

Online Seminar 22 Feb 2017, Ioffe Institute

A Database of Flare Ribbons Observed by Solar Dynamics Observatory

База данных свойств вспышечных лент, основанная на наблюдениях Солнечной Динамической обсерватории

Maria Kazachenko, Benjamin Lynch Brian Welsch

UC Berkeley

Talk Outline

- * <u>Motivation</u>: importance of flare ribbons; why now?
- * <u>Methods</u>: deriving reconnection fluxes
- * Database (~3000 events)
- * <u>Results</u>
- * <u>Conclusions</u>

Motivation: Standard Flare Model

Flare Ribbons (R)— footpoints of newly reconnected magnetic field lines observed in chromospheric spectral lines (e.g AIA 1600A)

Past Observational Studies of Reconnected Flux Φ_{R}

Quantitative observational studies of reconnection flux Φ_R (e.g., Poletto & Kopp 1986; Fletcher et al. 2001; Isobe et al. 2005; Qiu & Yurchyshyn 2005; Fletcher et al. 2004; Saba et al. 2006; Qiu et al. 2007; Qiu 2009; Miklenic et al. 2009; Kazachenko et al. 2012, Hu et al. 2014).

For example:

Main Drawback: limited sample of events

Motivation: SDO observations

Solar Dynamics Observatory: first time both a vector magnetograph (HMI) and ribbon-imaging capabilities (AIA) are available together.

- No time-consuming co-alignment
- Full-disk, 24 hours coverage.

<u>Perfect time</u> to assemble a much larger database of ribbon events (ribbon areas and reconnected fluxes) to more robustly examine the role of reconnection in flares and CMEs.

Some problems to overcome: saturation effects in AIA CCDs

<u>Solution:</u> We present a method to remove blooming from reconnection flux estimates.

Methodology: Correcting AIA Pixel Saturation. Example of X2.2 flare in AR 11158

<u>Background</u>: Snapshots of the X2.2-flare ribbons in AR11158 observed at 1600A by AIA on 2011 February 15. <u>Contours</u>: HMI LOS fields.

- 1. <u>AIA_PREP</u>: Using the aia_prep.pro (IDL/SSW), process the UV 1600A images.
- 2. <u>Original saturated:</u> Co-align the AIA sequence in time by Fourier cross-correlation (e.g., Welsch et al. 2004)
- 3. <u>Saturated pixels set to zero:</u> Find saturated pixels, i.e. pixels above the threshold level (typically around 5000 counts/s) and set them to zero.
- 4. <u>Corrected image:</u> Linearly interpolate in time the values in each of the individually saturated pixels, using the signal when the pixel is not saturated.
- 5. <u>Corrected image, ribbons only:</u> select ribbon pixels (Qiu et. al 2002, Kazachenko et al. 2012)

Methodology: Calculating reconnection flux and flux rate Example of X2.2 flare in AR 11158

01:45 01:50 01:55 02:00 02:05 02:10 02:15 Time [hh:mm], 2011-02-15

Database: selected flares

We selected all events >C1.0 within 45 degrees from the disk center: **3137 events:** 17 X, 250 M and 2870 C-class flares

Database: derived quantities

- active region flux
- reconnection flux
- active region area
- ribbon area
- fraction of flux reconnected
- fraction of area reconnected

 $\Phi_{AR} = \int |B_n| dS,$ $\Phi_{
m ribbon} = \int |B_n| dS_{
m ribbon},$ $S_{AR} = \int dS$, $S_{\rm ribbon} = \int dS_{\rm ribbon},$ $R_{\Phi} = \frac{\Phi_{\text{ribbon}}}{\Phi_{AB}} \times 100\%,$ $R_S = \frac{A_{rec}}{A_{AB}} \times 100\%,$

Database examples: CI.6 and C3.9 flares

Radial magnetic field

Ribbon contour evolution

Reconnection flux

Database examples: M6.5 and X5.4 flaresadial magnetic fieldRibbon contour evolutionReconnection flux

Radial magnetic field

Results: Peak X-ray flux vs active region and reconnection magnetic fluxes

Results: Peak X-ray flux vs active region and ribbon areas

Results: mean magnetic field in ribbons and in active regions

Results: Fraction of flux reconnected

Summary table: peak X-ray flux vs active region and ribbon properties

	ACTIVE REGIONS		FLARE RIBBONS				
	Typical range	Correlation		Typical range	Correlation	$I_{\rm X,peak}$	Fig.
\mathbb{X}_{AR}	$[P_{20}, P_{80}]$	$r_s(\mathbb{X}_{AR}, I_{X, peak})$	$\mathbb{X}_{\mathrm{ribbon}}$	$[P_{20}, P_{80}]$	$r_s(\mathbb{X}_{\mathrm{ribbon}}, I_{\mathrm{X,peak}})$	\propto	
$\Phi_{ m AR}$	$[23, 55] \ 10^{21} \ \mathrm{Mx}$	0.2 ± 0.02	$\Phi_{\rm ribbon}$	$[4.1, 1.8] \ 10^{21} \ \mathrm{Mx}$	0.64 ± 0.01	$\Phi^{1.5}_{ m ribbon}$	Fig. 8
$S_{ m AR}$	$[57, 134] \ 10^{18} \ {\rm cm}^2$	0.14 ± 0.02	$S_{ m ribbon}$	$[0.9, 3.1] \ 10^{18} \ {\rm cm}^2$	0.66 ± 0.01	$S_{ m ribbon}^{1.6}$	Fig. 9
$\overline{B}_{\mathrm{AR}}$	[330, 474] G	0.18 ± 0.02	$\overline{B}_{ m ribbon}$	[404, 686] G	0.22 ± 0.02		Fig. 10
R_{Φ}	[1.2, 5.1] %	0.54 ± 0.01	R_S	[1.0, 3.8] %	0.54 ± 0.01	R_{Φ}^2	Fig. 11

Understanding observed scaling: $I_{X,Peak} \sim \Phi_{ribbon}^{1.5}$

$$I_{\rm X,peak} \sim \frac{E_{flare}^{1.75}}{V^{0.75}L^{0.25}} \sim \frac{E_{flare}^{1.75}}{A_{\rm ribbon}^{\frac{5}{4}}} \quad \text{since} \quad V \sim L^3 \sim A_{\rm ribbon}^{3/2}$$

On the other hand flare energy

Hence peak X-ray flux

$$I_{\rm X,peak} \propto rac{\Phi_{
m ribbon}^{3.5}}{\Phi_{
m ribbon}^{2rac{1}{8}}} = \Phi_{
m ribbon}^{1.3}$$

 $\Phi_{
m ribbon}^{2rac{1}{8}}$ k=1.3

From observations: k=1.5 for flares >C1.0 k=1.3 for flares >M1.0

Peaks X-ray Flux, Reconnection Flux, and Flare Magnetic Energy: Occurrence frequencies

Summary

Database

We assembled a dataset of flare-ribbons reconnection fluxes for all flares, observed by SDO, C1.0 and larger, ~3000 events total.

Results

- Strong correlation between GOES flare class and reconnection flux ($I_{X,Peak} \sim \Phi_{ribbon}^{1.3-1.5}$) "more reconnection flux results in larger flares"
- Strong correlation between GOES flare class and reconnectionflux fraction — "larger fraction of the magnetic flux that participates leads to larger flares"
- Above scaling law between peak X-ray flux and reconnection flux could constrain reconnection properties on other stars

Science Questions To Address With The Database

Almost all ribbons exhibit two-stage evolution:

- fast expansion along the PIL ("zipper-effect")
- slow separation perpendicular to PIL

What is the mechanism of such division?

What is the relationship between flare ribbons and

- areas of strong vertical photospheric electric currents?
- areas of strong- and weak- shear?
- What is relationship between ribbons and CME/ICME properties?

Case study: 3D MHD Simulation of Eruptive Flare

ARMS MHD simulation t = 12.5 min t = 25.0 min t = 37,5 min. 0.4 Z [Rs] 0.0 SHEAR ANGLE [deg t = 50.0 min. t = 62.5 min 70 0.4 Z [Rs] 30 0.0 20 -0. -0.0 Y[Rs] -0.0 Y[Rs] 0.6 -0.6 -0.4 -0.2 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.2 0.4 20 0 40 80 60 simulation time [min]

3D MHD Adaptively Refined MHD Solver (ARMS) simulation of a magnetic breakout eruption with a slow CME (Devore 1991, Lynch et al. 2008, 2009, 2014); 5 panels: evolution of post-eruption arcade (Red) and flare ribbons (post-eruption arcade footpoints, Black). Bottom right: evolution of post-eruption arcade shear relative to PIL; Note strong-to-weak shear transition.

In agreement with Su et al. 2007, Aulanier et al. 2012

Results: observations vs. simulations: flare-ribbons vs. X2.2 flare observations

Left:

Vertical electric current Jz (Black) and flare ribbons contours (**Red**)

ARMS MHD simulations

40

60

20

80

X [pix]

100

120

140

Right:

Temporal evolution of Jz and flare ribbons across vertical slits marked with dashed lines on the left from.

Results: observations vs. simulations: reconnection flux and CME speed/acceleration

X2.2 flare observations

ARMS MHD simulations

Green: Contours of the maximum flare ribbon area at the end of the ribbon image sequence

Black/white: Bz-magnetogram.

Color: Temporal evolution of cumulative ribbon maps

Black: time profiles of the total reconnection flux (solid) and the reconnection rate (dotted) in positive and negative polarities

Red: velocity (solid) and acceleration (dotted) profiles of the CME front from

- observations (STEREO-B observations (90 degrees apart from SDO, EUVI (squares) and COR1 (triangles)), and
- synthetic white light images from ARMS simulations.

Summary

Case study

We did a detailed study of flare-ribbon properties (geometry, reconnected-flux, high-cadence vertical-current evolution) of X2.2 flare in AR 11158 and compared these with properties of an ARMS MHD simulation.

<u>Results:</u> In both simulations and observations we find:

- Strong-to-weak shear evolutions
- Two-stage ribbon evolution
- Similar reconnection-flux temporal profiles
- Vertical-current enhancements near the flare ribbons

Thank you!