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Case Study: CF 2002-03-10.
Instruments Used

Hard X-Ray (HXR): Konus-Wind
Soft X-Ray (SHR): GOES

Microwave (MW): NoRH, SSRT,
NoRP, RSTN

EUV: SoHO/EIT

Optical (LOS magnetogram):
SoHO/MDI




Case Study: CF 2002-03-10
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Impulsive Light Curves
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NORH 17 GHz 10—Mar—02 01:35;01.175 UT

Images and Spatially
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Nonthermal vs Thermal Emissions
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Nonthermal vs Thermal Emissions
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3D Modeling

linear force-free field (V x B = aB with a constant o, LFFF) extrapolation

If the implied small and big loops can be reproduced in LFFF extrapolated data cubes

and what o are needed for that?

Is it possible to populate the small loop with a distribution of fast electrons, which is
consistent with the HXR data and, at the same time, capable of reproducing the high-
frequency microwave spectrum?

Is it possible to populate the big loop with a distribution of fast electrons consistent with
the HXR data to reproduce the low-frequency microwave spectrum?

Could the entire spectrum be reproduced by the two-loop model?
Is it possible to get the LCP polarization from both 17 GHz sources?

Is it possible to get the a very high degree of LCP polarization from the north 17 GHz

source?

. Could the entire polarization spectrum be reproduced by the two-loop model?



3D Modeling: Small Loop
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The Best Fit S .3_%

The best fit is obtained for the number density of the fast electrons n, = 5.2 x 10% ecm™? (this is
the peak value of the spatially nonuniform electron distribution) that corresponds to the total
number of fast electrons at the source N, o &~ 1.35 x 10?4, Note, that the electron acceleration
rate determined from the X-ray fit is about 1.2 x 10*® electron /s, which implies that the electron
escape time T.. from the loop is roughly 0.1 s, which is three times larger than the time of
flight (Lopan/c ~ 30 ms) estimated for our loop length L. ~ 9 x 10° cm. Given the electron
distribution is found to be beamed along the field lines, while the mirror ratio in this loop
is small, ~ 2, a more reasonable estimate for the escape time would be within 30 ms; this
upper limit for the escape time is also implied by absence of any measurable (within 0.1 s time
resolution) delay between the 35 GHz light curve and HXR light curves. Our two-loop model
offers a natural solution for this discrepancy: with the numbers above we conclude that in fact
the acceleration rate is roughly two-three times larger than the that derived from the HXR
fit, but the remaining (~ 50 — 70% of) accelerated electrons escape to the second, big loop,
rather than precipitate to the small loop footpoints; thus, they do not contribute to the HXR
emission.



The Best Fit

For spectral modeling of the big loop contribution we select the time 01:35:24.500 Ul at the
decay phase—rather close to the end of the prominent spectral evolution. where emission from
the big loop presumably dominates the microwave spectrum. We get a reasonably good spectral
match at low frequencies if we populate this magnetic loop with fast electron distribution within
the eneroy range starting from the same E;, = 10 keV 1n agreement with both HXR data and
the small loop model to Fpe = 5 MeV, 2 and the number density n, = 1.6 x 107 ecm™ totaling
m Nyt /= 5.7 X 103 electrons slightly concentrating towards the looptop, as expected due to
particle trapping effect i the magnetic loops (Melnikov et al. 2002). The angular distribution
1s expected to have a loss-cone shape with the loss-cone angle #;, = 30° in the top of the loop
i agreement with the mirror ratio of four, but the isotropic distribution was found to give
the same results, so we give here the numbers relevant to the isotropic model. The thermal
plasma density at the central field line of the big loop is adopted to be g = 5 x 10? cn ™. This
model offers a very good match for the low-frequency part of the total power spectrum and
also reproduces the correct level of the spatially resolved data from the northern NoRH source
at 17 GHz and 34 GHz, although the flux density of the northern source at 17 GHz 1s slightly
underestimated. Similarly, the model shightly underestimates the flux density at 1 GHz, which
indicates that the real source has a slightly stronger nonuniformity than the model one (cf. 3D
models in Kuznetsov et al. 2011).
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Main Results

The data analysis and 3D modeling performed above in the paper suggest that all remark-
able properties of this event can be quantitatively understood within a model involving energy
release due to interaction of two non-potential magnetic flux tubes—one small and one big with
different twists (o &= —1.75 x 107 em~! and o ~ 1.16 x 10~ ecm~!, respectively). Electrons
are accelerated due to interaction (magnetic reconnection) between these two loops and then
divided m roughly equal numbers between these two loops. The electrons mjected mto the
small loop has a beam-like distribution directed towards the southern EUV kernel. so most of
them immediately precipitate into the southern footpoint of the small loop and produce the
HXR emission there. On the fly, they interact with the magnetic field of the loop, which 1s
reasonably strong in the small loop, varying from B ~ 600 G at the looptop up to B ~ 1200 G
at the footpoints. to produce the high-frequency microwave emission as observed. The total
number of fast electrons, Ny gop &= 1.35 X 10%*, needed to match the high-frequency part of the
microwave spectrum at the peak time requires a roughly double acceleration rate as compared
with that derived from the HXR thick-target model fit, ~ 1.2 x 10%% electron/s.



Main Results

The missing electrons, those not seen via HXR emission. must have escaped to the big
loop and be trapped there. To confirm this quantitatively., we note that at the decay phase
time frame 01:35:24.500 UT, which we analyzed in great detail to validate the model. the
total number of the trapped fast electron was found to be Ny = 5.7 X 10* to match the
microwave spectrum. This implies that at the peak time of the gradual microwave light curves
(01:35:05 UT). when the flux density at 3.75 GHz is twice bigger than at 01:35:24.500 U'T.
the number of the nonthermal electrons in the big loop must have been a factor of two larger.
Niior = 1.2 x 10%°. This peak number of the fast electrons accumulated in the big loop is to
be compared with the corresponding electron mjection mto the big loop. If we assume that the
electron njection rate mmto the big loop 1s equivalent to the electron loss rate derived from the
HXR thick-target spectral fit, the total number of electrons injected nto the big loop would be
Nipj ~ 6 x 10% electrons over the impulsive phase of the flare; which, taken at the face value, is
roughly five times larger than needed to supply the observed microwave emission from the big
loop. Given that the number of the nonthermal electrons in the big loop 1s determined using
a poorly defined low-enerey spectral index and low-energy cut-off in the big loop. we conclude
that the obtained electrons numbers are consistent with each other and so having a half of the
accelerated electrons or shightly less to escape towards the big loop 1s sufficient to supply it
with the required number of the fast electrons needed to match the low-frequency part of the

microwave spectrum.



Conclusions

In this study we identified a new “cold” solar flare whose properties and physical model
are substantially different from the cold flares reported so far (Bastian et al. 2007; Fleishman
et al. 2011; Masuda et al. 2013). In contrast to the known cold flares, which consisted of one
main loop. the described here 2002-03-10 cold flare 1s a vivid example of interaction between
two loops. The first of them, a small one, 1s responsible for the impulsive flare component,
while the bigger one 1s responsible for a more gradual nonthermal emission. Interestingly.
the electrons accelerated in the event divided roughly evenly between these two loops. which
made both loops comparably important in driving the thermal response in this event. For this
reason the GOES flare was substantially delayed relative to the impulsive peak in apparent
contradiction with the conventual Neupert effect. However, taking into account in situ coronal
losses of the fast electron component trapped i the big loop, we obtained a scenario fully
consistent with the plasma heating by the accelerated electrons—in a remarkable agreement
with spirit of the Neupert effect. The developed model 1s 1 quantitative agreement with
observations, including microwave mmaging and polarization. and naturally identifies the cause
of the suppressed chromospheric evaporation that is needed to mterpret the unusually weak
GOES response 1n this flare.



