The Whys and Hows of Solar Eruption Prediction

Manolis K. Georgoulis, RCAAM of the Academy of Athens

SolFER Colloquium Solar Physics Seminars of Global Reach

May 20, 2022

O٢	H٢	ł۷	N
<u> </u>			

Outline

- **Solar Eruption Occurrence: the Whys**
 - The seeds for understanding
 - Flares, CMEs, SEP events and their tantalizing triggering
 - The 'point of no return' in eruptive solar active regions
 - Repercussions of solar eruptions and the need for forecasting

Solar Eruption Prediction: the Hows

- Forecast utilizing a theory analog
- Data, model and performance verification
- Keeping it modular and self-consistent: 'horizontal' and 'vertical' expansion
- The need for an osmosis of expertise
- Conclusion

Manolis K. Georgoulis

Solar flares: magnetically driven instabilities

Solar flare (American Heritage Dictionary): a sudden eruption of magnetic energy released on or near the surface of the Sun, usually associated with sunspots and accompanied by bursts of electromagnetic radiation and particles

GOES X1.3 flare on March 30, 2022 @ 17:21 — 17:46 UT

Credit: NASA Scientific Visualization Studio

20 May 2022

• A reservoir of magnetic energy: slow build-up; fast release

$$\frac{1}{8\pi} \int_{V_{flare}} \mathbf{B}_{pre} \cdot \mathbf{B}_{pre} \, dV = \frac{1}{8\pi} \int_{V_{flare}} \mathbf{B}_{post} \cdot \mathbf{B}_{post} \, dV + \mathbf{B}_{flare}$$

$$V_{flare} < V_{corona} \qquad \mathcal{E} \equiv \{heat; emission; acceleral \\ \mathcal{E}_{total} = \frac{1}{8\pi} \int_{V} \mathbf{B}_{vacuum} \cdot \mathbf{B}_{vacuum} \, dV + \frac{1}{2c} \int_{V} \mathbf{A}_{cur} \cdot \mathbf{J} \, dV$$

$$\mathbf{B}_{total} = \mathbf{B}_{vacuum} + \mathbf{B}_{cur}$$

$$\nabla \times \mathbf{A}_{cur} = \mathbf{B}_{cur} \qquad \nabla \times \mathbf{B}_{cur} = \frac{4\pi}{J} \qquad \text{Sakurai, SoPh,}$$

Manolis K. Georgoulis

History of observations

Major flares are endemic in some coronal neighborhoods with high free energy accumulation — i.e., above sunspot complexes, known as solar active regions

20 May 2022

Severny, ARA&A, 1964

Flares occurring from magnetically complex solar regions with enhanced linear polarization signal, meaning strong <u>transverse</u> fields

Solar Flares: swarms of them during high solar activity intervals

Manolis K. Georgoulis

History and contemporary realization

Magnetic reconnection: the key to tap into coronal free energy

from Priest, 1994, in Plasma Astrophysics

Janvier et al., ApJ, 2014

The standard flare model in three dimensions

And then, the stunning statistics

Drake, SoPh, 1971 - 4028 bursts

Flare events follow well-defined power law statistics in terms of occurrence frequency vs. size

20 May 2022

A compilation of solar cycle 23 - without loss of generality

A first attempt to a statistical interpretation

Rosner & Vaiana, ApJ, 1978

Flares are:

- Stochastic relaxation (storage and release) processes
- Physically uncoupled / independent
- Brief, comparing to intermediate times between flares - Poisson distribution

Leading to a power-law occurrence frequency for flare energies

P(

Oh, the irony: instabilities in a self-organized or SOC system are stochastically triggered, hence hardly predictable

Manolis K. Georgoulis

$$P(t) = \bar{\nu}e^{\bar{\nu}t}$$

$$E) \sim (1 + \frac{E}{E_0})^{-\gamma}$$

Power-law distribution of flare size later attributed to the concept of selforganized criticality (1980s - 1990s) & the concept of marginal stability -Bak et al.

Credit: Christensen & Moloney (2005)

Energy avalanches and the statistical flare

20 May 2022

Manolis K. Georgoulis

The "solar flare myth" in solar — terrestrial relations

20 May 2022

'[flares dominate] ... the popular perception of the relation between solar activity and interplanetary and geomagnetic events ... Yet there is good evidence that this paradigm is wrong ... this central role is given to events known as coronal mass ejections', Gosling, JGR, 1993

'The "Solar Flare Myth" ... is a

misunderstanding ... just for this reason the term "eruptive flare" has been introduced for all solar active phenomena ... resulting in a CME', Svestka, SoPh, 1995

ACADEMY

Coronal mass ejections (CMEs)

Coronal mass ejection (American Heritage Dictionary): a massive, bubble-shaped burst of plasma expanding outward from the Sun's corona, in which large amounts of superheated particles at emitted at nearly the speed of light

20 May 2022

- Quiet-Sun CMEs are slower than active region CMEs

Manolis K. Georgoulis

ACADEMY OF ATHENS

What does it take for an 'eruptive flare'?

20 May 2022

- Among a vast body of literature, one in principle has:
 - A strong, flux-massive magnetic polarity inversion line
 - A sheared magnetic arcade and/or a magnetic flux rope extending above the PIL
- Many different mechanisms: ullet
 - Tether cutting
 - Catastrophe (uncontained instability)
 - Kink instability
 - Torus instability
 - Breakout
 - Lorentz 'hoop' force

for reviews, see Forbes 2000; Klimchuk 2001; Mikic & Lee 2006; Forbes et al. 2006; Chen 2011; Aulanier 2014; Schmieder et al., 2015; Cheng et al., 2017; Green et al., 2018; Toriumi & Wang, 2019; Patsourakos et al., 2020

An emerging paradigm: time dependence

"Our key conclusion is that the differentiation of pre-eruptive configurations in terms of SMAs and MFRs seems artificial. Both observations and modeling can be made consistent if the pre-eruptive configuration exists in a hybrid state that is continuously evolving from an SMA to an MFR. Thus, the 'dominant' nature of a given configuration will largely depend on its evolutionary stage (SMA-like early on, MFR-like near the eruption)", Patsourakos et al., SSR, 2020

Resistive formation (i.e., via a confined flare) of a hot, pre-eruption flux rope

Patsourakos et al., ApJ, 2013

20 May 2022

Manolis K. Georgoulis

$$\mathcal{H} = (twist + writhe) \Phi^2 + \mathcal{H}_{mutual}$$

Bringing magnetic helicity into the picture, in relation to PILs

- Velocity and magnetic shear develops invariably along a strong (i.e., flux-massive) PIL
- Shear seems to be due to the Lorentz tension force along the strong PILs not so along well-separated ones

Georgoulis et al., ApJ, 2012

Azimuthal component of the Lorentz force:

$$F_{\phi} = \frac{B_n}{4\pi} \left(-\frac{1}{r} \frac{\partial B_n}{\partial \phi} + \frac{\partial B_{\phi}}{\partial n} \right)$$

20 May 2022

 $F_{\phi} \neq 0$

• If field strength along the PIL is above the equipartition value in the photosphere, then this Lorentz force can move the otherwise line-tied magnetic field and cause shear

- Shear gives rise to confined \bullet reconnection along the PIL, converting mutual to self magnetic helicity, hence causing a helical pre-eruption flux rope
- Confined reconnection releases energy and relaxes mutual helicity but does not change the roughly conserved total magnetic helicity, hence increasing its self-term

More helical active regions are more likely to erupt

Heuristic active region evolution and the point of no return Continuing as needed

NOAA AR 12673, Sep 2017

The majority of active regions do not make it past the first two steps. The third step is a 'point of no return' for eruptions

However, there's more than flares: eruptive flares (i.e., CMEs); SEPs

Manolis K. Georgoulis

ACADEMY

Putting it all together : heliospheric space weather

Source: NASA Scientific Visualization Studio

20 May 2022

No directionality in flares (i.e., photons), but a clear directionality in CMEs and SEP events

A tangled, intertwined evolution

Manolis K. Georgoulis

Flare

ACADEMY

Repercussions of intense / extreme space weather : technology

Source: Severe Space Weather Events: Understanding Societal and Economic Impacts, NAS Press (2008)

Nonlinearly interconnected societal infrastructures. If an infrastructure goes down, others will be affected virtually instantly in a hardly predictable manner.

For example, a significant GPS disruption may not allow you to withdraw cash from an ATM because the ATM itself will not be able to verify its position, hence will not 'know' whether it is where it should be...

For projections of socio-economic impact, see Oughton et al., SWx, 2017; RiskAn, 2019; Eastwood et al., RiskAn, 2017; Riley et al., SSR, 2017 and others

Manolis K. Georgoulis

Repercussions of intense / extreme space weather : biological

ISS extravehicular activities (present) Lunar outposts / moonvilage (near future)

Space travel (future)

Martian outposts (future)

20 May 2022

Predicting solar weather: the undertaking

20 May 2022

Capacity increased by ~7 orders of magnitude within 40 years!

Manolis K. Georgoulis

Conventional statistical treatment (non-exhaustive)

The objective: a boolean (YES/NO) or occurrence probability (0 < P < 1) of a given forecast event

Binary Prediction

- Issuing a YES or a NO
- Doing this many times \bullet
- Checking how you have done ullet

Probabilistic Prediction

- Issuing $P \in (0,1)$
- Doing this many times
- Checking how you have done

First systematic flare prediction methods

Poisson flare distribution:

probability

McIntosh, SoPh, 1990

Flare occurrence probability vs. McIntosh sunspot Class D and Types thereof - any lead time (no 24 hours assigned)

 $P_{\mu}(N) = \frac{\mu^{N}}{N!}e^{-\mu}$

 $-\mu$: mean flare occurrence rate — N : numbers of flares

Varying μ for different sunspot classes for N = 1, one obtains a 24-hour flare

Gallagher et al., SoPh, 2002

24-hour flare probabilities per McIntosh Class, assuming Poisson distribution of flare occurrence

- C		-
		_
		-
		_
		-
		second 1
	Н	
	_	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	
	k	

Conventional statistical treatment (non-exhaustive)

2

Discriminant Coordinate

-6

The objective: distinguish flaring from non-flaring active region distributions

Bayes' analysis

Bayesian Inference:

$$P(H|E) = \frac{P(E|H) \times P(H)}{P(E)}$$

Laplace's rule of succession:

$$P(F|p_{thres}) = \frac{(F+1)|_{p_{thres}}}{(N+2)|_{p_{thres}}}$$

20 May 2022

Manolis K. Georgoulis

Credit: towardsdatascience.com

... plus other means of regression, extrapolation or classification, including linear or nonlinear models

Some initial results, far from ideal

Leka & Barnes, ApJ, 2007

Two-variable discriminant analysis and function for different flare classes

20 May 2022

Objective: distinguish flaring from non-flaring active region populations

Georgoulis & Rust, ApJL, 2007

Single parameter using Laplace's rule of succession

A top-level concept from data science, adapted for flares

Adapted from stats.stackexchange.com

Exploratory

Which predictive (flare and more) features can also be used for CME / SEP forecasting?

Statistics

Are photospheric magnetic field metadata related to flares?

Confirmatory

Statistical treatment

Machine learning seems to be a natural treatment for forecasting tasks

ACADEMY

Data Mining: Machine Learning

<u>A definition: Machine learning is a natural</u> outgrowth of the intersection of Computer Science and Statistics that seeks to answer the following question:

'How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?'

Tom M. Mitchell's 'The Discipline of Machine Learning' Supervised / Unsupervised / Hybrid (Carnegie Mellon U., 2006)

Support Vector Machines

Multi-Layer Perceptron

Random Forests

Manolis K. Georgoulis

Credit: paolaelefante.com

Data Mining: Deep Learning

A definition: Deep learning is a particular kind of machine learning that achieves great power and flexibility by representing the world as a nested hierarchy of concepts, with each concept defined in relation to simpler concepts, and more abstract representations computed in terms of less abstract ones.

Goodfellow, Bengio & Courville 'Deep *Learning*' (MIT Press, 2016) Unsupervised, hard to interpret

Why Deep Learning?

How to: a bigger picture emerges

A theory analog:

- To test the theory (the hypothesis-based idea), one needs:
 - ML / DL-ready data (curated; preprocessed)
 - The ML / DL (or pure statistical) model to feed the data to
 - Verification at three different levels:
 Data verification
 - o Model verification
 - o Performance verification (validation)

For Forecasting Performance

 Interpretation of the performance, via parameter (i.e. predictor) ranking

Why does it work?

Data verification via benchmark datasets: train & test on identical conditions

FLARE CAST

Georgoulis et al., JSWSC, 2021

Numbers of verified GOES flares:

- C-class: 5020
- * M-class: 502
- * X-class: 35

Accessible at FLARECAST property database: https://api.flarecast.eu/property/ui

 Space Weather Analytics for Solar Flares (SWAN-SF) (definitive SDO / HMI SHARPs)

Accessible at Harvard Dataverse: <u>https://bit.ly/3wiHBli</u>

ACADEMY

Performance verification: know the nature of your data

Name

2×2 contingency table

20 May 2022

Manolis K. Georgoulis

	Notation	Formula
cy	ACC	$\frac{\text{TP+TN}}{N}$
larm ratio	FAR	FP TP+FP
	BIAS	$\frac{\text{TP+FP}}{\text{TP+FN}}$
score	TS	$\frac{\text{TP}}{\text{TP+FN+FP}}$
ble threat score	ETS	$\frac{\text{TP}-R_{\text{ETS}}}{\text{TP}+\text{FN}+\text{FP}-R_{\text{ETS}}}$
		using $R_{\text{ETS}} = \frac{(\text{TP}+\text{FN})(\text{TP}+\text{FP})}{N}$
ility of detection	POD	$\frac{\text{TP}}{\text{TP+FN}}$
ility of false detection	POFD	$\frac{FP}{FP+TN}$
atio	OR	$\frac{\text{TP} \cdot \text{TN}}{\text{FN} \cdot \text{FP}}$
atio skill score	ORSS	$\frac{(\text{TP} \cdot \text{TN}) - (\text{FN} \cdot \text{FP})}{(\text{TP} \cdot \text{TN}) + (\text{FN} \cdot \text{FP})}$
e skill score	HSS	$\frac{\text{TP+TN}-R_{\text{HSS}}}{N-R_{\text{HSS}}}$
		using $R_{\text{HSS}} = \frac{(\text{TP+FN})(\text{TP+FP}) + (\text{TN+FN})(\text{TN+FP})}{N}$
cill statistic	TSS	POD – POFD
etric extremal dependence index	SEDI	$\frac{\log(\text{POFD}) - \log(\text{POD}) - \log(1 - \text{POFD}) + \log(1 - \text{POD})}{\log(\text{POFD}) + \log(\text{POD}) + \log(1 - \text{POFD}) + \log(1 - \text{POD})}$
nan's discriminant	AD	$\frac{TN-FN}{FP+TN}$ if $(TP + FN) > (FP + TN)$
		$\frac{TP-FP}{FN+TP}$ if $(TP + FN) < (FP + TN)$

Performance verification: know the nature of your data

One should always experiment on the efficiency of performance verification metrics and compare in controlled conditions

Manolis K. Georgoulis

- Class-imbalance: rare events; $TN >> \{TP, FP, FN\}$
- $ACC = \frac{TP + TN}{TP + TN + FP + FN} \simeq 1$ • Accuracy is practically useless
- $TSS = \frac{TP}{TP + FN} \frac{FP}{FP + TN}$ TSS is largely immune
- HSS and FI-score are largely not immune

 $HSS = \frac{TP + TN - R_{HSS}}{TP + FN + FP + FN - R_{HSS}}$ $R_{HSS} = \frac{(TP + FN)(TP + FP) + (TN + FN)(TN + FP)}{TP + FP + TN + FN}$

 $=\frac{2TP}{2TP+FP+FN}$

For extreme class imbalance, namely $TN \simeq TP + FP + TN + FN$ $HSS \simeq F1$

Keeping it modular and expandable: an example of 'horizontal' expansion

No	Source ID	Time stamp	Properties' vector	Event
I	ID no.	UT	$ec{P} = \{P_1, P_2,, P_N\}$	_
2	ID no.	UT	$ec{P} = \{P_1, P_2,, P_N\}$	+
k				

- Number of rows: k
- Number of predictors: N

Manolis K. Georgoulis

'Horizontally' expanded dataset

No	Source ID	Time stamp	Properties' vector	Even
I	ID no.	UT	$ec{P} = \{\!P_1,\!P_2,\!,P_{N'}\}$	_
2	ID no.	UT	$ec{P} = \{P_1, P_2,, P_{N'}\}$	+
k'				

- Number of rows k' > k
- Number of predictors: N' > N

In this respect one adds more sources and / or more predictors to improve statistics for the same problem

Keeping it modular and expandable: an example of 'vertical' expansion

No	Source ID	Time stamp	Properties	Event
	ID no.	UT	$ec{P} = \{P_1, P_2,, P_N\}$	_
2	ID no.	UT	$ec{P} = \{P_1, P_2,, P_N\}$	+
k				

- Number of rows: k
- Number of predictors: N

- Number of rows: k
- Number of predictors: N

Manolis K. Georgoulis

No

2

K

In this case one adds extra column(s) to train and test the model on the initial and additional event(s)

'Vertically' expanded dataset

ource ID	Time stamp	Properties	Event	Event association with other event
ID no.	UT	$ec{P} = \{P_1, P_2,, P_N\}$	·	_
ID no.	UT	$ec{P} = \{P_1, P_2,, P_N\}$	+	YES/NO
		• • •		

Consistency is important: from flares ...

Flare							
Date	UTime	Class	AR	Location			
2003-Nov-2	17:03	X8.3	10486	S17 W63			
2003-Nov-4	19:29	X17.4	10486	S17 W90			
2004-Jul-25	14:19	M1.1	10652	N08 W35			
2004-Sep-12	00:56	M4.8	10672	N04 E42			
2004-Sep-19	16:46	M1.9	10672	N06 W59			
2004-Nov-1	03:04	M1.1	10691	N13 W42			
2004-Nov-7	15:42	X2.0	10696	N08 W18			
2004-Nov-10	01:59	X2.5	10696	N13 W50			
2005-Jan-15	05:54	M8.6	10720	N13 W04			
2005-Jan-15	22:25	X2.6	10720	N13 W17			
2005-Jan-17	06:59	X3.8	10720	N13 W30			
2005-Jan-20	06:36	X7.1	10720	N14 W70			
2005-May-13	16:13	M8.0	10759	N12 E10			
2005-Jun-16	20:01	M4.0	10775	N09 W90			
2005-Jul-13	14:39	M5.2	10786	N17 W90			
2005-Jul-17	12:57	_	10789	_			
_	_	_	_	_			
2005-Aug-22	16:46	M5.6	10798	S10 W60			
2005-Sep-7	17:17	X17	10808	S10 E90			
2005-Sep-13	19:19	X1.5	10808	S11 E05			
2006-Dec-5	10:18	X9.0	10930	S06 E90			
2006-Dec-13	02:14	X3.4	10930	S05 W23			

Georgoulis et al., JSWSC, 2018

For brevity, the Table omits the vector of predictors and includes only positivesample (i.e., flare) events

...to eruptive (i.e., CME-associated) flares + SEP events

IDs				Flare					CME		
		Date	UTime	Class	AR	Location	Date	UTime	Position angle (°)	Speed (km/s)	Shock
I1		2003-Nov-2	17:03	X8.3	10486	S17 W63	2003-Nov-2	17:15	Halo	2554-2598	Y
I2		2003-Nov-4	19:29	X17.4	10486	S17 W90	2003-Nov-4	19:38	Halo	2657-3284	Y
13		2004-Jul-25	14:19	M1.1	10652	N08 W35	2004-Jul-25	14:32	Halo	1333-1366	Y
I4		2004-Sep-12	00:56	M4.8	10672	N04 E42	2004-Sep-12	00:21	Halo	1328-1484	Y
15		2004-Sep-19	16:46	M1.9	10672	N06 W59		_	99	365	Y
I6	R1	2004-Nov-1	03:04	M1.1	10691	N13 W42	2004-Nov-1	05:25	266	720-925	Y
I7		2004-Nov-7	15:42	X2.0	10696	N08 W18	2004-Nov-7	16:16	Halo	1696-1759	Y
18	R2	2004-Nov-10	01:59	X2.5	10696	N13 W50	2004-Nov-10	02:05	Halo	3142-3387	Y
I9	R3	2005-Jan-15	05:54	M8.6	10720	N13 W04	2005-Jan-15	05:57	Halo	1926-2049	Y
I10	R4	2005-Jan-15	22:25	X2.6	10720	N13 W17	2005-Jan-15	22:36	Halo	2596-2861	Y
I11	R5	2005-Jan-17	06:59	X3.8	10720	N13 W30	2005-Jan-17	09:00	Halo	2094	Y
I12	R6	2005-Jan-20	06:36	X7.1	10720	N14 W70	2005-Jan-20	05:55	Halo	882-940	Y
I13	R7	2005-May-13	16:13	M8.0	10759	N12 E10	2005-May-13	16:40	Halo	1689	Y
I14	R8	2005-Jun-16	20:01	M4.0	10775	N09 W90	_	_	_	_	Y
I15	R9	2005-Jul-13	14:39	M5.2	10786	N17 W90	2005-Jul-13	14:04	Halo	1423	Y
I16		2005-Jul-17	12:57	_	10789	_	2005-Jul-17	11:11	Halo	1527-1814	Y
I17	R10	_	_	_	_	_	2005-Jul-26	04:11	Halo	1246-1458	?
I18	R11	2005-Aug-22	16:46	M5.6	10798	S10 W60	2005-Aug-22	17:00	Halo	2378-2612	Y
I19	R12	2005-Sep-7	17:17	X17	10808	S10 E90	_ 0	_	_	_	Y
I20	R13	2005-Sep-13	19:19	X1.5	10808	S11 E05	2005-Sep-13	19:36	Halo	1866-1915	Y
I21	R14	2006-Dec-5	10:18	X9.0	10930	S06 E90		_	_	_	Y
122		2006-Dec-13	02:14	X3.4	10930	S05 W23	2006-Dec-13	02:18	Halo	1622-1774	Y

Georgoulis et al., JSWSC, 2018

For brevity, the Table omits the vector of predictors and includes only positivesample (i.e., flare) events

Now the table relates flares to CME information, if any

Event rarity, from flares, to CMEs to SEP events

Papaioannou et al., JSWSC, 2016

Manolis K. Georgoulis

Period: 04/1997 — 11/2017

- 23,129 flares, any size Ο
- 29,390 CMEs, any properies Ο
- 206 SEP events 0

Overall flare and SEP association regardless of heliographic location:

C-class flares: **1**:634

□ M-class flares: 1:24

□ X-class flares: 1:3

Overall CME and SEP association regardless of heliographic location:

Non-halo CMEs: 1:630

G Fast CMEs (>750 km/s): **1 : 12**

Halo CMEs: 1:6

G Fast & halo CMEs: **1 : 1.8**

Courtesy: GSU/DMLab

Physical clues to extend from flares, to CMEs, to SEP events

Falconer et al., Space Wea. 2011 Manolis K. Georgoulis

ACADEMY

An example of consistent flare / CME / SEP event prediction frameworks

In prep. at GSU's DMLab, in a collaboration with NASA / SRAG

20 May 2022

- Two-tier SEP event forecasting
- SEP Watch & SEP Warning tiers
- SEP Watch means conditions are ripe for a SEP-triggering solar eruption in at least one active region
- SEP Warning means an eruption (flare + CME) has occurred
- Self-consistent projected SEP properties in both foecasting (Watch) and nowcasting (Warning) tiers

The future: solar eruption forecasting beyond the Sun-Earth line

"L5 view" (~ 4.5 days later)

Twin L4 / L5 mission concept

Bemporad, Frontier, 2021

20 May 2022

Vourlidas, Space Wea., 2015

L5 mission concept

- L5 Carrington mission (UKSA)
- L5 Lagrange / Vigil mission (ESA)
- Potential NASA / NOAA move on a L4 mission (Posner et al., SWx, 2021)

Manolis K. Georgoulis

Conclusions

- exploration efforts
- from:
 - Data scientists: to bring the Big Data landscape to exploitable, verifiable ends
 - Computer scientists: to assess, implement & verify ML and DL forecasting models
 - Statisticians: to perform a meaningful performance verification
- Predicting solar eruptions goes all the way back to the Sun (photospheric magnetic fields)
- transition through different spatial and temporal scales

This is a wide open, interdisciplinary field. Things may change. The proposed course of action is but a possibility that seems to bear promise

• Firmly rooted in (solar) physics, we need to go a step further in order to benefit society and space

• This next step is too important to leave to solar physicists alone: an osmosis of expertise is needed

• Predicting solar eruptions takes self-consistency (horizontal / vertical expansion) and a seamless

