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PROBA-3: the next in line

• PROBA-1 (2001 - to date): 
Earth observations 

• PROBA2 (2009 - to date): 
solar corona observations 
and space weather 

• PROBA-V (2013 - to date): 
monitoring of the 
worldwide vegetation 

• PROBA-3 (to be launched 
in 2019): a giant solar 
coronagraph to study the 
inner corona.

Spacecraft in the PROBA (PRoject for On-Board 
Autonomy) series of the ESA Directorate of Technical 
and Quality Management are small technology 
demonstration missions that also have scientific goals. 

PROBA-1 PROBA2

PROBA-V PROBA-3



Why do we need observations  
of the inner solar corona?

• A typical simulated solar wind acceleration profile shows that the solar wind becomes 
supersonic around 2-3 R⊙ from the center of the Sun.  

• Coronal mass ejections (CMEs) are also accelerated in this region.
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Imaging solar corona 
Between the low corona (typically 

observed by EUV imagers) and the 
high corona (typically observed by 
externally occulted coronagraphs), 
there is a region (“The Gap”) where 
observations are difficult to make. 
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Imaging solar corona 
Between the low corona (typically 

observed by EUV imagers) and the 
high corona (typically observed by 
externally occulted coronagraphs), 
there is a region (“The Gap”) where 
observations are difficult to make. 

An externally occulted coronagraph allows for a good 
straylight rejection. However, the inner edge of its 

field of view is limited by the telescope length.
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How to close The Gap?
Ground-based coronagraphs 
(a lot of straylight)

Internally occulted  
space-borne 
coronagraphs 
(a lot of straylight)

Wide field-of-view 
EUV imagers  
(very long 
exposure times)

Total solar eclipses 
(are rare and last only 
several minutes)



The PROBA-3 mission

Tentative launch date: end 2019

• The ultimate coronagraph: 
artificial total eclipse created 
using two spacecraft in flight 
formation. 

• A technological challenge: the 
distance between the spacecraft 
is about 150 m, and the accuracy 
of their positioning should be 
around a few mm!

PROBA-3 orbit 
duration: 19h 38min  
fine formation flying: 6h



Scientific payload of PROBA-3

ASPIICS  
(Association of Spacecraft for Polarimetric 
and Imaging Investigation of the Corona of 
the Sun) 
PI: Andrei Zhukov (ROB, Belgium) 

The telescope is placed on the main 
spacecraft, and the occulting disk is placed 
on the smaller spacecraft 150 m away.  
Together they form a giant coronagraph.

DARA  
(Digital Absolute RAdiometer) 
PI: Werner Schmutz (PMOD, Switzerland) 

DARA is a total solar irradiance monitor 
placed on the occulter spacecraft.



PROBA-3/ASPIICS optical design

• An externally occulted coronagraph with the occulter placed about 150 m in front 
of the entrance pupil. 

• The optical design of ASPIICS follows the principles of the classic Lyot 
coronagraph.

Filter  
wheel



Straylight

Straylight blocking in 
externally occulted 

coronagraphs 
(Howard et al. 2000).



• Using theoretical calculations (Fort et al. 1978, Lenskii 1981), one can show 
that ASPIICS will achieve a factor 5 better straylight rejection than other 
coronagraphs, while occulting to smaller radial distances.

Why do we need PROBA-3/ASPIICS?  
Better straylight rejection

distance between the external  
occulter and the entrance pupil (in metres)

straylight intensity at the centre 
of the entrance pupil
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PROBA-3/ASPIICS: the ultimate coronagraph!
• The formation flying will be maintained over 6 

hours in every 20-hour orbit: around a factor 100 
improvement in the duration of uninterrupted 
observations in comparison with a total eclipse. 

• PROBA-3 will observe the corona two orbits per 
week on average: around a factor 50 
improvement in the occurrence rate in 
comparison with a total eclipse.

• 6 spectral channels:  
• white light (5400-5700 Å),  
• 3 polarized white light,  
• Fe XIV passband at 5304 Å.  
• He I D3 passband at 5877 Å. 

• 2048x2048 pixels (2.8 arc sec per pixel) 

• 60 s nominal synoptic cadence  
• 2 s using a quarter of the field of view.

3 R⊙

1.08 R⊙

3 R⊙

field of view 1.08-3 R⊙



PROBA-3/ASPIICS in comparison  
with other coronagraphs

Inner edge of the field of view: 
ASPIICS - 1.08 R⊙

• The inner edge of the ASPIICS field of view 
(1.08 R⊙) will be lower than that of any other 
existing or planned space coronagraph.  

• ASPIICS will therefore cover The Gap 
between the typical fields of view of EUV 
imagers and externally occulted coronagraphs! 

• ASPIICS straylight rejection will be at least a 
factor 5 better than that of other space 
coronagraphs, even if ASPIICS occults down 
to lower heights. 

• The spatial resolution of ASPIICS will be at 
least 3.5 times better than the resolution of 
other coronagraphs. 
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• The top-level scientific objectives of ASPIICS are: 

1. Understanding the physical processes that govern the 
quiescent solar corona by answering the following questions: 

• What is the nature of the solar corona on different scales? 
• What processes contribute to the heating of the corona? 
• What processes contribute to the solar wind acceleration? 

2. Understanding the physical processes that lead to CMEs and 
determine space weather by answering the following questions: 

• What is the nature of the structures that form the CME? 
• How do CMEs erupt and accelerate in the low corona? 
• What is the connection between CMEs and active processes close to 

the solar surface? 
• Where and how can a CME drive a shock in the low corona?

PROBA-3/ASPIICS scientific objectives



Coronal structuring and dynamics

?

Corona observed  
by PROBA-3/ASPIICS

MHD model  
of the coronal magnetic field

Calculated coronal 
brightness

• The magnetic field plays a dominant role in the structuring and dynamics of coronal 
plasma. However, the coronal magnetic field is not routinely measured but is 
extrapolated from photospheric magnetograms (often not very successfully). 

• The crucial transition between closed-field regions (magnetic field dominated) and open-
field regions (solar wind dominated) occurs in the Gap between the low and high corona.  

• PROBA-3/ASPIICS will measure the structuring and dynamics of the solar corona and 
constrain models of the coronal magnetic field.



Origin of the slow solar wind
• The origin of the slow solar wind is still debated, 

mainly due to its non-stationary, inhomogeneous 
character. 

• Dynamic processes at the streamer cusps are 
considered to be a viable mechanism to produce 
the slow solar wind.  

• However, the cusp region is very difficult to observe 
as it is situated in The Gap between the low and 
high corona.
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each blob 
has SNR ~ 3

STEREO
COR1

SOHO 
LASCO C2

slow solar wind 
blob seen by 
LASCO C2

each blob  
has SNR ~ 8

Origin of the slow solar wind

(Sheeley et al. 1997)(Jones & Davila 2009)
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A discrepancy between measurements 
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Origin of the slow solar wind

• PROBA-3/ASPIICS, with its high signal-to-noise ratio (SNR ~ 20), will allow us to 
investigate small-scale dynamic phenomena at the streamer cusps and provide 
precise measurements of the early phase of the slow solar wind acceleration.

(Sheeley et al. 1997)(Jones & Davila 2009)



CME onset and acceleration

torus 
instability

magnetic 
breakout

• The CME initiation mechanism is still not clear.  

• Distinguishing between different proposed mechanisms requires observations of 
the CME initiation process in the inner corona.  

• PROBA-3/ASPIICS will measure the CME kinematics in the inner corona and 
observe in detail the coronal restructuring during CMEs. 

(Karpen et al. 2012)
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Origin of shock waves in the inner corona

1.0 R⊙

Coronal shock 
waves can be 
observed by 
coronagraphs in 
white light.

coronal shock wave 
seen as type II  
radio emission

• The origin of coronal shock waves is still 
debated, with flare-related (blast wave) and 
CME-related (piston-driven wave) mechanisms 
proposed. 

• Ground-based radio observations of type II 
bursts show that shocks often form in the inner 
corona, namely in the Gap.  

• PROBA-3/ASPIICS will observe the CME and 
shock dynamics in The Gap providing us with 
conclusive evidence for the origin of coronal 
shock waves observed concurrently by ground-
based radio instrumentation.

(Sheeley et al. 2000)



Summary

• PROBA-3 will test formation flying technologies that can be used by future ESA 
missions.  

• PROBA-3/ASPIICS will be a significant advance from previous, current, and 
planned solar coronagraphs.  

• Due to the unique telescope to occulter separation (around 150 m), ASPIICS will 
be able to observe the inner corona as close to the solar centre as 1.08 R⊙ in 
low straylight conditions.  

• PROBA-3/ASPIICS will fill The Gap between the low corona (typically observed 
by EUV imagers) and the high corona (typically observed by externally occulted 
coronagraphs). 

• PROBA-3/ASPIICS observations will be crucial for solving several outstanding 
problems in solar and heliospheric physics:  

• structure and dynamics of the magnetized solar corona,  
• sources of the slow solar wind,  
• onset and early acceleration of CMEs, 
• origin of coronal shocks waves. 


