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ABSTRACT

Radiation produced by charged particles gyrating in a magnetic field is highly significant in the astrophysics context.
Persistently increasing resolution of astrophysical observations calls for corresponding three-dimensional modeling
of the radiation. However, available exact equations are prohibitively slow in computing a comprehensive table of
high-resolution models required for many practical applications. To remedy this situation, we develop approximate
gyrosynchrotron (GS) codes capable of quickly calculating the GS emission (in non-quantum regime) from both
isotropic and anisotropic electron distributions in non-relativistic, mildly relativistic, and ultrarelativistic energy
domains applicable throughout a broad range of source parameters including dense or tenuous plasmas and weak
or strong magnetic fields. The computation time is reduced by several orders of magnitude compared with the exact
GS algorithm. The new algorithm performance can gradually be adjusted to the user’s needs depending on whether
precision or computation speed is to be optimized for a given model. The codes are made available for users as a
supplement to this paper.
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1. INTRODUCTION

Radiation produced by charged particles moving in magnetic
fields (magnetobremsstrahlung) plays an exceptionally impor-
tant role in astrophysics, making a dominant contribution to
radio emission in most of the astrophysical objects, a major con-
tribution to gamma-ray and X-ray emission (in compact objects,
supernova remnants (SNRs), and gamma-ray burst sources), and
an important contribution to the IR/optical/UV (in active galac-
tic nuclei or extragalactic jets), which implies a necessity of its
calculation in highly diverse conditions specific to the object or
phenomenon under study. A straightforward way of performing
such computations is the use of exact formulae for the emissiv-
ities and absorption coefficients (Eidman 1958, 1959; Melrose
1968; Ramaty 1969) that are valid for arbitrary conditions (when
the magnetic field changes in space only smoothly and no quan-
tum effect is important).

However, these exact formulae are cumbersome and com-
putationally extremely slow, especially when high harmonics
of the gyrofrequency are involved (that is, when the emis-
sion frequency is much larger than the gyrofrequency). This
is why a number of simplified approaches have been devel-
oped whose applicability regions and/or accuracy are lim-
ited. For example, for ultrarelativistic emitting particles a so-
called synchrotron approximation (Korchak & Terletsky 1952;
Getmantsev 1952; Korchak 1957; Syrovatskii 1959; Razin
1960) is valid (see Ginzburg & Syrovatskii 1965, 1969, for
review), which is often sufficient for such astrophysical objects
as SNRs or radio galaxies.

For the gyrosynchrotron (GS) regime, when nonrelativistic
and mildly relativistic particles are involved—a typical case,
e.g., for solar and stellar flares—and the synchrotron approx-
imation breaks down, a few more approximations have been
suggested. The simplest one is the analytical Dulk & Marsh
(1982) approximation derived for isotropic power-law energy
electron distributions, for a limited range of harmonic numbers

(20–100) and moderate viewing angles (30◦–80◦) relative to
the magnetic field; no thermal plasma effect is included (Dulk
1985). In this range, the accuracy of these analytical formulae
is within a few dozens of percent. Although this approximation
can be used for rough estimates and parametric dependences, it
is apparently insufficient for quantitative treatment or detailed
modeling.

A better (fast numerical) approximation was proposed by
Petrosian (1981) to calculate GS radiation ignoring the plasma
and then generalized by Klein (1987) to include the plasma
effect. This (Petrosian–Klein, PK) approximation is valid for
a broader range of parameters and yields typically an accurate
radiation intensity, although it is not so precise in polarization
and it does not reproduce the GS harmonic structure at low
frequencies, where it can often be important. The most severe
limitation of the PK approximation is that it is only valid for
isotropic (and weakly anisotropic) angular distributions of the
emitting electrons.

However, there is currently ample evidence of anisotropic
electron distributions in many cases, for example, in microwave
bursts accompanying solar flares (Lee & Gary 2000; Melnikov
et al. 2002; Fleishman et al. 2003; Altyntsev et al. 2008). The
only way of calculating a GS radiation from the anisotropic
distributions is currently through the use of exact formulae
(Fleishman & Melnikov 2003a), which makes both the de-
tailed GS modeling and, especially, forward fitting inversions
(Altyntsev et al. 2008; Fleishman et al. 2009) prohibitively slow.
This calls for the development of new, computationally effec-
tive schemes of the GS calculations taking into account the
anisotropy (Fleishman et al. 2009).

This paper describes new approximate GS codes we devel-
oped for both isotropic and anisotropic electron distributions.
To derive these codes we critically re-evaluated the assumptions
made to obtain the PK approximation (and improved upon those
assumptions where needed). These new codes allow for a large
flexibility in selection of the computational options; e.g., they
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can be optimized for accuracy or computation speed with the full
range of the intermediate options between these two extremes.
The code mode, which is precise for most practical applications,
is two to three orders of magnitude faster than the exact code;
the mode fully optimized for speed is even about one more or-
der of magnitude faster. No competing approximate GS code
is currently available for the anisotropic electron distributions;
for the isotropic distributions, our code provides better accuracy
than the PK code with a comparable computation speed.

2. METHODOLOGY

2.1. Exact GS Equations

Exact equations for the GS emissivity and absorption coeffi-
cient for an eigenmode σ in a magnetized plasma have the form
(Eidman 1958, 1959; Melrose 1968; Ramaty 1969)

jσ
f = 2πe2

c

nσ f 2

1 + T 2
σ

∞∑
s=−∞

∫ [
Tσ (cos θ − nσ βμ) + Lσ sin θ

nσ sin θ
Js(λ)

+ J ′
s (λ)β

√
1 − μ2

]2

F (p)δ

[
f (1 − nσ βμ cos θ ) − sfBe

γ

]
d3p,

(1a)

	σ = − 2πe2

nσ (1 + T 2
σ )

∞∑
s=−∞

∫ [
Tσ (cos θ − nσ βμ) + Lσ sin θ

nσ sin θ
Js(λ)

+ J ′
s (λ)β

√
1 − μ2

]2
1

β

[
∂F (p)

∂p
+

nσ β cos θ − μ

p

∂F (p)

∂μ

]

× δ

[
f (1 − nσ βμ cos θ ) − sfBe

γ

]
d3p, (1b)

where f is the emitting frequency, fBe = eB/(2πmec) is the
electron gyrofrequency, e and me are the electron charge and
mass, respectively, B is the magnetic field, c is the speed of
light, nσ , Tσ , and Lσ are the refraction index, and transverse
and longitudinal (relative to the wave vector) components of
the polarization vector, respectively (see Appendix A), θ is the
angle between the wave vector and the magnetic field vector,
p and β = v/c are the electron momentum and normalized
(by c) velocity, respectively, μ = cos α, α is the electron pitch
angle (i.e., the angle between the electron momentum and the
magnetic field vector), γ = (1 − β2)−1/2 is the Lorentz factor,
Js(λ) and J ′

s (λ) are the Bessel function and its derivative over
the argument λ, respectively:

λ = f

fBe
γ nσβ sin θ

√
1 − μ2. (2)

The electron distribution function F (p) is normalized as
follows (we assume that it is azimuthally symmetric, which
results in the factor 2π ):∫

F (p) d3p = 2π

∫ p2

p1

p2 dp

∫ 1

−1
F (p,μ) dμ = ne, (3)

where ne is the number density of electrons having momentum
between p1 and p2.

As has been said, Equations (1a) and (1b) are computationally
expensive, so only a very limited number of studies utilizing the
exact GS formulae for anisotropic electron distributions (see,
e.g., Fleishman & Melnikov 2003a, 2003b; Fleishman 2006;

Altyntsev et al. 2008; Tzatzakis et al. 2008; Reznikova et al.
2009) have been performed. Most of the GS studies, therefore,
were performed for the isotropic electron distributions, although
the number of three-dimensional models considering either
isotropic (Preka-Papadema & Alissandrakis 1992; Bastian et al.
1998; Fleishman et al. 2009) or anisotropic (Tzatzakis et al.
2008) electron distributions is still very limited.

The main reason for this lack of analysis is a long time
required to compute the exact GS emissivity and absorption
coefficient whose multiple calculations are needed to build a
realistic three-dimensional model. For example, in a recently
developed “GS Simulator” (Fleishman et al. 2009), which is
capable of modeling GS emission from a predefined magnetic
structure populated with a thermal plasma and accelerated
electrons, the user currently can select between a fast PK code
which is valid for the isotropic distributions only and a slow
exact code which is correct for arbitrary anisotropic distribution.
However, while using the PK code yields the full model output
over a few minutes (of a standard PC CPU), the exact code
requires a day or so to do a comparable simulation, which
apparently restricts practical applications of this tool. Thus, there
is a need for fast GS codes that are applicable for a broad range
of isotropic and anisotropic distributions and plasma parameter
combinations.

2.2. Petrosian–Klein Approximation for the Isotropic Case

The most successful algorithm available now for fast and rea-
sonably precise computation of the GS radiation was proposed
by Petrosian (1981) and then developed by Klein (1987). Below
we consider the approximations adopted in the PK algorithm and
then generalize them as needed to accommodate the anisotropic
case and improve the overall accuracy of the output.

A key step of the PK algorithm is replacement of the
summation over the discrete harmonic number s by integration
over a corresponding continuous parameter

∑∞
s=−∞ U (s) �

∫ ∞

−∞
U (s) ds, (4)

which is formally valid if (1) |s| � 1 and (2) the contribu-
tions of the adjacent terms, s and s + 1, are comparable, i.e.,
U (s) changes smoothly for large s. Within the PK approxi-
mation, this replacement is adopted for all the harmonic num-
bers; then, the integral over s can easily be taken analytically
using the δ-function. Although replacement (4) is formally in-
correct for low harmonic numbers and so the PK approximation
cannot, in particular, reproduce a discrete (harmonic) structure
of GS radiation at low frequencies, the approximate spectra
do reproduce the mean level of the exact spectra remarkably
well.

The mentioned replacement implies that in place of integer-
order Bessel functions, real-order Bessel functions enter the
integrals, whose numerical computation can be even more
demanding than that of the integer-order Bessel functions.
This calls for use of reliable fast approximations for the
real-order Bessel functions. Klein (1987) points out that the
approximate expressions for the Bessel functions and their
derivatives proposed by Wild & Hill (1971) are applicable; so
the use of the Wild & Hill (1971) expressions represents the
second important assumption within the PK algorithm.

At this stage, the GS emissivity and absorption coefficient
represent double integrals over dp and dμ, which is still a
computationally expensive task. The third key simplification
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employed by Petrosian (1981) and Klein (1987) is the analyt-
ical Laplace estimation of the angular integral over dμ. The
Laplace integration method replaces the integrand by a best-fit
Gaussian function and then analytically takes the integral of this
Gaussian profile. Finding this Gaussian function requires one
to determine the Gaussian peak μ0 and width Δμ0. In a general
case, the peak position μ0 obeys an algebraic transcendental
equation, although both Petrosian (1981) and Klein (1987) use
a truncated simple analytical solution of this equation, the fourth
approximation, which is approximately valid for the isotropic
electron distributions, but insufficient to account for the pitch-
angle anisotropy.

Finally, because the standard PK algorithm is not precise at
low frequencies anyway, Klein (1987) adopts a fifth approxima-
tion—neglecting the longitudinal component of the eigenmode
polarization vectors, which is indeed correct at high frequencies.
Petrosian (1981) does not need this approximation since he con-
siders the vacuum case, where no longitudinal wave component
is present. Apparently, this approximation is minor and one can
easily get rid of it by considering the full polarization vectors of
the high-frequency eigenmodes in the magnetized plasma (see
Appendix A).

2.3. Strategy of Petrosian–Klein Algorithm Generalization

To obtain a better approximation within the Petrosian (1981)
and Klein (1987) guidelines we have to re-evaluate all five ap-
proximations described above in Section 2.2. In what follows
we get rid of the fifth approximation and always use the full
polarization vectors of the eigenmodes including the longitudi-
nal component Lσ , see Equation (1). At the first stage of the
generalization, we apply the replacement (4) for all harmonics
to obtain a more precise analogy of the PK expressions valid for
both isotropic and anisotropic electron distributions. In doing
so, like in Klein (1987), we employ both integration over ds
with the δ-function and Wild & Hill (1971) approximate ex-
pressions for the Bessel functions. However, we more precisely
evaluate the angular integral by more accurately fitting the cor-
responding integrand with a Gaussian. The output of this step
yields “continuous” (i.e., without the discrete low-frequency
harmonic structure) spectra, which are reasonably precise at
high frequencies, while giving the correct mean level at low fre-
quencies even when the harmonic structure is prominent in the
exact expressions. This output is often even more precise for the
anisotropic than for isotropic distributions and computationally
comparably fast compared with the original Klein’s algorithm.
We refer to this algorithm and this code as “continuous” ones.

At the second stage of the generalization, we improve the
algorithm toward reproducing the harmonic structure at low
frequencies. We tried a number of approaches to this problem
and found that the best results are obtained when we use the
exact (i.e., composed of summation over integer harmonics,
in contrast to the “continuous” contribution discussed above)
expressions at some low frequencies, f � f C

cr , and apply the
continuous approximation at higher frequencies; we refer to the
corresponding output as the “hybrid” algorithm or the “hybrid”
code.

At the third stage, we apply a number of optimizations
to the continuous and hybrid algorithms. For example, for
the discrete contribution we use the exact Bessel functions at
low frequencies (where the use of the approximate expression
was found to result in noticeable errors for some parameter
combinations), typically at f/fBe < 12, while we use the
Wild & Hill (1971) approximations at higher frequencies. Also,

we introduce correcting multiplicative factors to ensure perfect
matches at all matching frequencies, where we switch from
exact to approximate Bessel functions or from the discrete to
the continuous contribution. As a result, we obtain a gradually
tunable algorithm of GS calculations, which is overall fast and
precise, and whose precision can further be increased at the
expense of computation speed, and vice versa. The fastest (the
least precise) version of the code is still precise enough for
most practical applications (except those specifically interested
in the low-frequency harmonic structure of the GS emission),
providing spectrum accuracy typically better than 5% and better
than 10% for all studied parameter combinations within the code
applicability range, see Section 3.3.

3. CONTINUOUS GS CODE

3.1. Analytical Derivation

Now we turn to the actual implementation of our general-
ization strategy starting with a more precise evaluation of the
angular integrals. Making replacement (4) and performing inte-
gration over ds (using the δ-function), we get

jf � 4π2e2

c

nf 2

fBe(1 + T 2)

∫ p2

p1

γp2 dp

∫ 1

−1

[
T (cos θ − nβμ) + L sin θ

n sin θ
Js (λ)

+ J ′
s (λ)β

√
1 − μ2

]2

F (p,μ) dμ, (5a)

	 � − 4π2e2mec

nfBe(1 + T 2)

∫ p2

p1

γ 2 dp

∫ 1

−1

[
T (cos θ−nβμ) + L sin θ

n sin θ
Js (λ)

+ J ′
s (λ)β

√
1 − μ2

]2[
p

F ′
p(p,μ)

F (p,μ)
+ (nβ cos θ−μ)

F ′
μ(p,μ)

F (p,μ)

]
F (p,μ) dμ,

(5b)

where we omitted the wave-mode indices σ for brevity, and s is
determined from the resonance condition and so has the form

s = γ
f

fBe
(1 − nβμ cos θ ). (6)

For electromagnetic waves n < 1, thus, s > 0 and λ < s.
Therefore, one can use the approximate expressions (Wild &
Hill 1971; Klein 1987)

Js(sx) � 1√
2πs

Zs(x)

a(s, x)
, (7a)

J ′
s (sx) � b(s, x)√

2πs

Zs(x)

x
, (7b)

where sx = λ and

Z(x) = x exp(
√

1 − x2)

1 +
√

1 − x2
, (8a)

a(s, x) =
[

(1 − x2)3/2 +
A

s

]1/6

, A = 0.503297, (8b)

b(s, x) =
[

(1 − x2)3/2 +
B

s

]1/6(
1 − 1

5s2/3

)
, B = 1.193000.

(8c)
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Taking into account Equation (6), parameter x takes the form

x = λ

s
= nβ sin θ

√
1 − μ2

1 − nβμ cos θ
. (9)

Substitution of the above expressions into formulae (5) for the
emissivity and absorption coefficient yields

jf � 2πe2

c

f

n(1 + T 2) sin2 θ

∫ p2

p1

p2 dp

∫ 1

−1
F (p,μ)Z2sQ dμ,

(10a)

	 � − 2πe2mec

n3f (1 + T 2) sin2 θ

∫ p2

p1

γ dp

∫ 1

−1
F (p,μ)Z2sQR dμ,

(10b)
where

Q = [T (cos θ − nβμ) + L sin θ + ab(1 − nβμ cos θ )]2

a2(1 − nβμ cos θ )
,

(11)

R = p
F ′

p(p,μ)

F (p,μ)
+ (nβ cos θ − μ)

F ′
μ(p,μ)

F (p,μ)
. (12)

As has been explained, following Petrosian (1981) and Klein
(1987), we estimate the integral over dμ in Equation (10)
using the fastest descent (Laplace) method, which results in
the following equations:

jf � 2πe2

c

f

n(1 + T 2) sin2 θ

p2∫
p1

p2F (p,μ0)Z2s0
0 Q0

√
− 2π

h′′(μ0)
dp,

(13a)

	 � − 2πe2mec

n3f (1 + T 2) sin2 θ

p2∫
p1

γF (p, μ0)Z2s0
0 Q0R0

√
− 2π

h′′(μ0)
dp,

(13b)

where index 0 means that the corresponding factor must be
taken at the (yet to be calculated) value μ0 = μ0(p) at which
the function h(p,μ),

h = ln[F (p,μ)Z2sQ] = ln F (p,μ) + 2s ln Z + ln Q, (14)

reaches its peak value as a function of μ for a given p value.
Petrosian (1981) and Klein (1987) justified applicability of

the Laplace method by the fact that, for isotropic or weakly
anisotropic distributions, the variation of the angular integrands
in Equations (10a) and (10b) is dominated by the factor Z2s

whose dependence on μ is very sharp (and very similar to a
Gaussian, due to the nature of that factor, see Equation (8a)).
Thus, one may use a Gaussian fit instead of the exact expression,
and so Equations (13a) and (13b) are explicitly obtained
by analytical integration of the corresponding Gaussian fits.
However, validity of the above approximation for the anisotropic
distributions in a general case is not that obvious and requires
further analysis. Figure 1 displays a representative set of
angular integrands in Equation (10a) for several pitch-angle
distributions:

(1) an Isotropic distribution;

(2) a Gaussian distribution with the maximum at the pitch
angle of 90◦

F (p,μ) ∼ exp

(
− μ2

Δμ2

)
(15)

with Δμ = 0.1; and

Figure 1. Angular integrand (normalized) in Equation (10a) for different
electron distributions: (a) isotropic; (b) transverse Gaussian; and (c) beam-like
Gaussian. The integrands themselves are shown by thick dashed lines, while
solid lines are the corresponding Gaussian fits.

(3) a beam-like distribution with the maximum at zero pitch
angle

F (p,μ) ∼ exp

[
− (μ − 1)2

Δμ2

]
(16)

with Δμ = 0.1.
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The plots in Figure 1 correspond to the following parameters:
X-mode, background plasma density n0 = 5 × 109cm−3,
magnetic field B = 270 G, emission frequency f = 10 GHz,
emission direction θ = 75◦, electron energy E = 1 MeV;
the integrands are normalized to unity by their maximum
values. Apparently, the Gaussian fits to the integrands are
comparably good for both isotropic and anisotropic cases, which
makes the Laplace method of angular integral evaluation widely
applicable. Note that the used value of Δμ = 0.1 describes the
case of rather strong anisotropy, which has a huge effect on the
GS radiation.

For each momentum p, the peak position μ0 is determined as
the root of equation h′(μ) = 0, where h′(μ) is the derivative of
function h(p,μ) (Equation (14)) over μ:

h′(μ) = F ′
μ(p,μ)

F (p,μ)
+ 2γ

f

fBe

[
nβ cos θ − μ

1 − μ2

√
1 − x2

− nβ cos θ ln Z

]
+ (ln Q)′, (17)

(ln Q)′ = 2
ab[(a′/a + b′/b)(1 − nβμ cos θ ) − nβμ cos θ ] − T nβ

T (cos θ − nβμ) + L sin θ + ab(1 − nβμ cos θ )

−2
a′

a
+

nβ cos θ

1 − nβμ cos θ
, (18a)

a′

a
= χ (Aη − ξ )

a6
, (18b)

b′

b
= χ (Bη − ξ )

b6
1

+ 4χnβ cos θ
b2 − 1

b2
, (18c)

b1 =
[

(1 − x2)3/2 +
B

s

]1/6

, b2 =
(

1 − 1

5s2/3

)
, b = b1b2,

(18d)

χ = γf

6sfBe
, η = nβ cos θ

s
, ξ = 3x2(nβ cos θ − μ)

√
1 − x2

1 − μ2
.

(18e)

Transcendental Equation (17) has no closed solution for
μ0 in a general case. For isotropic case, the derivative of
the distribution function vanishes, and then discarding terms
ln Z and ln Q from Equation (17) yields μ0,PK ≈ nβ cos θ ,
which is approximately valid for the isotropic case as shown
in Figure 1(a). Petrosian (1981) and Klein (1987) applied this
approximate root to derive their approximate GS codes. In the
general case, however, when the pitch-angle anisotropy is not
necessarily weak, this approximation breaks down. Inspection
of Figure 1 suggests that the accuracy of the integral evaluation
can be significantly improved if one uses the exact solution μ0
of transcendental Equation (17) in place of the approximate
one μ0,PK. Indeed, the solution of transcendental equations can
easily be found numerically, e.g., with the bisection method
(see, e.g., Press et al. 1997). The vertical dotted lines in Figure 1
show the position of the approximate root μ0,PK used in the PK
algorithm. This approximate root noticeably deviates from the
true solution even for the isotropic electron distribution; thus,
in addition to accounting for the anisotropic distributions, using

the exact numeric solution for μ0 also improves the accuracy of
GS computation from the isotropic distributions.

The second derivative of h(p,μ) over μ has the form

h′′(μ) = F ′
μ(p,μ)

F (p,μ)
−

[
F ′′

μμ(p,μ)

F (p,μ)

]2

− 2γ
f

fBe

√
1 − x2

1 − μ2

×
[

1 +
(nβ sin θ )2(nβ cos θ − μ)2

(1 − nβμ cos θ )3(1 − x2)

−2μ(nβ cos θ − μ)

1 − μ2
+

nβ cos θ (nβ cos θ − μ)

1 − nβμ cos θ

]
+ (ln Q)′′.

(19)

The analytical expression for the term (ln Q)′′ is very cumber-
some. As a rule, the contribution of this term is minor. However,
we found that for some combinations of parameters (including,
e.g., isotropic distribution), the account of (ln Q)′′ noticeably
increases the computation accuracy. In such cases, it is more
convenient to calculate (ln Q)′′ by explicit numerical differenti-
ation of (ln Q)′, see Equation (18a).

Electron distributions G(E,μ) over energy E (in place
of momentum p) are often used in GS calculations. One
can easily adjust Equations (10)–(13) to this form of the
distribution function by making a simple variable transformation
to integration over energy E. The emissivity and absorption
coefficient then take the form

jf � 2πe2

c

f

n(1 + T 2) sin2 θ

∫ E2

E1

dE

∫ 1

−1
Z2sQG(E, μ) dμ

� 2πe2

c

f

n(1 + T 2) sin2 θ

∫ E2

E1

Z
2s0
0 Q0G(E, μ0)

√
− 2π

h′′(μ0)
dE,

(20a)

	 � − 2πe2c

n3f (1 + T 2) sin2 θ

∫ E2

E1

dE

∫ 1

−1
Z2sQR(E) dμ

� − 2πe2c

n3f (1 + T 2) sin2 θ

∫ E2

E1

Z
2s0
0 Q0R

(E)
0

√
− 2π

h′′(μ0)
dE,

(20b)

where

R(E) = ∂G(E,μ)

∂E
− 1 + β2

cpβ
G(E,μ) +

nβ cos θ − μ

cpβ

∂G(E,μ)

∂μ
(21)

and the distribution function G(E,μ) is normalized as follows:

2π

∫ E2

E1

dE

∫ 1

−1
G(E,μ) dμ = ne. (22)

Then, the logarithmic derivatives of the function F (p,μ) in
Equations (17) and (19) must be replaced by the corresponding
derivatives of the distribution function G(E,μ) :

F ′
μ(p,μ)

F (p,μ)
= G′

μ(E,μ)

G(E,μ)
,

F ′′
μμ(p,μ)

F (p,μ)
= G′′

μμ(E,μ)

G(E,μ)
(23)

at a given energy E.
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3.2. Numeric Implementation

The described algorithm was implemented in two (basically
identical) numeric source codes—in FORTRAN and C++. We
adopted a factorized form of the distribution function

G(E,μ) = u(E)g(μ), (24)

where the type of the factors can be selected from a predefined
list of options, similar to those used typically in X-ray model-
ing and data analysis. For example, the distribution over energy
u(E) can be a single or double power law over energy, momen-
tum, or Lorentz factor, include a thermal component matched
to a nonthermal tail (so-called thermal–nonthermal distribution,
TNT; see Holman & Benka 1992; Benka & Holman 1994), or
have a form of kappa distribution. The angular distribution can
be a Gaussian or modified (with a fourth-order term in the expo-
nent) Gaussian function, or a loss-cone distribution; an isotropic
distribution (g(μ) = constant) is also a possibility. For the full
list of the built-in energy and pitch-angle distributions, see
Appendix B. For a factorized form, Equation (24), the loga-
rithmic derivatives of G(E,μ) are equal to the corresponding
logarithmic derivatives of g(μ), so we made the replacements

G′
μ(E,μ)

G(E,μ)
= g′(μ)

g(μ)
,

G′′
μμ(E,μ)

G(E,μ)
= g′′(μ)

g(μ)
. (25)

As has been explained, finding a precise solution for μ0 is very
important to ensure the highest accuracy of the Laplace estimate
of the angular integral, which is in turn a key to providing the
overall accuracy of the algorithm. This root is a solution of the
transcendental equation h′(μ) = 0. We found that this equation
always has a unique solution if we discard the term (ln Q)′
from Equation (17), so a simple bisection method of the root
finding can efficiently be used. This approximation typically
yields a very good approximation of the exact μ0 value, so
the term (ln Q)′ is a small correction; however, its inclusion in
the equation improves the accuracy of the algorithm for some
parameter combinations, especially for O-mode radiation. A
disadvantage of having this term in the equation is that the
function h′(μ) can become discontinuous (for some parameter
combinations) and so the simple bisection method can converge
to the discontinuity point instead of the true root. We found
two equally good approaches to correctly account for the
(ln Q)′ contribution. In the first of them, the bisection method
is first used to find μ00 when the term (ln Q)′ is discarded
and a correction to it, Δμ, is determined analytically by the
perturbation theory: Δμ = −(ln Q(μ00))′/h′′(μ00). Then, this
correction is used to set up the restricted interval of μ around
μ00 in which the true solution of the full equation h′ = 0
(i.e., with (ln Q)′ included) is being specified by the bisection
method. In the second one, the approximate root μ00 is also
determined first and then it is improved with the secant method
(Press et al. 1997). Both methods proved to give the same results
with comparable computational expenses (the second one is
marginally longer).

The last step of the numeric implementation is integration
over energy/momentum with the adopted distribution function.
Since we use a number of different distribution functions, we
also use a few different methods of the numeric integration.
For the thermal distribution and the thermal-like (low-energy)
parts of the TNT and kappa distributions, we use a Gaussian
integration or the trapezoidal method with equally spaced nodes.
For the power-law distributions and the power-law-like (high-
energy) tails of the TNT and kappa distributions, the trapezoidal

or extended midpoint methods with logarithmic node placement
(which gives an exact solution for the true power-law integrand)
are applied (Bastian 2006). We also used the trapezoidal
integration method with step-by-step accuracy improvement
(Romberg integration; Press et al. 1997). For all the methods,
we tried to find an optimal balance between the accuracy and the
computation speed, which was achieved by appropriate choice
of either the number of nodes in the trapezoidal or extended
midpoint methods or the desired accuracy in the Romberg
method. In all cases, the codes also include the free–free
contribution to the radiation, which is extremely fast to compute.

Figures 2–4 demonstrate a few representative examples of
the GS spectra computed with (1) exact equations, (2) a discrete
approximation, i.e., exact equations in which the approximate
expressions of the Bessel functions (Wild & Hill 1971) are
used in place of exact ones, and (3) our new continuous
approximation. The spectra were obtained under the assumption
of a homogeneous source located at the Sun, i.e., the emission
intensity (observed at the Earth) of the magnetoionic mode σ
was calculated using the formula

I σ
f = S

R2

jσ
f

	σ
(1 − e−	σ L), (26)

where S and L are the visible source area and its depth along
the line-of-sight, respectively, and R � 1.49 × 1013 cm is the
astronomical unit. Total emission intensity equals If = IX

f +IO
f ,

and the degree of polarization is defined as

η = IX
f − IO

f

IX
f + IO

f

. (27)

The plots in Figures 2–4 correspond to the following pa-
rameters: background plasma density n0 = 2 × 109 cm−3 and
temperature T0 = 4 MK, magnetic field B = 370 G, accel-
erated electrons have a power-law energy spectrum F ∼ E−δ

with δ = 3.5 between Emin = 0.01 MeV and Emax = 10 MeV,
the number density of fast electrons nb = 9.3 × 107 cm−3,
visible source area S = 1.8 × 1018 cm2, and source depth
L = 6 × 108 cm. In Figure 2, the electron pitch-angle distribu-
tion is isotropic and the emission direction θ = 30◦. In Figure 3,
the electrons have a loss-cone distribution (Equation (15)) with
Δμ = 0.2 and θ = 60◦. In Figure 4, the electrons have a beam-
like distribution (Equation (16)) with Δμ = 0.2 and θ = 60◦.
The integrals and series in the exact and approximate discrete
expressions were calculated with relative accuracy 10−5.

Very high overall accuracy of radiation intensity, degree of
polarization, and spectral index of the new approximation is
evident, especially at high frequencies, where the slope of the
true spectrum is reproduced well in all considered cases. In
some cases, however, a small systematic offset of the continu-
ous approximation relative to the exact one is noticeable, which
is partly related to the use of approximate Bessel function ex-
pressions (note the corresponding offsets between the exact and
approximate discrete curves). Thus, using a better approxima-
tion for the Bessel functions can further improve the accuracy
of our continuous approximation. At low frequencies, the con-
tinuous approximation is intrinsically unable to reproduce the
harmonic structure of the GS emission, although the mean level
of the spectra is reproduced remarkably well. Due to the same
reasons, the continuous approximation cannot account for the
cyclotron maser instability (the negative absorption coefficient
	σ which results in coherent wave amplification). This instabil-
ity can occur if the emission frequency is close to low harmonics
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Figure 2. Calculated parameters of the GS emission for the isotropic electron distribution; adopted parameters are given in the text.
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Figure 3. Calculated parameters of the GS emission for the transverse Gaussian electron angular distribution. In the two lower panels, the dash-triple-dotted line shows
the corresponding parameters for the isotropic distribution calculated using the continuous code.
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Figure 4. Calculated parameters of the GS emission for the beam-like electron distribution. In the two lower panels, the dash-triple-dotted line shows the corresponding
parameters for the isotropic distribution calculated using the continuous code.
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Figure 5. Time required to calculate the intensity and polarization of the
GS emission (that is, the parameters jX

f , jO
f , 	X , and 	O) at a given frequency.

The simulation parameters are the same as in Figure 3. A 2 GHz Intel Pentium
processor was used for the calculations.

of the cyclotron frequency, and typically requires an anisotropic
electron distribution with R > 0, where R is specified by
Equation (12). One can see an example of the maser insta-
bility in Figure 3(c) (loss-cone electron distribution, O-mode):
the graphs for the exact equations and the discrete approxima-
tion have a very sharp peak at f � 2fBe (2 GHz) while the
continuous approximation misses this feature.

We emphasize that the continuous approximation works
equally well for both the isotropic distribution and for
anisotropic distributions having a strong effect on GS emis-
sion, which we refer to as “strong anisotropy” in this context.
To show this explicitly, we added the degree of polarization
and spectral index curves corresponding to the case of isotropic
electron distribution (all other simulation parameters being the
same as for the anisotropic distributions) in Figures 3(g) and
(h) and Figures 4(g) and (h). One can see that the anisotropy
affects both the spectral index and the degree of polarization
quite significantly; in particular, for the beam-like distribution,
the polarization even changes its sign compared to the isotropic
case. This explicitly confirms quantitative applicability of our
continuous codes to strongly anisotropic electron distributions.

We performed all possible measures to optimize our codes,
and the programs written in FORTRAN and C++ are checked
to be comparably fast for comparable numeric settings. The
continuous codes are much faster than the exact algorithm im-
plementations. Figure 5 displays how the computation speed
changes with the emission frequency (that, in turn, determines
the maximal harmonic number used in the computations). For
both exact and approximate discrete implementations, the com-
putation time increases nearly exponentially with the harmonic
number, while for the continuous approximation this time does
not depend on the harmonic number at all. Thus, the achieved
improvement in the computation speed is remarkably great.

3.3. Applicability Region of the Continuous Code

Perhaps no approximation can entirely substitute its exact
prototype for all possible parameter combinations; thus, we
specifically looked for those cases when the accuracy of the
continuous codes decreases noticeably. As has been shown

(see Figure 1), the basic reason of the overall success of the
approximation is the possibility to precisely fit the angular
integrand by a Gaussian whose parameters are determined based
on analytical properties of the integrand. Therefore, we can
expect that the code performance will drop when the integrand
cannot be fitted well by a Gaussian profile, for example, when
the integrand is essentially asymmetric.

We found that for all analytical functions (continuous func-
tions with all continuous derivatives) the approximation works
well regardless of the function sharpness. However, if the angu-
lar distribution function or its first derivative have a discontinuity
at a certain αc, then the angular integrand cannot be precisely
fitted by a Gaussian for some range of the emission angle θ
around the angle αc and the accuracy of the GS spectrum com-
putation drops noticeably here: the approximate intensity can
differ from the exact one by up to a factor of two.

Such behavior of the approximate algorithm is in fact ex-
pected for the discontinuous angular electron distributions. We
point out that even for an angular distribution function with a
discontinuity of the second derivative at some αc, the accuracy
of the continuous code can decrease around θ � αc. As an ex-
ample, we consider a Gaussian loss-cone distribution g(μ) =
constant for μ � cos αc, and g(μ) ∼ exp[−(μ − cos αc)2/Δμ2]
for μ > cos αc, whose second derivative has a discontinuity
at αc, while the first derivative and the function itself are both
continuous.

Figures 6 and 7 display an example of when the angular
integrand becomes noticeably asymmetric around the loss-cone
boundary αc and the Gaussian function fails to provide a good
fit to the integrand. This happens, however, only when the
distribution function decreases very fast at μ > cos αc; in the
given example, we use αc = 80◦ and Δμ = 0.05 (viewing angle
θ = 80◦, other simulation parameters are the same as in Figure 3,
and the integrands in Figure 6 are plotted for the electron energy
E = 1 MeV). One can see that the angular integrand deviates
from a Gaussian for both the X- and the O-modes; however,
the integrand asymmetry is more significant for the O-mode.
As a result, the continuous code fails to precisely reproduce the
emission intensity, and the error is larger for the O-mode. We
found that for smoother angular gradients, Δμ � 0.1, which are
still sharp enough for most practical applications, the integrand
asymmetry remains small and the algorithm works well.

We conclude that although the algorithm can fail for some
models of the angular distribution, it has to work well for
any natural distribution function since it (being a solution of
a transport equation) is supposed to be an analytical function
continuous with all the derivatives.

4. HYBRID GS CODES

Although the continuous approximation is sufficient for many
practical applications, the low-frequency harmonic structure can
also often be of interest, especially for the anisotropic case
(Fleishman & Melnikov 2003b). Therefore, in this section we
describe a number of improvements of the code toward recovery
of the harmonic structure and overall higher accuracy of the
codes.

4.1. Harmonic Structure Recovery

We tried a few approaches to recover the GS harmonic
structure at low frequencies and found that the simplest and
most straightforward approach ensures the best results. In fact,
to recover the harmonic structure at frequencies f < f C

cr it
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Figure 6. Angular integrand (normalized) in Equation (10a) for the loss-cone distribution with αc = 80◦ and Δμ = 0.05 (for the X- and O-modes).

Figure 7. Calculated spectrum for the least favorable parameter combination of GS emission (X- and O-modes) for the loss-cone distribution with the discontinuous
second angular derivative of the distribution function.

is sufficient to use exact equations at f < f C
cr , while the

continuous approximation is used at higher frequencies. Since
at low harmonics the computation speeds of both the exact and
the approximate discrete codes are almost identical (Figure 5),
while the error related to the use of the approximate Bessel
function expression is the biggest at these frequencies, we use
the exact code (with exact Bessel functions) at low frequencies.

Our numeric experiments show that for full recovery of
noticeable low-frequency harmonics it is typically sufficient
to use the exact code at f < f C

cr with f C
cr � 12fBe and the

continuous codes above. From Figures 2–4 we know that at
high frequencies the continuous contribution displays the same
slope as the exact one, although the approximate spectrum can
systematically be shifted by a small value relative to the exact
spectrum. Thus, a simple transition from the exact contribution
to the continuous one results in a matching jump or matching
residual. To remove this jump, we renormalize the continuous
contribution as follows. First, we find the ratio of the values
calculated by the exact and approximate formulae at f = f C

cr ,
and then we apply this factor to all values calculated for f > f C

cr
with the approximate code, i.e.,

jσ
f (f ) = jσC

f (f )
jσE
f

(
f C

cr

)
jσC
f

(
f C

cr

) , 	σ (f ) = 	σC(f )
	σE

(
f C

cr

)
	σC

(
f C

cr

) , forf � f C
cr ,

(28)

where the upper indices E and C denote the values obtained using
the exact and continuous codes, respectively. This renormaliza-
tion provides a smooth transition from the exact to continuous
contribution and also improves the accuracy of the spectra cal-
culated at the high frequencies.

Since this code involves both exact and continuous contribu-
tions, we call it the “hybrid” code. With the matching frequency
as an adjustable parameter of the code, the full range of options
from a purely continuous code (if f C

cr = 0) to the exact code (if
f C

cr = ∞ or very large) is available.

4.2. Optimization of the Hybrid Code

For the vast majority of applications, the hybrid code with
f C

cr � 15fBe or even the purely continuous code seems to be
sufficient. Nevertheless, some problems or settings requiring
even more precise computations can exist in some cases (for
example, various testing problems). For such cases, we further
optimize the code as follows. If f C

cr � 10fBe is needed, the
use of the exact Bessel functions becomes more and more
computationally demanding. We found that we can significantly
increase the computation speed if we use the Wild & Hill
(1971) expressions for the Bessel functions, and so the discrete
approximation in place of the exact equations, at f > f WH

cr with
f WH

cr ∼ 10fBe; we use f WH
cr = 12fBe as a default value.

Apparently, the transition from the exact algorithm to the dis-
crete approximation results in a matching residual at f = f WH

cr ,
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Figure 8. GS emission for the transverse Gaussian electron distribution calculated using different variants of the continuous code.

which is removed by the same renormalization as the one de-
scribed in Section 4.1. As the frequency increases and reaches
the next matching frequency f C

cr (if indeed f C
cr > f WH

cr ), the
discrete approximation gives way to the continuous approxi-
mation. This additional matching residual is removed by the
same renormalization as before. Apparently, if f C

cr � f WH
cr then

the discrete approximation is not applied, and so no additional
renormalization is needed.

4.3. Optimization of the Continuous Code

To round up the list of options and optimizations, we discuss a
number of different versions of the continuous code. First of all,
if we neglect the (ln Q)′ and (ln Q)′′ terms in Equations (17)
and (19), respectively, we obtain the code fully optimized
for the computation speed. This code version produces the
full GS spectrum at 100 frequencies and computes the degree
of polarization in 15–30 ms depending on input distribution
functions and the parameter combination. Typically, this version
of the code produces spectra within the error better than 10%.
The effect of neglecting the (ln Q)′ and the (ln Q)′′ is illustrated
in Figure 8, where “optimized” and “fast” refer to the codes with
and without the mentioned terms, respectively (the electrons are
assumed to have a loss-cone distribution with Δμ = 0.3 and the
other parameters are the same as in Figure 3).

Including the terms (ln Q)′ and (ln Q)′′ reduces the error by
a factor of two to the values better than 5% at the expense
of increasing the computation time by around 70%. In many
cases, this code yields highly precise spectra (error smaller than
2%–3%) at those frequencies where no harmonic structure is

pronounced. Nevertheless, we implemented one more optimiza-
tion, which further improves the accuracy, when the code with
(ln Q)′ and (ln Q)′′ is not perfectly precise (the error is about
3%–5%). The idea behind this improvement is very simple: the
entire spectrum is still calculated with the approximate contin-
uous algorithm, while the exact calculations are performed at
a single frequency (we found that the case with f = 12fBe
works well). Then, the continuous spectrum is renormalized as
a whole to match the exact spectrum at this single frequency.
This renormalization can reduce the errors of the continuous
approximation by a factor of two or even better.

4.4. Nomenclature of the Codes

Since we have developed and described many versions of
the GS code, it is reasonable to summarize and compare
them all, which is done in Table 1. The codes are ordered
according to increasing computation time. The fastest code is
the continuous code (C) which typically provides appropriate
accuracy but does not reproduce the low-frequency harmonic
structure. The optimized continuous codes (those with either
(ln Q), Q-optimized, and/or renormalization, R-optimized),
which are basically the same continuous code but with better
normalization, are only slightly slower and overall more precise
than the continuous code (in particular, the polarization accuracy
is improved greatly). No harmonic structure is reproduced either.

The hybrid codes (H) being composed of exact and/or ap-
proximate discrete contributions at low frequencies and of con-
tinuous contribution at high frequencies recover the harmonic
structure. The first of them, the hybrid code, uses one matching
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Table 1
Summary of the GS Codes

Code Title Approx. Useda Rel. Time Accuracy

Continuous ds, WH, LI, ln Q 1 <5%–10%, no harmonics
Q-optimized continuousb ds, WH, LI 1.6–1.8 <3%–5%, no harmonics
R-optimized continuousb ds, WH, LI, ln Q 2.0–2.5 <3%–5%, no harmonics
Optimized hybridc No/WH /ds, WH, LId �10e Exact/as exact/< 2%–4%
Hybridc No/ds, WH, LId �10e Exact/<2%–4%
Approximate discrete WH Long As exact at f � 10fBe

Exact No Longest Exact

Notes.
a The following approximations can be used: “ds”, integration over harmonics instead of summation; “WH”,
approximated Bessel functions; “LI”, Laplace integration; “ln Q”, the terms (ln Q)′ and (ln Q)′′ are neglected.
b R-optimization and Q-optimization can be applied simultaneously which increases both the accuracy and the
computation time.
c In these codes, different approximations are applied at different emission frequencies.
d In the continuous (high-frequency) part of the spectrum, one can choose to neglect the derivatives of ln Q as
well. However, this creates only a minor increase in the computation speed while decreasing the accuracy.
e This speed estimation was made for f C

cr = 12fBe. With an increase of f C
cr , the computation time for the

optimized hybrid and hybrid codes increases and approaches the computation time for the approximate discrete
and exact codes, respectively.

frequency for transition from the exact to continuous code. This
version of the code is very practical as it is both fast (only
about five times slower than the continuous code) and highly
precise if one selects f C

cr ∼ 12fBe. However, this code is much
slower for f C

cr � 10fBe, which makes it impractical for such
settings. The optimized hybrid code, which uses the exact algo-
rithm at f < 12fBe, while the discrete approximation between
f WH

cr = 12fBe and f C
cr > f WH

cr allows one to increase the fre-
quency f C

cr with less computational expenses still providing
very high accuracy. However, an increase of the computation
time with f C

cr is noticeable in this code as well (see Figure 5).
The approximate discrete code (D) uses the exact GS equa-

tions with only one approximation—the approximate Bessel
function expressions are used. This approximation basically
yields very accurate results (with some exceptions at low fre-
quencies and sometimes a small systematic offset of the opti-
cally thin part of the O-mode spectrum). However, since the
summation over the harmonics is performed for an arbitrary
high frequency in this version of the GS code, the computation
time can be orders of magnitude longer than for the hybrid and
continuous codes. Finally, the exact code (E) uses no approxi-
mation and so it is capable of producing results with arbitrarily
high precision at the expense of the computation time, which
can become much longer than for the approximate discrete code
because the time required to compute the exact Bessel function
Js increases with its order s. Overall, this set of the code im-
plementations offers a complete list of options between the fast
and accurate continuous code through slower and more precise
hybrid codes to the discrete and exact codes with approximate
or exact Bessel functions, respectively, so each potential user of
the codes can make his or her own selection of the code option
depending on the problem being studied.

5. CODE ACCESSIBILITY AND APPLICATION

To ensure the widest practical application of these new
codes including the perspective users who work more with
IDL than with the computing languages like FORTRAN and
C++, the above described codes were implemented as Windows
dynamic link libraries (DLLs) and Linux shared objects (SOs)
callable from IDL. A brief descriptionq of these libraries is

given in Appendix B. The libraries themselves with complete
descriptions (including the calling sequence, input and output
parameters, keys to switch between the different code versions,
and the built-in distribution functions), examples of the calling
IDL programs, and sample outputs are available in the online
version of the journal.

Although our GS codes can be used for various astrophysical
objects (e.g., active stars, planetary magnetospheres, cosmic
jets) and even for laboratory settings, we have been developing
them with solar flares in mind as the primary target. In particular,
this is why the calculated emission intensity is normalized to the
distance from the Sun to the Earth. The supplementary material
in the online version of the journal contains a few sample spectra
employing parameters typical for solar flares.

Here, we illustrate how the code application can be used
to address key physics of solar flares. We note that using
oversimplified approximate GS expressions has often led to
a conclusion that the number of accelerated electrons deduced
from hard X-ray (HXR) observations was insufficient to produce
the observed microwave emission with a difference of up to
two to three orders of magnitude. Although the simulations
using exact GS expressions (e.g., Altyntsev et al. 2008) do not
confirm that conclusion, the use of the exact codes is highly
time-consuming and so impractical.

Let us specifically consider an occulted solar flare of 2007
December 31 recently reported by Krucker et al. (2010). This
flare is particularly interesting because Krucker et al. (2010) ar-
gued that the observed coronal HXR source represented the very
acceleration site of the flare; probing the acceleration regions is
of tremendous importance for modern astrophysics. Because of
strong occultation, only the very top of the flaring loop was ob-
served in the radio range, which implies that the observed source
is reasonably uniform, so we can apply the uniform source model
without explicitly considering the radiation transfer. We took the
source parameters derived from HXR by Krucker et al. (2010)
and selected a few underconstrained parameters to have some
typical values and sent them to our GS code calculating the
radio emission. As is apparent from Figure 9, the model radio
emission is in excellent agreement with the observed one. This
means that the same electron population needed to produce the
HXR with the same spectral index extended to radio-producing
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Figure 9. Model (solid) and observed (crosses) radio spectra for the so-
lar flare of 2007 December 31. The spectra are plotted by IDL program
Flare071231a.pro which is available in the online version of the journal;
the list of simulation parameters is given in this program. The data point at
34 GHz is kindly provided by Dr. S. M. White.

energies (a few MeV) is fully consistent with the source radio
properties.

However, the radio data analysis is not just a cross-check for
the HXR diagnostics; in addition to it, the radio diagnostics put
further constraints on such source parameters as the magnetic
field, the viewing angle, the highest energy of accelerated
electrons, and on the angular distribution of the fast electrons
(e.g., Fleishman et al. 2009). Note that to obtain a reasonable “by
eye” fit of the data by the model spectrum presented in this figure,
we selected the mentioned parameters (see the full parameter
list online in the IDL program Flare071231a.pro) from
reasonable ranges and adopted a moderate loss-cone anisotropy
similar to that observed for a number of radio loop-top sources
(Melnikov et al. 2002) of extended flaring loops; an efficient
account of the anisotropy, as has already been said, would
not have been possible without the codes developed. A small
excess of the observed flux compared with the model spectrum
at 1 GHz (if not related to an observation error or a radio
model uncertainty) could easily be provided by a minor source
nonuniformity which is known to broaden the GS spectrum.

6. DISCUSSION AND CONCLUSIONS

In this paper, we present a set of GS codes, which allows
a smooth transition from an exact (but often computationally
demanding) GS code to approximate (but much faster and still
highly precise) codes, where the computation time can be sub-
stantially reduced at the expense of very modest (if any) reduc-
tion of the computation accuracy applicable to both isotropic
and anisotropic angular distributions of fast electrons. Specifi-
cally, the computation time is reduced by orders of magnitude,
while the computation error remains within 1%–10% depending
on the fast code option and parameter combination.

The importance of this development is difficult to overesti-
mate: the reduction of computation time makes it widely ap-
plicable to create and analyze sophisticated models of GS ra-
diation produced in realistic three-dimensional configurations.
It was impossible until now because the long time required to
compute a single GS spectrum from an anisotropic electron dis-
tribution made the solution of the whole problem prohibitively

slow. As a result, very few realistic three-dimensional GS mod-
els have yet been developed. Having the fast GS codes readily
available enables analyzing many more interesting geometries
and parameter combinations and thus a better understanding of
how the GS spectra and images relate to the underlying source
parameters and their evolution.

The software implementation developed for the fast GS
codes is performed in a way complementary to the standard
HXR tools. In particular, the same list of widely used model
distribution functions is built into our codes, which allows a user
to choose the same electron distribution function for both HXR
and radio modeling from the set of predefined model functions
and then vary the distribution parameters of interest. A combined
analysis of the hard X-ray and radio observations (as has been
shown in the example considered in the previous section) is a
straightforward way of constraining the source parameters and
testing the models of solar flares and other phenomena involving
energetic particles.

Then, the fast codes are suitable for inclusion into the forward
fitting inversion codes as the source functions (Fleishman et al.
2009). This may have a science-transforming effect because the
possibility to use an arbitrary pitch-angle anisotropy in the trial
fitting function paves the way for diagnosing both energy and
angular distributions of the fast electrons accelerated in solar
flares along with the magnetic fields (Fleishman et al. 2009) and
so developing a remote sensing method for solar flares and other
phenomena revealing themselves via GS emission.
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APPENDIX A

DISPERSION OF THE MAGNETOIONIC MODES

The refraction index of the electromagnetic waves in a plasma
satisfies the dispersion equation

n2
σ = 1 − 2v(1 − v)

2(1 − v) − u sin2 θ + σ
√
D

, (A1)

where
D = u2 sin4 θ + 4u(1 − v)2 cos2 θ, (A2)

u =
(

fBe

f

)2

, v =
(

fpe

f

)2

, (A3)

fpe = e
√

N/(πme) is the electron plasma frequency, and N is
the total number density of the plasma electrons. For X-mode,
σ = −1; for O-mode, σ = +1.
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The polarization vectors of the waves in the reference frame
with z-axes along the magnetic field and the wave-vector k in
the (xz)-plane, has the form

eσ = (Tσ cos θ + Lσ sin θ, i,−Tσ sin θ + Lσ cos θ )√
1 + T 2

σ + L2
σ

(A4)

with the parameters Tσ and Lσ defined as

Tσ = 2
√

u(1 − v) cos θ

u sin2 θ − σ
√
D

, (A5)

and

Lσ = v
√

u sin θ + Tσuv sin θ cos θ

1 − u − v + uv cos2 θ
. (A6)

Electromagnetic waves can propagate in plasma if their
frequency exceeds the cutoff frequency, f > fcσ , where

fcO = fpe, fcX = fBe

2
+

√
f 2

pe +
f 2

Be

4
. (A7)

APPENDIX B

CODE IMPLEMENTATION

Fast GS codes were implemented as Windows DLLs and
Linux SOs callable from IDL. Basically, we developed two
variants of the libraries with the following file names:

1. libGS_Std_HomSrc_C and
2. libGS_Std_HomSrc_CEH.

The file extension depends on the target operation system.
In the above names, Std refers to “standard” or pre-defined
distribution functions (we are working on developing similar
codes for arbitrary distributions given, e.g., by arrays of values),
and HomSrc refers to “homogeneous source” (we are working on
developing the codes with numerical integration of the radiation
transfer equation for inhomogeneous sources). The last letters
in the file names refer to the supported code modes: continuous
(C), exact + approximate discrete (E), and hybrid (H).

Currently, the set of pre-defined distributions includes nine
types of distributions over energy and five types of distributions
over pitch angle; any combination of the energy and angular
distribution is possible. The following energy distributions are
implemented:

1. thermal (THM);
2. single power law over kinetic energy (PLW);
3. double power law over kinetic energy (DPL);
4. thermal/nonthermal over kinetic energy (TNT);
5. kappa (KAP);
6. power law over the absolute value of momentum (PLP);
7. power law over the Lorentz factor (PLG);

8. thermal/nonthermal over the absolute value of momentum
(TNP); and

9. thermal/nonthermal over the Lorentz factor (TNG).

The following pitch-angle distributions are implemented:

1. isotropic (ISO);
2. exponential loss-cone (ELC);
3. Gaussian loss-cone (GLC);
4. Gaussian (GAU); and
5. super-Gaussian (SGA).

The detailed description of the pre-defined distributions is
given in supplement I which is available in the online version
of the journal. The calling sequence for our GS codes (for IDL
users), input and output parameters, and keys to switch between
the different code versions as well as minor differences between
the above libraries are given in supplement II which is also
available in the online version of the journal.
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