Molecular correlations in bulk star-shaped polystyrene with fullerene C₆₀ center

<u>Török Gy.</u>*, Lebedev V.T.⁺, Vinogradova L.V.[†], Orlova D.N.*, Shamanin V.V.[†]

*Research Institute for Solid State Physics, Budapest, POB-49, Hungary ⁺Petersburg Nuclear Physics Institute, Gatchina St. Petersburg distr., Russia [†]Institute of Macromolecular Compounds, St. Petersburg, Bolshoi pr. 31, Russia

Deuterated Star-shaped Polystyrenes [1], $(PS)_6C_{60}$, dissolved in protonated analogs (1; 10%), have been studied (20°C) by small-angle neutron scattering as well as linear chains with arm's mass $M_A \sim 5 \cdot 10^3$. Using spatial correlation functions of chain units $G_N(R)$ in "stars" regarding to linear PS (Figures b and a) we have developed a model of "star" where the arms' centers lay at the orthogonal axes (X,Y,Z) with origin attached to fullerene and the distances between neighboring arms' centers obey the condition $R_2/R_1 = \sqrt{2}$ confirmed experimentally, $R_2/R_1 \approx 1.3$. The labeled "stars" contact in matrix when their centers are at the distance close to diameter $R_3 \approx 11$ nm. Meanwhile, the association of labeled linear PS (Figure a) is described by the model of hard spheres dense package confirmed by correlation maxima positions (r_1, r_2, r_3) corresponding to distances h, $\sqrt{3}$ ·h, 2h ... where h = $\sqrt{18}$ ·R_C is the coil diameter defined by its correlation radius $R_C \approx 1.6$ nm. This allows us to conclude that synthesis creates via covalent bonding a compact "star" (correlation radius $R_C \approx$ 2.4 nm) which neighboring arms interact like PS-coils in solution by centers separation $R_1 \sim r_1$, while the distance between the centers of opposite arms (along X,Y,Z axes) is rather large, $R_2 \approx 8.3$ nm > r_1 . It indicates a stretched arms' conformation in "stars".

[1] V.T. Lebedev, L.V. Vinogradova, Gy.Török. Polymer Sci. Ser. A. 50, 1089 (2008).