Anomalous magnetism and quantum critical phenomena in VO_x multiwall nanotubes

<u>Demishev S.V.</u>*, Chernobrovkin A.L.*, Glushkov V.V.*, Goodilin E.A.⁺, Grigorieva A.V.⁺, Ishchenko T.V.*, Kuznetsov A.V.[#], Sluchanko N.E.*, Tretyakov Yu.D.⁺, Semeno A.V.*

* General Physics Institute of RAS, Vavilov str., 38, 119991 Moscow, Russia +Moscow State University, Lenin Hills, 119991 Moscow, Russia # Moscow Engineering Physics Institute, 115409 Moscow, Russia

Recently synthesized new nanoscale magnets, vanadium oxide multiwall nanotubes (VO_x-NTs), have attracted attention due to a number of unusual magnetic properties, which have been assigned to various fragments of spin chains formed by V⁴⁺ S=1/2 magnetic ions including antiferromagnetic (AF) dimers [1]. However the quantitative accounting of the magnetic susceptibility $\chi(T)$ and magnetization data leads to

severe difficulties [1, 2].

We report results of the high (60 GHz) frequency electron spin resonance (ESR) and static magnetic susceptibility study of the VO_x -NTs (fig. 1) carried out in the temperature range 4.2-300K. The ESR experiments have allowed obtaining the first direct experimental evidences of the presence of the antiferromagnetic dimers in VO_x -NTs [2] and of an unusual low temperature growth of the magnetic susceptibility for quasi-free spins, which

obey power law $\chi(T) \sim 1/T^{\alpha}$ with the exponent $\alpha \approx 0.6$ in a wide temperature range 4.2-50K [2]. The observed strong departure from the Curie-Weiss behaviour manifest the onset of the quantum critical (QC) regime and formation of the Griffiths phase as a magnetic ground state of these spin species [2]. As far as we know the QC phenomena have not been observed in nanotubes up to now. The quantitative analysis of the static and dynamic $\chi(T)$ data shows that about 98% of V⁴⁺ ions forms AF dimers and only ~2% of V⁴⁺ ions constitute spin clusters in the Griffiths phase which are responsible for the low temperature anomalies of magnetic susceptibility. The estimate of the exchange integral $J\sim 60$ K in vanadium spin chains is obtained. Support by the programmes of RAS "Strongly correlated electrons", "Quantum physics of condensed matter" and by the RFBR grants 07-03-00749-a, 07-03-12182-ofi is acknowledged.

- [1] E.Vavilova et al., *Phys. Rev. B* 73, 144417 (2006).
- [2] S.V.Demishev et al., *Phys. Stat. Sol. (RRL)* 2(5), 221 (2008).

Fig. 1. The SEM image of the fine structure of individual VO_x-NTs.