45mins

Magnetic Reconnection Rate & X-line Spread in Collisionless Plasmas

Yi-Hsin Liu Dartmouth

Collaborators: M. Hesse, Tak Chu. Li, Fan Guo, Xiaocan Li, W. Daughton, P. Cassak, M. Shay, Takuma Nakamura, Hui Li, Shan Wang, Li-Jen Chen et al. & MMS team

Outlines

- ★ Theory of Reconnection Rate; Past Present
- ★ X-line Orientation & Spread
- Magnetospheric Multiscale Mission (MMS)
 & Solar Observations of Reconnection Rates
- ★ Summary & Future (Unsolved questions)

Theory of Reconnection Rate Past — Present

Magnetic Diffusion (<1953) (i.e., Dungey, 1953)

• Becomes broader & broader over time.... No steady state...

• Too slow to explain the dissipation of magnetic energy in flares.

Magnetic tension & Alfvén waves

vibration of guitar strings

(Youtube: iphone 4 inside a guitar oscillation! VERY COOL!)

Sweet-Parker solution (1957)

- However, this model has a small δ/L , the rate is also too small to explain the time-scales in solar flare. (Parker 1963)
- To explain the flares, it requires R~ 0.1. (Parker 1973)

Petschek solution (1964)

Reconnection rate is much larger if
$$\ \ R\sim {\delta\over L}\uparrow$$

• However, this is not a self-consistent solution. (Sato & Hayashi, 79; Biskamp, 86)

*aspect ratio = aspect ratio of the diffusion region

Standing Dispersive Wave Picture - outflow is driven by magnetic tension force

Without the Hall term...

Alfvén wave

 $\omega \propto k$ $\rightarrow u_{out} \sim \omega/k \sim constant$

With the Hall term...

Whistler wave Kinetic Alfvén wave $(b_q \neq 0)$

 $(b_q = 0)$

 $\omega \propto k^2$ $\rightarrow u_{out} \sim \omega/k \propto k$

This seems to explain the difference of reconnections in resistive-MHD vs. Two-fluid/Hybrid/PIC models. (Birn+ 2001, Rogers+ 2001, Shay+ 1998, Mandt+ 1994)

QI: Why is the fast rate $R \sim 0.1$?

Q2: What is the localization mech.?

To be solved.

Q1: How to explain the fast reconnection rate value of order 0.1 in different systems? -- including PIC, hybrid, Hall-MHD, MHD with a localized resistivity, even MHD with numerical resistivity only...etc

*clue: can not be the diffusion-scale physics!

Two extreme limits...

It turns out that when $\,\delta/L
ightarrow 1$, $\,R
ightarrow 0$!

There must be a maximum in between these two limits~

The Key: Geometry & Force balance!

In the large diffusion region aspect ratio, $\,\delta/L\,$, limit

• Constraints imposed at the inflow & outflow regions (upper) bound the rate!

Back-of-the-envelope calculation... (Liu+ PRL 2017)

at the microscopic scale

- Fast rate $R \sim O(0.1)$ is an upper bound value.
- Reconnection tends to proceed near the most efficient state, which has $R \sim O(0.1)$.
- Nicely, rate is insensitive to δ/L near this state.

- Outflow speed approaches the speed of light!
- Although the rate normalized to microscopic quantities can go up to ~ O(I) (i.e., inflow speed can also approaches the speed of light), the rate normalized to the asymptotic quantities is still bounded by O(0.1).
- Clear "scale-separation" is seen! (i.e., B_{xm} vs. B_{x0})

Okay~ how about asymmetric reconnection?

Asymmetric Reconnection (e.g., Earth's magnetopause)

 $\rightarrow (\delta/L)_{eff} \sim \mathcal{O}(0.1)!$ but why?

Constraint at the inflow region (step1&2)

'm' indicates quantities at the microscopic scale

From the force-balance along the inflow,

$$B_{xmi} \simeq B_{xi} \frac{1 - S_i^2}{1 + S_i^2}$$
 slope of the upstream field lines
 $i = 1, 2$

• With a strong B asymmetry, the reduction of the reconnecting field primarily comes from the weak field side (sheath side).

Constraint at the outflow region (step 3)

From the momentum equation along the outflow,

$$V_{out,m} \simeq \sqrt{\frac{B_{xm1}B_{xm2}}{4\pi\bar{\rho}} - \frac{1}{\pi\bar{\rho}} \left(\frac{B_{xm1}B_{xm2}}{B_{xm1} + B_{xm2}}\right)^2 \left(\frac{\delta}{L}\right)^2}$$

$$\int_{\substack{tension\\Swisdak \& Drake, GRL (2007)\\Cassak \& Shay, PoP (2007)}} \frac{1}{\pi\bar{\rho}} \left(\frac{B_{xm1}B_{xm2}}{B_{xm1} + B_{xm2}}\right)^2 \left(\frac{\delta}{L}\right)^2}$$

- Outflow can be reduced in the large δ/L limit
 - -- but its effect is (B_{xm1}/B_{xm2}) times smaller with a strong B asymmetry.
 - -- thus the reduction will be negligible in this limit.

- The prediction is obtained by maximizing the reconnection rate as a function of the opening angle.
- This prediction agrees well with the Cassak-Shay scaling!
 - -- this further suggests that $(\delta/L)_{eff} \sim 0.1$ arises from constraints at the inflow & outflow.

Including thermal pressure effects...

(Xiaocan Li +, in preparation)

Orientation & Spread of the Reconnection X-line

Overview of 3D (less-turbulent) reconnection in PIC

• Check the orientation & spread of the reconnection x-line!

On the X-line Orientation....

Q: Which plane does reconnection "prefer"??

 Once preferred reconnection plane is determined, the x-line orientation is determined~

Measurement of the X-line orientation

• X-line develops with a well-defined orientation $\sim -13^{\circ}$.

What can companion 2D simulations tell us?

• This 2D vs 3D comparison suggests that the system tends to maximize the reconnection rate!

— other possibilities include maximizing outflow speed, energy density, tearing growth rate.....etc (Swisdak & Drake 2007; Schreier+2010; Hesse+ 2013; Liu+JGR 2015,2018)

On the X-line Spread...

Plausible spread speeds

$$v_{Xe} = \max\{v_{eg}, c_{Ag}\},\ v_{Xi} = \max\{v_{ig}, c_{Ag}\},\$$

(Sherpherd & Cassak 2012)

• X-line spread takes the maximum of "guide-field Alfvén" speed and "current carrier" speed.

Measuring the spread speed

$$b_g = 2, \ \delta_0 = 0.8d_i$$

• The spread speed is lower than the guide-field Alfvén speed (= $2V_{A0}$ in this case)!

The current sheet thickness δ_0 matters...

The tearing growth rate

$$\gamma_{max}/\Omega_{ci} \propto \frac{1}{(\delta_0/d_i)^3 b_g}$$

strongly depends on the thickness....

We found... Alfvénic spread occurs when

 $\gamma_{max}/\Omega_{ci}\gtrsim \mathcal{O}(1)$

Hypotheses

Reconn. is easy to onset if tearing time-scale $(1/\gamma_{max})$ is shorter than the plasma convection time-scale (τ_A) within the diffusion region.... (e.g. Pucci & Velli 2014)

$$\gamma_{max}\tau_A \simeq \gamma_{max} d_i / V_A \simeq \gamma_{max} / \Omega_{ci} \gtrsim \mathcal{O}(1)$$

• The efficiency of continuous-reconnection-onset (at two ends of the x-line) determines whether the x-line spreads in Alfvénic speed, or sub-Alfvénic speed.

Alfvénic Spread can be difficult...

• Because it requires a very thin current sheet $\delta_0 \leq 0.2d_i$ to begin with ~~

Solar Observations

2011 Sep. 13

- Bi-directional spread, Parallel (w.r.t. the current) spread, Anti-parallel spread are all possible in flare loop observation.
- Will be exciting to learn more details!

Magnetospheric Multiscale Mission (MMS)& Solar Observations of Reconnection Rates

MMS Observations 7/11 event

Measuring E_M

—Tried 14 different LMN coordinate systems

R~0.18 ± 0.035

$Measuring \ E_M$

— Took advantage of the close comparison

with 2D PIC simulations~

- Microwave imaging from *Expanded Owens Valley Solar Array* (EOVSA)
- Measuring the magnetic field strength & inflow speed
- E=VxB, super-Dreiser regime!
- the normalized rate R~ 0.01

Solar Observations

2005 May 13

(Jiong Qiu+ APJ 2017)

- UV-1600 Å imaging from TRACE.
- Measuring the perpendicular expansion of ribbon
- how fast reconnected flux accumulates~
- the normalized rate R~ 0.01-0.1??

Solar Observations

2017 Sep. 10

- Microwave imaging from Expanded Owens Valley Solar Array (EOVSA)
- May be possible to infer the reconnection rate from magnetic energy decaying rate.?
- the normalized rate $R \sim ?$

MMS Observations

December 14, 2015 event: $B_g \sim 0.2$, $B_{L2}/B_{L1} \sim 1.3$, $n_2/n_1 \sim 6.8$

- An uniform electric field over at least 8 electron skin depths corresponds to a normalized rate ~ 0.1.
- The rate of the October 16, 2015 event was estimated to be ~ 0.3. (Burch+ Science 2016)

MMS Observations

7/11 event

 $[LMN] \sim [XYZ]_{GSM}$

(Torbert+ Science 2018)

- Measuring the aspect ratio of EDR~ 0.1-0.2
- Using timing analysis to get L.
- Using current density to get δ .

Measuring the flux difference at separatrix to infer the reconnection rate remotely!

MMS Observations — new technique in measuring the rate

t=21.1 log₁₀(count+1) log10(count+1) 20-z=0.3d 20-z=0.2d ×20 م2/2 [√]2/2 $b = dB_x/dz$ $k = dE_z/dz$ -20 -20 -20 v /v 0 -20 v_v/v_A 0 -40 -40 log10(count+1) log10(count+1) 2.68 2.70 20 20 z=0.5d z=0.4 $\Delta v_{y} = \left[\left(-v_{y0} - \frac{ck}{b} \right)^{3/2} + \frac{3\pi}{4} (2n+1) \left(\frac{mc}{eb} \right)^{1/2} \frac{eE_{r}}{m} \right]^{2/3}$ AAA0 <^×0 $-\left[\left(-v_{y0}-\frac{ck}{b}\right)^{3/2}+\frac{3\pi}{4}(2n-1)\left(\frac{mc}{eb}\right)^{1/2}\frac{eE_r}{m}\right]^{2/3}.$ -20 -20 -20 v /v 0 -20 v /v 0 -40 -40 (Bessho+ GRL 2018)

• Inferring reconnection rate from particle distributions at the diffusion region.

- E_R accelerates electrons in the out-of-plane (-y) direction.
- --- R~ 0.22-0.28 for the 7/11 event.

Summary & future (unsolved questions)

 \star 0.1 is an upper bound value.

- ★ What is the primary localization mechanism?
 - Why is the geometry in uniform-resistivity MHD so different? (the only exception.?)
 - While a localization mechanism is needed for fast reconnection,
 different systems may have different localization mechanisms.

- ★ Turbulence!? if yes, how does it affect reconnection rate?
 - 3D rate in turbulent-reconnection appears to be similar to the 2D rate.

(Daughton+, PoP 2014, Le+ PoP, 2018)

- \star X-line orientation can be determined by maximizing the rate.
- ★ X-line spread can be dictated by the "Onset physics"
 - difficult to spread in Alfvénic speed if sheet thickness $\geq d_i$

(Li+ JGR 2020)

(Liu+ |GR 2018)

Backup slides

★ Turbulence!? if yes, how does it affect reconnection rate?

• 3D & 2D rates are similar~~~

• (my opinion) Tearing may provides the localization, enhancing the rate, but cannot explain the fast rate value ~ O(0.1).

After all, be careful about the periodic boundary ~~~

- Be careful, because the periodic boundary inside a small box can make everything turbulent quickly...
- Reconnection could be more laminar than we previously thought...?