sakaki @2 Multidimensional quantum well laser and temperature dependence of its threshold current @3 Appl. Phys. Lett. @5 40,, 939-941, @4 1982 <> @1 L. V. Asryan and R. A. Suris @2 Temperature dependence of the threshold current density of a quantum dot laser @3 IEEE J. Quantum Electron. @5 34,, 841-850, @4 1998 <> @1 L. V. Asryan and R. A. Suris, @2 Characteristic temperature of quantum dot laser @3 Electron. Lett. @5 33,, 1871-1872 @4 1997 <> @1 L. V. Asryan and R. A. Suris @2 Charge neutrality violation in quantum dot lasers @3 IEEE J. Select. Topics Quantum Electron. @5 3,, 148-157 @4 1997 <> @1 L. V. Asryan and R. A. Suris @2 Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser @3 Semicond. Sci. Technol. @5 11,, 554-567, @4 1996 <> @1 N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maxirnov, P. S. Kop'ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich @2 Low threshold, large To injection laser emission from InGaAs quantum dots @3 Electron. Lett @5 30,, 1416-1417 @4 1994 <> @1 К. Mukai, O. Nobuyuki, S. Mitsuru, and S. Yamzaki @2 Self-formed In0.5Ga0.5As quantum dots on GaAs substrates emitting at 1.3 mm @3 Jpn. J. Appl. Phys. @5 33,, L1710- L1712, @4 1994 <> @1 R.P. Mirin, J.P. Ibbetson, K. Nishi, A.C. Gossard and J.E. Bowers @2 1.3 photoluminescence from InGaAs quantum dots on GaAs @3 Appl. Phys. Lett. @5 67,, 3795-3997 @4 1995 <> @1 V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu.G. Musikhin, N. A. Bert, P. S. Kop'ev, and Zh. I. Alferov, N. N. Ledentsov and D. Bimberg @2 InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 чm @3 Appl. Phys. Lett. @5 74,, 2815-2817, @4 1999 <> @1 M. V. Maximov, A. F.Tsatsul'nikov, B. V.Volovik, D. A.Bedarev, N. N.Ledentsov, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, P. S. Kop'ev, Zh. I. Alferov, R. Heitz, D. Bimberg @2 Optical properties of quantum dots formed by activated spinodal decomposition for GaAs-based lasers emitting at ~ 1.3 *m @3 Microelectronic Engineering, @5 51-52,, 61-72 @4 2000 <> @1 G.T. Liu, A. Stintz, H. Li, K.J. Malloy and L.F. Lester @2 Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum dots @3 Electron. Lett. @5. 35,, 1163-1165 @4 1999 <> @1 G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe @2 Low-Threshold Oxide-Confined 1.3-mm Quantum-Dot Laser @3 IEEE Photon. Technol. Lett. @5 12,, 230-232 @4 2000 <> @1 G. Park, O. B. Shchekin, S. Csutak, and D. G. Deppe @2 Room-temperature continuous-wave operation of a single-layered 1.3 mm quantum dot laser @3 Appl. Phys. Lett.@5 75,, 3267-3269, @4 1999 <> @1 A.E. Zhukov, A.R. Kovsh, V.M. Ustinov, Yu.M. Shernyakov, S.S. Mkhrin, N.A. Maleev, E.Yu. Kondrat'eva, D.A. Livshots, M.V. Maximov, B.V. Volovik, D.A. Bedarev, Yu.G. Musikhin, N.N. Ledentsov, P.S. Kop'ev and D. Bimberg @2 Continuous-wave operation of long-wavelength quantum dot diode laser on a GaAs substrate @3 IEEE Photonics Technology Letters @5 11,, 1345-1347 @4 1999 <> @1 K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa @2 1.3 mm CW lasing of InGaAs/GaAs quantum dots at room temperature with a threshold current of 8 mA @3 IEEE Phot. Tech. Lett. @5 11,, 1205-1207 @4 1999 <> @1 Akira Sakamoto and Mitsuru Sugawara @2 Theoretical Calculation of Lasing Spectra of Quantum-Dot Lasers: Effect of Homogeneous Broadening of Optical Gain @3 IEEE Photon. Technol. Lett.@5 12, 107-109 @4 2000 <> @1 К. Kamath, P. Bhattacharya, T. Sosnowski, T. Norris, and J. Phillips @2 Room-temperature operation of In0.40Ga0.60As/GaAs self- organized quantum dot lasers @3 Electron. Lett. @5 32,, 1374-1375 @4 1996 <> @1 J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, M.V. Maximov, B.V. Volovik, and Zh.I. Alferov, D. Bimberg, @2 InAs-InGaAs Quantum Dot VCSELs on GaAs Substrates Emitting at 1.3 чm @3 Electronics Letters @5 36,, 1384-1385 @4 2000 <> @1 B. V. Volovik, A. F. Tsatsul'nikov, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Yu. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop'ev, Zh. I. Alferov, D. Bimberg and P. Werner @2 Long-wavelength emission in structures with quantum dots formed by the stimulated decomposition of a solid solution at strained islands @3 Semiconductors @5 33, 8, 901-905 @4 1999 <> @1 M.V. Maximov, A.F. Tsatsul'nikov, B.V. Volovik, D.S. Sizov, Yu.M. Shernyakov, I.N. Kaiander, A.E. Zhukov, A.R. Kovsh, S.S. Mikhrin. V.M. Ustinov , and Zh.I. Alferov, R. Heitz, V.A. Shchukin, N.N. Ledentsov, and D. Bimberg Yu.G. Musikhin and W. Neumann @2 Tuning Quantum Dot Properties by Activated Phase Separation of an InGa(Al)As Alloy Grown on InAs Stressors @3 Phys. Rev. B. @4 2000 <> @1 O. Stier, M. Grundmann, and D. Bimberg. @2 Electronic and optical properties of strained quantum dots modeled by 8-band kЗp theory @3 Phys. Rev. B @5 59,, 5688- 5701 @4 1999 <> @1 S. Noda, K. Fujiwara and T. Nakayama @2 Effects of GaAs/AlAs superlattice buffer layers on selective area regrowth for GaAs/AlGaAs self-aligned structure lasers @3 Appl. Phys. Lett., @5 47,, 1205-1207, @4 1985 <> @1 P. N. Brounkov, A. Polimeni, S. T. Stoddart, M. Henini, L. Eaves, P. C. Main, A. R. Kovsh, Yu. G.Musikhin, S. G. Konnikov @2 Electronic structure of self- assembled InAs quantum dots in GaAs matrix @3 Appl.Phys. Lett. @5 73,, 1092-1094 @4 1998 <> @1 A. Oster, F. Bugge, G. Erbert, H. Wenzel, @2 Gain Spectra Measurement of Strained and Strain-Compensated InGaAsP-AlGaAs Laser Structures for ?"800 nm @3 IEEE J. Select. Topics Quantum Electron. @5 5,, 631-636, @4 1999 <> @1 O.G. Schmidt, N. Kirstaedter, N.N. Ledentsov, M.-H. Mao, D.Bimberg, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, M.V. Maximov, P.S. Kop'ev and Zh.I. Alferov @2 Prevention of gain saturation by multi-layer quantum dot lasers @3 Electronics Letters @5 32,, 1302-1304 @4 1996 <> @1 M.V. Maximov, Yu.M. Shernyakov, I.N. Kaiander, D.A. Bedarev, E.Yu. Kondrat'eva, P.S. Kop'ev, A.R. Kovsh, N.A. Maleev, S.S. Mikhrin, A.F. Tsatsul'nikov, V.M. Ustinov, B.V. Volovik, A.E. Zhukov, Zh.I. Alferov, N.N. Ledentsov, D. Bimberg @2 Single transverse mode operation of long wavelength (~1.3 mm) quantum dot laser @3 Electonics Letters @5 @4 35,, 2038- 2039 @4 1999 <> @1 D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin @2 Spontaneous Emission and Threshold Characteristics of 1.3 mm InGaAs/GaAs Quantum Dot GaAs-Based Lasers @3 IEEE J. Quant. Electron @5 35,, 1238-1246 @4 1999 <> @1 W. Forchel, J. P. Reithmaier, F. Schaefer, M. Bayer @2 InGaAs quantum dots for high- performance lasers and single-dot spectroscopy @3 Proc. SPIE's Int. Symp. PHOTONICS WEST, San Jose, CA, Jan. 2000 @5 3944 @4 2000 <> @1 B. V. Volovik, A. F. Tsatsul'nikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kop'ev, Z. I. Alferov, D. Bimberg, and P. Werner @2 Long-wavelength emission in structures with quantum dots formed by the stimulated decomposition of a solid solution at strained islands @3 Fiz. Tekh. Poluprovodn. @5 33, 8, 990-995, @4 1999 9.1. 99-02-16796 9.2. Асрян Левон Володяевич; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.1. Grundmann M.; 2; Germany; Technical University of Berlin 9.3.2. Леденцов Николай Николаевич; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.3. Stier O.; 2; Germany; Technical University of Berlin 9.3.4. Сурис Роберт Арнольдович; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.5. Bimberg D.; 2; Germany; Technical University of Berlin 9.4. Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser 9.5. 2 9.6. Journal of Applied Physics 9.7. 4 9.8. 1 9.9. 2001 9.10. 90 (3) 9.11. 1666-1668 9.12. Institute of Electrical and Electronics Engineers 9.13. Gain and threshold current of a self-assembled InAs/GaAs quantum-dot (QD) laser are simulated. A small overlap integral of the electron and hole wave functions in pyramidal QDs is shown to be a possible reason for the low single-layer modal gain, which limits lasing via the ground-state transition at short (under a millimeter) cavity lengths. 9.14. <> @1 M.V. Maximov, Yu.M. Shernyakov, I.N. Kaiander, D.A. Bedarev, E.Yu. Kondrat'eva, P.S. Kop'ev, A.R. Kovsh, N.A. Maleev, S.S. Mikhrin, A.F. Tsatsul'nikov, V.M. Ustinov, B.V. Volovik, A.E. Zhukov, Zh.I. Alferov, N.N. Ledentsov, and D. Bimberg, @3 Electron. Lett. @5 35,, 2038 @4 1999 <> @1 L. Harris, A.D. Ashmore, D.J. Mowbray, M.S. Skolnick, M. Hopkinson, G. Hill, and J. Clark @3 Appl. Phys. Lett. @5 75,, 3512 @4 1999 <> @1 G. Park, O.B. Shchekin, S. Csutak, D.L. Huffaker, and D.G. Deppe @3 Appl. Phys. Lett. @5 75, 3267 @4 1999 <> @1 L.F. Lester, A. Stintz, H. Li, T.C. Newell, E.A. Pease, B.A. Fuchs, and K.J. Malloy @3 IEEE Phot. Technol. Lett. @5 11,, 931 @4 1999 <> @1 P.M. Smowton, E.J. Johnston, S.V. Dewar, P.J. Hulyer, H.D. Summers, A. Patane, A. Polimeni, and M. Henini @3 Appl. Phys. Lett. @5 75,, 2169 @4 1999 <> @1 H. Shoji, Y. Nakata, K. Mukai, Y. Sugiyama, M. Sugawara, N. Yokoyama, and H. Ishikawa @3 IEEE J. Sel. Topics Quantum Electron. @5 3,, 188 @4 1997 <> @1 L.V. Asryan and R.A. Suris @3 Semicond. Sci. Technol. @5 11, 554 @4 1996 <> @1 L.V. Asryan and R.A. Suris @3 IEEE J. Sel. Topics Quantum Electron. @5 3,, 148 @4 1997 <> @1 L.V. Asryan and R.A. Suris @3 IEEE J. Quantum Electron. @5 34, 841 @4 1998 <> @1 O. Stier, M. Grundmann, and D. Bimberg @3 Phys. Rev. B @5 59,, 5688 @4 1999 <> @1 M. Asada, A. Kameyama, and Y. Suematsu @3 IEEE J. Quantum Electron. @5 20,, 745 @4 1984 <> @1 L. V. Asryan, N. A. Gun'ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P.-K. Lau, and T. Makino @3 Semicond. Sci. Technol. @5 15,, 1131 @4 2000 <> @1 J. J. Coleman and K. J. Beernink @3 J. Appl. Phys. @5 75,, 1879 @4 1994 9.1. 99-02-16796 9.2. Дмитриев Иван Александрович; 1; Россия 9.3.1. Сурис Роберт Арнольдович; 1; Россия 9.4. Локализация электронов и блоховские осцилляции в сверхрешетках из квантовых точек в постоянном электрическом поле 9.5. 1 9.6. Физика и техника полупроводников 9.7. 4 9.8. 1 9.9. 2001 9.10. 35 (2) 9.11. 219-226 9.12. Российская Академия Наук 9.13. Показано, что спектр электронов в идеальных двумерных и трехмерных сверхрешетках из квантовых точек может быть дискретным или непрерывным в зависимости от ориентации поля относительно кристаллографических осей сверхрешетки. В последнем случае ширина образующейся поперечной минизоны экспоненциально зависит от кристаллографического индекса направления поля. Рассмотрены блоховские осцилляции в таких сверхрешетках. Показано, что рассеяние осциллирующих электронов может быть сильно подавлено подходящим выбором величины и направления поля. 9.14. 9.1. 99-02-16796 9.2. Дмитриев Иван Александрович; 1; Россия 9.3.1. Сурис Роберт Арнольдович; 1; Россия 9.4. Localisation of carriers and Bloch oscillations in Quantum Dot Superlattices in dc electric field 9.5. 2 9.6. Series: Springer Proceedings in Phisics 9.7. 2 9.8. 1 9.9. 2001 9.10. 87 9.11. 887-888 9.12. Springer 9.13. Analysis of localization of electrons in ideal 2D and 3D Quantum Dot Suprlattices (QDSL) in homogeneous dc electric field and of the Bloch oscillations in such structures is presented. In our consideration we suppose that electric field and tunneling matrix elements between quantum dots are small enough to describe QDSL in single miniband approach. 9.14. 9.1. 99-02-16796 9.2. Догонкин Евгений Борисович; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.1. Зегря Георгий Георгиевич; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.4. Design of semiconductor laser with current-induced cooling 9.5. 2 9.6. Electronic Lettres 9.7. 4 9.8. 1 9.9. 2001 9.10. 37 (22) 9.11. 1339-1341 9.12. Institution of Electrical Engineers 9.13. A novel design of semiconductor lasers and photodiodes with cooling by injection current is proposed. Carriers are injected into the active region via tunnelling with absorption of optical phonons. An expression for the optimal emitter lengths in a current-cooled system is obtained. 9.14. 9.1. 99-02-16796 9.2. Самсонидзе Георгий Гурамович; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.1. Зегря Георгий Георгиевич; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.4. Auger recombination in semiconductor quantum wells in a magnetic field 9.5. 2 9.6. Physical Review; B 9.7. 4 9.8. 1 9.9. 2001 9.10. 63 (075317) 9.11. 1-13 9.12. Institute of Electrical and Electronics Engineers 9.13. Auger process involving two electrons from the conduction band and a heavy hole from the valence band in semiconductor heterostructures with quantum wells is investigated for the case of a magnetic field applied normal to heteroboundaries. It is shown that there exist three different mechanisms of Auger recombination, associated with ~I! electron scattering at interface with transition into the continuous spectrum, ~II! short-range Coulomb interaction in the quantum well with transition into the continuous spectrum, and ~III! Resonance transition into the discrete spectrum. All these processes are thresholdless. The Auger recombination coeffi-cients analytically calculated for the processes I, II, and III show different dependencies on temperature, magnetic field, and quantum well parameters. In the limit of an infinitely wide quantum well, processes I and II merge to form a bulk threshold Auger process, while process III remains thresholdless resonance one. In the limit of infinitely weak magnetic field, process I remains thresholdless, process II becomes a quasithreshold process ~i.e., its threshold energy slightly depends on temperature!, and process III transforms into a nonreso-nance process with a threshold. The results obtained are new and have no analogies in the literature. 9.14. 9.1. 99-02-16796 9.2. Зегря Георгий Георгиевич; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.1. Пихтин Н.А.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.2. Скрынников Г.В.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.3. Слипченко С.О.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.4. Тарасов И.С.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.4. Исследование пороговых характеристик InGaAsP/InP- гетеролазеров (\lambda = 1:55 мкм) 9.5. 1 9.6. Физика и техника полупроводников 9.7. 4 9.8. 1 9.9. 2001 9.10. 35 (8) 9.11. 1001-1008 9.12. Российская Академия Наук 9.13. Работа посвящена исследованию температурной зависимости пороговых характеристик лазера с квантовыми ямами в системе InGaAsP/InP. Показано, что наибольший вклад в пороговый ток вносит беспороговый процесс оже-рекомбинации. Степенная зависимость порогового тока от температуры, наблюдаемая в эксперименте, объясняется преобладанием беспорогового процесса оже-рекомбинации в квантовых ямах над пороговым оже-процессом. 9.14. 9.1. 99-02-16796 9.2. Зегря Георгий Георгиевич; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.1. Гунько Н.А.; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.2. Костко И.А.; 2; Россия; ФТИ им. А.Ф. Иоффе РАН 9.3.3. Догонкин Е.Б.; 1; Россия; ФТИ им. А.Ф. Иоффе РАН 9.4. The effect of carrier relaxation on quantum well laser threshold characteristics 9.5. 2 9.6. CAS 2001 Proceedings 9.7. 5 9.8. 1 9.9. 2001 9.10. 1 9.11. 169-172 9.12. 2001 International Semiconductor Conference 24th Edition, Sinaia, Romania 9.13. The effect of carrier-carrier relaxation and carrier - phonon relaxation on threshold characteristics of quantum well lasers is studied. Carrier relaxation time considerably depends on temperature, carrier density, and quantum well width. It is shown that in this case the gain coefficient becomes a more pronounced function of temperature and carrier density. 9.14. 9.1. 99-02-16796 9.2. Сергеев Ринат Александрович; 1; Россия 9.3.1. Сурис Роберт Арнольдович; 1; Россия 9.4. The Triplet State of X+ Trion in 2D Quantum Wells 9.5. 2 9.6. Physica Status Solidi; b 9.7. 4 9.8. 1 9.9. 2001 9.10. 227 (2) 9.11. 387-396 9.12. WILEY-VCH Verlag Berlin GmbH, 13086 Berlin 9.13. A simple variational calculation of the trion triplet state energy is presented. In zero magnetic field, the triplet state of the hole trion (X+) in two dimensions appears to be bound in a considerable mass ratio range close to the H2+-like trion. The critical value of electron-to-hole mass ratio estimated by various methods is found to be between 0.35 and 0.39. The energy behavior near the critical mass ratio is analytically examined. 9.14. @1 B. Stebe, A. Ainane @3 Superlatt. Microstruct. @4 1989 @5 5, , 545. <> @1 A. Thilagam @3 Phys. Rev. B @4 1996 @5 55, 12, 7804 <> @1 J. Usukura, Y. Suzuki, K. Varga @3 Phys. Rev. B @4 1999 @5 59, , 5652 <> @1 A. Esser, E. Runge, R. Zimmermann, W. Langbein @3 Phys. Rev. B @4 2000 @5 62, , 8232 <> @1 R. N. Hill @3 Phys. Rev. Lett. @4 1977 @5 38, , 643 <> @1 A. M. Frolov @3 Zh. Eksp. Teor. Fiz. @4 1987 @5 92, , 1959 <> @1 D. M. Larsen, S. Y. McCann @3 Phys. Rev. B @4 1992 @5 45, , 3485 <> @1 R. A. Sergeev, R. A. Suris @3 Phys. Solid State @4 2001 @5 43, , 746 <> @1 S. Chandrasekhar, Astrophys. J. @4 1944 @5 100, , 176 <> @1 M. Born @3 Gottinger Nachr. math. phys. Klasse @4 1951 @5 1, , 9.1. 99-02-16796 9.2. Сергеев Ринат Александрович; 1; Россия 9.3.1. Сурис Роберт Арнольдович; 1; Россия 9.4. Singlet and Triplet States of X+ and X- Trions in 2D Quantum Wells 9.5. 2 9.6. Nanotechnology 9.7. 4 9.8. 1 9.9. 2001 9.10. 12 9.11. 597-601 9.12. IOP Publishing Ltd, Uk 9.13. A new simple variational wave function with a few variational parameters for 2D X+ and X- trions is suggested. The function gives accurate results for the singlet and triplet state energies of X+ and X- trions in the whole range of electron-to-hole mass ratio. The mass ratio range where the triplet state exists has been found, and the behavior of the triplet state energy has been examined near the critical mass ratio. The other excited states of the trion are analyzed in the vicinity of their critical mass ratios 9.14. <> @1 M. A. Lampert @3 Phys. Rev. Lett. @4 1958 @5 1, 12, 450 <> @1 H. A. Bethe @3 Z. Phys. @4 1929 @5 57, , 815 <>