Poly(N-vinyl caprolactam) - C₆₀ complexes in aqueous solution

<u>V.T. Lebedev¹</u>, Gy. Torok², E.Yu. Melenevskaya³, L.V. Vinogradova³, and I.N. Ivanova¹

¹ Petersburg Nuclear Physics Institute, 188300, Gatchina, St.Petersburg distr., Russia
² Research Institute for Solid State Physics and Optics, Budapest POB-49, Hungary
³ Institute of Macromolecular Compounds of RAS, Bolshoy pr. 31, St.-Petersburg, Russia

In aqueous solution Poly(N-vinylcaprolactam) (PVCL) serves for biomolecules encapsulation by coil-globule transition above $T_C \sim 31^{\circ}C$. It seems reasonable to modify PVCL by fullerenes assuming their antiviral activity. The complex PVCL+C₆₀ (1.8 % mas. of C₆₀ in dry polymer, mass M = $2.8 \cdot 10^5$) has been prepared, solved in D₂O (concentration C=0.5 % mas.) and studied around coil-globule transition by neutron scattering. The cross sections $\sigma_P(q) = I_r / [1 + (r_L q)^2]$ for pure PVCL and $\sigma_C(q) = I_r / [1 + (r_C q)^2] + I_R / [1 + (R_C q)^2]^2$ for complexes depend on momentum transfer q = 0.1-4 nm⁻¹ and forward cross sections I_r , I_R . The length $r_L \sim 10$ nm defines PVCL-coil gyration radius $r_{\rm G} = r_{\rm L} \sqrt{3}$. Complexes being globular even below $T_{\rm C}$ indicate the preordering induced by C₆₀. The $\sigma_{\rm C}(q)$ contains the term attributed to globular core (size $R_{C} \sim 7 \text{ nm} \ge r_{C} \sim 3 \text{ nm}$). Below T_{C} the size of globules $R_{C} \sim 7 \text{ nm}$ is smaller than PVCL-coils radius, $r_L \sim 10$ nm. By collapse the globular size comes down, $R_{\rm C} \rightarrow 5$ nm, but the length $r_{\rm C} \sim 3$ nm remains at segmental level since it is related to fragments not incorporated into the core. Along with very different scattering at coil scale PVCL and complexes show the exponential law $\sigma(q) \sim 1/q^{D}$ at $q \ge 1$ nm⁻¹. The exponent D indicates local chains conformation $(D=2, D_{EX}=5/3, D=1$ for gaussian, excluded volume and strained chain). At 20°C the values of D_{PVCL} and D_{COM} are close to parameter $D_{EX} = 5/3$ for excluded volume chain. The heating, $20^{\circ}C \rightarrow 31^{\circ}C \sim T_{c}$, leads to exponents' increase from $D_{PVCL}(T) \sim 1.6$ and $D_{COM}(T) \sim 1.5$ to larger values $D \sim 1.7$ -1.8 that means the approach to θ -conditions (solvent quality becomes worse). On the other hand, above T_{C} the complexes are shrunken, but their segments get strained conformation, $D(T) \rightarrow 1$, due to strong chains' interactions. Summarizing the neutron scattering results we conclude that fullerenes stabilize collapsed state that reinforces the functional properties of PVCL regarding encapsulation.