
Online documentation. Part I:
Built-in electron distributions

As has been said in the main text, although the algorithm itself is valid for a general case,
the analytical built-in electron distribution functions G(E, µ) have the factorized form

G(E, µ) = u(E)g(µ), (1)

that is, they can be written as a product of the energy (or momentum) distribution function
u(E) and the angular distribution function g(µ). Currently, to cover a representatively broad
range of possibilities needed for practical applications including contribution from thermal and
nonthermal electrons, nine types of energy distributions and five types of angular distributions
are implemented. The index of the energy distribution is specified by the parameter ParmIn[17]
in a call to the gyrosynchrotron code (see online documentation, Part II), and the index of the
angular distribution is specified by the parameter ParmIn[19]; any combination of the energy
and angular distribution is possible. However, in the library libGS Std HomSrc CEH the selected
anisotropy is applied throughout any assumed distribution including the Maxwellian component
if present, while in the library libGS Std HomSrc C the Maxwellian component (in THM, TNT,
TNP, and TNG distributions) is always adopted isotropic. The distribution parameters (whose
number and meaning depend on the type of distribution) are specified by different elements of
the array ParmIn. These parameters will be described below.

For the factorized electron distribution (1), the functions u(E) and g(µ) can be normalized
independently. We assume that the distribution functions satisfy the following normalization
conditions

2π

Emax∫

Emin

u(E) dE = ne,

1∫

−1

g(µ) dµ = 1, (2)

where ne is the number density of electrons having the energy between Emin and Emax.

Sample emission spectra in Figures 1–9 were calculated for the following source parameters:

• visible source area S = 1020 cm2;

• source depth L = 1010 cm;

• magnetic field B = 180 G;

• thermal plasma density n0 = 3× 109 cm−3, unless different is specified (for the thermal,
thermal/nonthermal, and kappa distributions);

• thermal plasma temperature T0 = 3×107 K, unless different is specified (for the thermal,
thermal/nonthermal, and kappa distributions);

• viewing angle θ = 45◦, unless different is specified (for the anisotropic pitch-angle distri-
butions).
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Figure 1: Thermal electron distribution (for n0 = 3 × 109 cm−3 and different electron tem-
peratures) and single power-law electron distribution over kinetic energy (for nb = 3 × 107

cm−3, Emin = 0.1 MeV, Emax = 10 MeV, and different power-law indices δ). For the thermal
distributions, the emission spectra at high frequencies are dominated by free-free emission.

Distributions over energy

Sample emission spectra for different energy distributions (in Figures 1–7) were calculated under
the assumption that the pitch-angle distribution is isotropic (ISO).

Thermal distribution (THM; index 2)

Relativistic thermal distribution is given by the expression

u(γ) dγ =
n0

2π

γ
√

γ2 − 1

θK2(1/θ)
exp

(
−γ

θ

)
dγ, (3)

where n0 is the number density of the thermal electrons, γ is the Lorentz-factor, θ = kBT0/(mc2)
is the normalized thermal energy for the temperature T0, kB is the Boltzmann constant, and
K2 is the MacDonald function of the second order.

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[2] = T0 [K];

• ParmIn[11] = n0 [cm−3];

• ParmIn[17] = 2.

Note that the above parameters, T0 and n0, are also used beyond the case of thermal
distribution. For other energy distributions, n0 and T0 are considered as the background plasma
density and temperature, respectively. They are used to calculate the dispersion parameters
of the electromagnetic waves (n0) and the free-free contribution (both n0 and T0). However,
the gyrosynchrotron contribution of the thermal electrons is calculated only if one explicitly
chooses the thermal distribution as the “main” electron distribution by setting ParmIn[17] = 2
(or, more broadly, the class of thermal/nonthermal distributions, see below); otherwise, this
contribution is neglected in GS computation.

Examples of the thermal distributions and the corresponding gyrosynchrotron emission
spectra are shown in Figure 1.
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Figure 2: Double power-law electron distribution (for nb = 3 × 107 cm−3, Emin = 0.1 MeV,
Ebreak = 1 MeV, Emax = 10 MeV, δ1 = 4, and different high-energy power-law indices δ2).
Single power-law distribution (for the same particle number density and δ = 4) is given for
reference.

Single power-law distribution over kinetic energy (PLW; index 3)

Power-law distributions of the nonthermal electrons over kinetic energy E = mc2(γ − 1) are
widely used for interpretation of solar radio and hard X-ray emissions. These distributions are
given by the expression

u(E) dE = AE−δ dE for Emin < E < Emax, (4)

and 0 otherwise. The normalization constant A equals

A =
nb

2π

δ − 1

E1−δ
min − E1−δ

max

, (5)

where nb is the number density of the nonthermal electrons. The logarithmic normalization for
δ = 1 is not implemented, however, one can arbitrarily approach this case taking δ very close
but slightly different from 1.

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[6] = Emin [MeV];

• ParmIn[7] = Emax [MeV];

• ParmIn[9] = δ;

• ParmIn[12] = nb [cm−3];

• ParmIn[17] = 3.

Examples of the single power-law distributions and the corresponding gyrosynchrotron emis-
sion spectra are shown in Figure 1.

Double power-law distribution over energy (DPL; index 4)

In this case the electron spectrum consists of two parts (high-energy and low-energy), where
both the high-energy and low-energy parts are described by power laws, but with different
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indices. These distributions (double power-law or broken power-law) can be described by the
following expression:

u(E) dE = dE

{
A1E

−δ1 , for Emin < E ≤ Ebreak,
A2E

−δ2 , for Ebreak ≤ E < Emax,
(6)

and 0 outside the range from Emin to Emax. In the above expression, A1E
−δ1
break = A2E

−δ2
break (to

make the function continuous), δ1 6= 1, and δ2 6= 1. In the library libGS Std HomSrc CEH the
normalization factor is given by

A−1
1 =

2π

nb

(
E1−δ1

min − E1−δ1
break

δ1 − 1
+ Eδ2−δ1

break

E1−δ2
break − E1−δ2

max

δ2 − 1

)
, (7)

i.e., nb is the number density of nonthermal electrons between Emin and Emax, and A2 is found
using the above continuity condition. In the library libGS Std HomSrc C, normalization (5) is
instead used for the purpose of easier comparison between the DPL and PLW results.

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[6] = Emin [MeV];

• ParmIn[7] = Emax [MeV];

• ParmIn[8] = Ebreak [MeV];

• ParmIn[9] = δ1;

• ParmIn[10] = δ2;

• ParmIn[12] = nb [cm−3];

• ParmIn[17] = 4.

Examples of the double power-law distributions and the corresponding gyrosynchrotron
emission spectra are shown in Figure 2.

Thermal/nonthermal distribution over energy (TNT; index 5)

This distribution ensures a smooth transition from nonthermal to the thermal distribution at
low energies by means of expression

u(E) dE = dE

{
uTHM(E), for E ≤ Ecr,
AE−δ, for Ecr ≤ E < Emax,

(8)

and 0 for E > Emax. In the above expression, uTHM(E) is the thermal distribution function
(3), A = uTHM(Ecr)E

−δ
cr to make the function continuous, the matching point Ecr satisfies the

condition Ecr < Emax, and δ > 1. In our codes, the matching point Ecr is defined as the energy
corresponding to the momentum pcr

p2
cr =

p2
THM

ε
, (9)

where pTHM is the mean thermal momentum corresponding to the energy kBT0, and the pa-
rameter ε specifies location of the turning point (the distribution becomes purely thermal when
ε < p2

cr/p
2(Emax)).

For small ε, number density of the nonthermal electrons (with E > Ecr) is much less than
that of the thermal electrons. Therefore we assume that the normalization condition remains
approximately the same as for the thermal distribution (3), and the total electron number
density ne ' n0. However, it should be noted that actually the total electron density slightly
exceeds n0.

In our gyrosynchrotron codes, the parameters of this distribution are specified as:
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Figure 3: Thermal/nonthermal electron distribution over kinetic energy (for n0 = 3 × 109

cm−3, T0 = 3 × 107 K, δ = 4, and different matching parameters ε). For ε = 0.05 and
ε = 0.03, the emission spectra at high frequencies are dominated by free-free emission. For
ε = 0.03, the emission spectrum (shown by dotted line) is nearly the same as for the purely
thermal distribution with T0 = 3 × 107 K (shown by green dashed line in Figure 1), because
the contribution of nonthermal particles is negligible in this case. Red dashed line represents
the nonthermal “tail” of the thermal/nonthermal distribution; for ε = 0.1, this “tail” behaves
as the single power-law distribution with nb = 106 cm−3, Emin = 0.03 MeV, Emax = 10 MeV,
and δ = 4.

• ParmIn[2] = T0 [K];

• ParmIn[3] = ε;

• ParmIn[7] = Emax [MeV];

• ParmIn[9] = δ;

• ParmIn[11] = n0 [cm−3];

• ParmIn[17] = 5.

Number density of the nonthermal electrons nb is not specified explicitly, while it is calcu-
lated consistently using n0, T0, ε, δ, and Emax.

Examples of the thermal/nonthermal distributions over energy and the corresponding gy-
rosynchrotron emission spectra are shown in Figure 3.

Kappa distribution (KAP; index 6)

Another way of describing the smooth transition from the thermal distribution to a nonthermal
tail is a so-called Kappa distribution, which is widely used to quantify particle distributions in
the interplanetary plasma. It is convenient to express the Kappa distribution in terms of the
Lorentz-factor γ:

u(γ) dγ = A
γ
√

γ2 − 1

θ3/2

[
1 +

γ − 1

(κ − 3/2)θ

]κ+1 dγ for E < Emax, (10)
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Figure 4: Kappa distribution (for ne = 3×109 cm−3, T0 = 3×107 K, and different values of the
parameter κ). Thermal distribution (for the same particle number density and temperature)
and single power-law distribution (for nb = 3 × 107 cm−3, Emin = 0.1 MeV, Emax = 10 MeV,
and δ = 4) are given for reference. For the thermal distribution and kappa distributions with
κ = 6 and κ = 20, the emission spectra at high frequencies are dominated by free-free emission.

and 0 otherwise. In the above expression, θ = kBT0/(mc2) is the normalized thermal energy
for the temperature T0, and κ is the distribution parameter. The normalization factor A
is calculated numerically by using normalization condition (2). Kappa distribution becomes
purely thermal distribution when κ →∞.

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[2] = T0 [K];

• ParmIn[4] = κ;

• ParmIn[7] = Emax [MeV];

• ParmIn[11] = ne [cm−3];

• ParmIn[17] = 6.

Note that for kappa distribution, there is no unique demarkation between the thermal and
nonthermal particles, so the total number density is specified.

Examples of the kappa distributions and the corresponding gyrosynchrotron emission spec-
tra are shown in Figure 4.

Power-law distribution over momentum (PLP; index 7)

Power-law distribution of the nonthermal electrons over the absolute value of momentum is
given by the expression

u(p) dp = Ap−δ dp for pmin < p < pmax, (11)

and 0 otherwise. The normalization constant A equals

A =
nb

2π

δ − 3

p3−δ
min − p3−δ

max

, (12)

where nb is the number density of nonthermal electrons, pmin = p(Emin), and pmax = p(Emax),
the case of δ = 3 is not implemented.

In our gyrosynchrotron codes, the parameters of this distribution are specified as:
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Figure 5: Power-law electron distribution over momentum (for nb = 3× 107 cm−3, Emin = 0.1
MeV, Emax = 10 MeV, and different power-law indices δp). Single power-law distribution (for
the same particle number density and δ = 4) is given for reference.

Figure 6: Power-law electron distribution over Lorentz factor (for nb = 3×107 cm−3, Emin = 0.1
MeV, Emax = 10 MeV, and different power-law indices δγ). Single power-law distribution (for
the same particle number density and δ = 4) is given for reference.

• ParmIn[6] = Emin [MeV];

• ParmIn[7] = Emax [MeV];

• ParmIn[9] = δ;

• ParmIn[12] = nb [cm−3];

• ParmIn[17] = 7.

Note that this distribution is not a power-law when expressed via the electron energy. And,
vice versa, power-law distribution over energy becomes non-power-law when expressed via the
electron momentum.

Examples of the power-law distributions over momentum and the corresponding gyrosyn-
chrotron emission spectra are shown in Figure 5.
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Power-law distribution over Lorentz factor (PLG; index 8)

Power-law distribution of the nonthermal electrons over Lorentz factor is given by the expression

u(γ) dγ = Aγ−δ dγ for γmin < γ < γmax, (13)

and 0 otherwise. The normalization constant A equals

A =
nb

2π

δ − 1

γ1−δ
min − γ1−δ

max

, (14)

where nb is the number density of nonthermal electrons, γmin = γ(Emin), and γmax = γ(Emax),
the case of δ = 1 is not implemented.

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[6] = Emin [MeV];

• ParmIn[7] = Emax [MeV];

• ParmIn[9] = δ;

• ParmIn[12] = nb [cm−3];

• ParmIn[17] = 8.

Again, this distribution is different from the power-law distributions over energy or momen-
tum.

Examples of the power-law distributions over Lorentz factor and the corresponding gyrosyn-
chrotron emission spectra are shown in Figure 6.

Thermal/nonthermal distribution over momentum (TNP; index 9)

This distribution is similar to the thermal/nonthermal distribution over energy (index 5) with
the only difference that the nonthermal part (at E > Ecr) is described by the power-law
distribution over the absolute value of momentum, that is

u(p) dp = dp

{
uTHM(p), for p < pcr,
Ap−δ, for pcr ≤ p < pmax,

(15)

and 0 for p > pmax. In the above expression, uTHM(p) is the thermal distribution function (3)
expressed via momentum, pcr is given by Eq. (9), pmax = p(Emax), and location of the matching
point and the matching conditions are the same as for the TNT distribution.

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[2] = T0 [K];

• ParmIn[3] = ε;

• ParmIn[7] = Emax [MeV];

• ParmIn[9] = δ;

• ParmIn[11] = n0 [cm−3];

• ParmIn[17] = 9.

An example of the thermal/nonthermal distribution over momentum and the corresponding
gyrosynchrotron emission spectrum are shown in Figure 7.
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Figure 7: Different thermal/nonthermal electron distributions (for n0 = 3 × 109 cm−3, T0 =
3× 107 K, ε = 0.1). All the distributions have different numbers of fast electrons above Ecr.

Thermal/nonthermal distribution over Lorentz factor (TNG; index 10)

This distribution is similar to the thermal/nonthermal distribution over energy (index 5) with
the only difference that the nonthermal part (at E > Ecr) is described by the power-law
distribution over the Lorentz factor, that is

u(γ) dγ = dγ

{
uTHM(γ), for γ < γcr,
Aγ−δ, for γcr ≤ γ < γmax,

(16)

and 0 for γ > γmax. In the above expression, uTHM(γ) is the thermal distribution function (3)
expressed via Lorentz factor, γcr = γ(pcr), γmax = γ(Emax), and location of the matching point
and the matching conditions are the same as for the TNT distribution with index 5.

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[2] = T0 [K];

• ParmIn[3] = ε;

• ParmIn[7] = Emax [MeV];

• ParmIn[9] = δ;

• ParmIn[11] = n0 [cm−3];

• ParmIn[17] = 10.

An example of the thermal/nonthermal distribution over Lorentz factor and the correspond-
ing gyrosynchrotron emission spectrum are shown in Figure 7.

If the energy distribution index differs from the above values (2-10) then the single power-law
distribution over energy (index 3) will be used.
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Distributions over pitch-angle

Sample emission spectra for the different pitch-angle distributions (in Figures 8–9) were cal-
culated under the assumption that the energy distribution is a single power-law (PLW) with
nb = 3× 107 cm−3, Emin = 0.1 MeV, Emax = 10 MeV, and δ = 4.

Isotropic distribution (ISO; index 1 or 0)

In this case, the electron distribution does not depend on pitch-angle, that is

g(µ) = const =
1

2
. (17)

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[19] = 1.

For the library libGS Std HomSrc CEH: the use of indices 0 and 1 yields equivalent results,
given all other parameters are identical. For the library libGS Std HomSrc C: the use of index
1 yields the result computed according to the new continuous code, while the use of index 0
activates the original (less accurate but the fastest) Petrosian-Klein code.

Exponential loss-cone distribution (ELC; index 2)

Symmetric loss-cone distribution with exponential boundary is given by the expression

g(µ) = A





1, for |µ| < µc,

exp

(
−|µ| − µc

∆µ

)
, for |µ| ≥ µc,

(18)

where µc = cos αc > 0 is the loss-cone boundary, and the parameter ∆µ determines the sharp-
ness of the loss-cone boundary. The normalization factor A is given by

A−1 = 2

[
µc + ∆µ−∆µ exp

(
µc − 1

∆µ

)]
. (19)

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[19] = 2;

• ParmIn[20] = αc [degrees];

• ParmIn[22] = ∆µ.

An example of the exponential loss-cone distribution and the corresponding gyrosynchrotron
emission spectrum are shown in Figure 8.

Gaussian loss-cone distribution (GLC; index 3)

Symmetric loss-cone distribution with gaussian boundary is given by the expression

g(µ) = A





1, for |µ| < µc,

exp

[
−(|µ| − µc)

2

∆µ2

]
, for |µ| ≥ µc,

(20)

10



Figure 8: Exponential and gaussian loss-cone distributions (for αc = 75◦ and ∆µ = 0.3). The
emission spectra are calculated for the propagation angle θ = 30◦.

where µc = cos αc > 0 is the loss-cone boundary, and the parameter ∆µ determines the sharp-
ness of the loss-cone boundary. The normalization factor A is given by

A−1 = 2

[
µc +

√
π

2
∆µ erf

(
1− µc

∆µ

)]
, (21)

where erf is the error function.
In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[19] = 3;

• ParmIn[20] = αc [degrees];

• ParmIn[22] = ∆µ.

An example of the gaussian loss-cone distribution and the corresponding gyrosynchrotron
emission spectrum are shown in Figure 8.

Gaussian distribution (GAU; index 4)

Gaussian distribution is given by the expression

g(µ) = A exp

[
−(µ− µ0)

2

∆µ2

]
, (22)

where µ0 = cos α0 is the beam direction, and ∆µ is the beam angular width. The above
expression represents the beam along the field line for µ0 = ±1, the transverse beam for
µ0 = 0, and an oblique beam (or a hollow-beam) otherwise. The normalization factor A is
given by

A−1 =

√
π

2
∆µ

[
erf

(
1− µ0

∆µ

)
+ erf

(
1 + µ0

∆µ

)]
. (23)

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[19] = 4;

• ParmIn[21] = α0 [degrees];
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Figure 9: Gaussian distribution (for α0 = 60◦ and ∆µ = 0.5) and supergaussian distribution
(for the same α0 and ∆µ, and different values of the parameter a4). The emission spectra are
calculated for the propagation angle θ = 60◦.

• ParmIn[22] = ∆µ.

If α0 = π/2, this distribution coincides with GLC distribution with αc = π/2, otherwise
they are different from each other.

An example of the gaussian distribution and the corresponding gyrosynchrotron emission
spectrum are shown in Figure 9.

“Supergaussian” distribution (SGA; index 5)

This distribution is very similar to the GAU distribution near its maximum (µ0) but decreases
more rapidly at some angular distance from µ0. Such a shape is achieved by adding a term
with fourth degree of (µ− µ0) to the argument of exponent in (22), that is

g(µ) = A exp

[
−(µ− µ0)

2 + a4(µ− µ0)
4

∆µ2

]
, (24)

where µ0 = cos α0 is the beam direction, and the beam angular width and shape near the max-
imum are determined by the parameters ∆µ and a4. The normalization factor A is calculated
numerically by using normalization condition (2).

In our gyrosynchrotron codes, the parameters of this distribution are specified as:

• ParmIn[19] = 5;

• ParmIn[21] = α0 [degrees];

• ParmIn[22] = ∆µ;

• ParmIn[23] = a4.

Examples of the “supergaussian” distribution and the corresponding gyrosynchrotron emis-
sion spectra are shown in Figure 9.

If the angular distribution index differs from the above values (0–5) then the isotropic distribu-
tion (index 1) will be used; however, values above 100 should be avoided as they are reserved
for future use and testing.
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