Specific heat of rhombohedral C\textsubscript{60} polymer in the temperature range of 2-300K

M. Gu, G. Cui, L. Wang , and X. Chen

National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

Under high temperature of 700K and high pressure of 6 GPa, we have prepared a batch of C\textsubscript{60} polymer. XRD data confirmed it is rhombohedral phase and solid 13C NMR showed a formation of sp3 bond between two neighbor C\textsubscript{60} in (111) plane. We have measured the specific heat of C\textsubscript{60} polymer and pristine C\textsubscript{60} by means of PPMS, and the measurement proceeded in the temperature range from 2 to 300K. The experimental result of pristine C\textsubscript{60} agreed well with previous report. For C\textsubscript{60} polymer, above T=80K it is found that temperature dependence of the specific heat is similar to that of pristine C\textsubscript{60} besides an anomaly from order-disorder phase transition at 260K, but in range from 2 to 80K the specific heat is much less than that of pristine C\textsubscript{60}. Assuming three-dimensional (3D) and two-dimensional (2D) Debye phonon modes to contribute respectively to the specific heat in different temperature zone, the calculated values of specific heat have got a good agreement with the experimental data in the whole temperature range. These results show the 2D planar modes but not 3D modes are a dominator to the specific heat of C\textsubscript{60} polymer, and the low-frequency intermolecular modes of C\textsubscript{60} lattice are restrained in the case of C\textsubscript{60} polymer by sp3 bonds from 2+2 cycloaddition reaction.

This work was supported by grants from the MOST 973 Program of China (No. 2006CB705600), the NSF of China (No. 10674060) and the Jiangsu Province Foundation of Natural Science (No. BK2006109).