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Theory of Reconnection Rate
Past — Present



Magnetic Diffusion (<1953)
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* Becomes broader & broader over time.... No steady state...
* Too slow to explain the dissipation of magnetic energy in flares.



Magnetic Reconnection

inflow

outflow outflow

Z field line acts like slingshot
L)X .
inflow
|. Inflow brings in magnetic flux (frozen-in)
2. Field lines break & reconnect (frozen-in is violated !!)

3. Reconnected field line shoots out plasma (frozen-in)
4. Pressure drop sucks in plasma inflow

|. Inflow brings in magnetic flux (frozen-in)
2.....

3. ...
A self-driven process!!!



Magnetic tension & Alfvén waves
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Sweet-Parker solution (1957)
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mass conservation:  y/. (nV) ~ 0 S Vi, L~V...0
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normalized reconnection rate — [|R = ~ —
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e However, this model has a small /L,
the rate is also too small to explain the time-scales in solar flare.

* To explain the flares, it requires R~ 0.1.



Petschek solution (1964)

SS
(slow shocks)

SS

0

Reconnection rate is much larger if R~ — 7

L

e However, this is not a self-consistent solution.

*aspect ratio = aspect ratio of the diffusion region



GEM Reconnection Challenge (2001)

Ohm’s Law in plasmas:

fast with R~0. |
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Standing Dispersive Wave Picture

— outflow is driven by magnetic tension force

Without the Hall term... With the Hall term...

Whistler wave (by = 0)

Alfvé
ven wave Kinetic Alfvén wave (b, # 0)

w X k o 12

— Ut ~ W/ k ~ constant
out / — Ugut ~ w/k < k

collapse B

— collapses back to a long
Sweet-Parker layer — stays opened!

® This seems to explain the difference of reconnections in
resistive-MHD vs. Two-fluid/Hybrid/PIC models.



GEM Reconnection Challenge (2001)
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However, electron-positron (PIC):
v v also fast with R~0. |
strong guide field limit (PIC): v Vv

QIl: Why is the fast rate R~ 0.1? Q2: What is the localization mech.?



To be solved.

Ql: How to explain the fast reconnection rate value of order 0.1

in different systems!?
-- including PIC, hybrid, Hall-MHD, MHD with a localized resistivity,
even MHD with numerical resistivity only...etc

*clue: can not be the diffusion-scale physics!



Two extreme limits. ..

|. In the small 5/L limit, Rwé/L%O

N

It turns out that when 6/L — 1, R — 0!

* There must be a maximum in between these two limits~



The Key: Geometry & Force balance!

In the large diffusion region aspect ratio, 5/L , limit .....
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e Constraints imposed at the inflow & outflow regions (upper) bound the rate!



Back-of-the-envelope calculation...
(Liu+ PRL 2017)
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(c) diffusion region By,

step3' analyze the force-balance at point 2
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Explanation of the fast rate ~ 0.1

-- Geometrical consideration!
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* Fast rate R~ O(0.1) is an upper bound value.
* Reconnection tends to proceed near the most efficient state, which has R ~ O(0.1).

* Nicely, rate is insensitive to O/L near this state.



Relativistic Reconnection
(e.g., Crab Nebula’s superflares)
2

B
2D PIC simulation o= * __ ~ 100
drnmc?
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(Liu+ PRL 2017,
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* Outflow speed approaches the speed of light!
* Although the rate normalized to microscopic quantities can go up to ~ O(l)

(i.e., inflow speed can also approaches the speed of light),
the rate normalized to the asymptotic quantities is still bounded by O(0.1).

* Clear “scale-separation” is seen! (i.e., Bxm vs. Bxo)



Okay~ how about asymmetric reconnection?



Asymmetric Reconnection
(e.g., Earth’s magnetopause)

Two-fluid simulations
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Cassak-Shay formula
Fe — 9 By Bo Vout 0 Vour — [B1Bs ( By + Bo )
¢S5 = B + B C L ef f where c 4 Bi1ps + Bapq

— (8/L) 4 ~ 0(0.1)! but why?




Constraint at the inflow region (step1&2)
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From the force-balance along the inflow,

1 — Si2 «—Slope of the upstream field lines

mei = Bxi
1+ 87

1= 1,2

* With a strong B asymmetry, the reduction of the reconnecting field
primarily comes from the weak field side (sheath side).



Constraint at the outflow region (step 3)

diffusion region Bym2 Vo
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From the momentum equation along the outflow,

V ~ -B:vml-me2 . 1 B:z:mlem2 2 é 2
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/ P

tension / magnetic pressure

Swisdak & Drake, GRL (2007)
Cassak & Shay, PoP (2007)

e Outflow can be reduced in '}:'i\e large &/L limit
-- but its effect is (Bxm1/Bxm2) times smaller with a strong B asymmetry.
-- thus the reduction will be negligible in this limit.



Predicted asymmetric reconnection rate (step 4)

E
Voo By(81) 2 Bam(51)Vout,m(S1) /¢
z1 Bz (0/L)eff ~0.1 is assumed.
() (b) Er/Ecs
1 0% T | 0* 2
! 11.9
11.8
é\] 105 é\] 11.7
> |02 = \\—l |02 | 1.6
I~ o ~
- 0 1.5
1.4
- -0.5 1.3
|00 . |00
104 10-2 109 104 102 10°
B:z:l/Ba:Q \ Ba:l/B:BQ \
symmetric limit symmetric limit

* The prediction is obtained by maximizing the reconnection rate as a
function of the opening angle.
* This prediction agrees well with the Cassak-Shay scaling!
-- this further suggests that (0/L)ett ~0.1 arises from constraints at the inflow & outflow.



Including thermal pressure effects...

diffusion

region
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Orientation & Spread
of the Reconnection X-line



Overview of 3D (less-turbulent) reconnection in PIC

mi/me=25 bg=1, asymmetric
256 x 256 x 24 di
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x/d,

® Check the orientation & spread of the reconnection x-line!



On the X-line Orientation.....



Q: Which plane does reconnection “prefer”??

(2) (b)

reconnection plane?

B2z, sphere side

-
YYYYY

Biz, sheath side

0 i
(c) )’ (d) reconnéction plane?_
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—
—

\
L‘\‘\Q Biz  sheath side
x ]

* Once preferred reconnection plane is determined,
the x-line orientation is determined~



Measurement of the X-line orientation
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X-line develops with a well-defined orientation ~ -13".



What can companion 2D simulations tell us?

2D oblique planes

C 0 ;m';

1
-l100 -50 0 50 100

* This 2D vs 3D comparison suggests that the system tends to maximize
the reconnection rate!

— other possibilities include maximizing outflow speed, energy density, tearing growth rate.....etc



y/d,

-100

On the X-line Spread...

t=8
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x/d,



Plausible spread speeds

Spreading in
the strong guide
field limit

Spreading in
the weak guide
field limit

_

VXe — max{veg,cAg},
Vxi — max{vig,cAg},

General
orientation

of Alfven waves
and currents ‘

e X-line spread takes the maximum of “guide-field Alfven” speed
and “current carrier”’ speed.



Measuring the spread speed
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* The spread speed is lower than the guide-field Alfven speed (=2Vao in this case)!
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The current sheet thickness o, matters...
7 max / N

The tearing growth rate 4

1 - Alfvénic o
[€2,; o " :

ymax

(5()/di)3bg

strongly depends on the thickness....

B sub-Alfvenic

We found... Alfvénic spread occurs when

/R, Z O(1)

ymax

**Hypotheses™* - - —@-
Reconn. 1s easy to onset if tearing time-scale (1/ymax) 1s shorter O 4 0.6 0.8

than the plasma convection time-scale (za ) within the diffusion 5 0 / d.
I

region....

YmaxTa = ymaxdi/ VA = ymax/ Qci Z @(1)

* The efficiency of continuous-reconnection-onset (at two ends of the x-line)
determines whether the x-line spreads in Alfvénic speed, or sub-Alfvenic speed.



Alfvenic Spread can be difficult...

With real mass ratio m,;,/m, = 1836

Ymax /()
10k 1
s E
o 0
/
/

0.6

50,/ d.

* Because it requires a very thin current sheet §, < 0.2d, to begin with ~~



Solar Observations

2011 Sep. 13
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® Bi-directional spread, Parallel (w.rt.the current) spread, Anti-parallel spread
are all possible in flare loop observation.
* Will be exciting to learn more details!



Magnetospheric Multiscale Mission (MMS)

& Solar Observations of Reconnection Rates
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MMS Observations

7/11 event

Measuring Em

—Tried |4 different LMN coordinate systems

(Vout=0.5Vaib) (Vout=Vaib)

R~0.18 + 0.035

Measuring Em

— Took advantage of the close comparison

with 2D PIC simulations~



Solar Observations
2017 Sep. 10

0 10 0 500 1,000 2 4 6 10 (Bin Chen+
X (Mm) Total B (G) E, (x1,000 Vm™) Nature 2020)

* Microwave imaging from Expanded Owens Valley Solar Array (EOVSA)
* Measuring the magnetic field strength & inflow speed

— E=VxB, super-Dreiser regime!

— the normalized rate R~ 0.0/



Solar Observations
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(Jiong Qiu+ APJ 2017)

 UV-1600 A imaging from TRACE.

* Measuring the perpendicular expansion of ribbon
— how fast reconnected flux accumulates~

— the normalized rate R~ 0.01-0.1??



Solar Observations

2017 Sep. 10
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* Microwave imaging from Expanded Owens Valley Solar Array (EOVSA)
* May be possible to infer the reconnection rate from magnetic energy decaying rate.!?

— the normalized rate R~ ?



MMS Observations

December 14,2015 event: B~ 0.2, BL2/BLi~1.3,n2/n1~6.8

MMS 1. MMS2. MMS3. MMS4.
L L S A
0 ;

"'4 N 1 | T | P _ :
0117: .800 .000 .200 .400 .600 .800 .000 .200

38 39 / N 40
B r Electrons upstream of EDR
" are frozen-in!

‘L 1 2
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® An uniform electric field over at least 8 electron skin depths
corresponds to a normalized rate ~ 0.1.
* The rate of the October 16,2015 event was estimated to be ~ 0.3.



Tailward exhaust VL <0

MMS Observations
7/11 event

Northern plasma sheet

Par./APar
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(Torbert+ Science 2018)

* Measuring the aspect ratio of EDR~ 0.1-0.2
— Using timing analysis to get L.
— Using current density to get o.



MMS Observations

— new technique 1n measuring the rate
f ty + At

X-line X-line
o e Lo comenes
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(Nakamura+ JGR 2018)
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convection

convection of the magnetic flux
respect to the probe

* Measuring the flux difference at separatrix to infer the reconnection rate remotely!



MMS Observations

— new technique 1n measuring the rate
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* Inferring reconnection rate from particle distributions at the diffusion region.

O s o w265

O oy oo w270

— Er accelerates electrons in the out-of-plane (-y) direction.

— R~ 0.22-0.28 for the 7/1 | event.



Summary & future (unsolved questions)
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* What is the primary localization mechanism?

. . . o . SEgy—— Y
— Why 1s the geometry in uniform-resistivity MHD so different? =
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(the only exception.?) e b 0 nr AW,
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— While a localization mechanism is needed for fast reconnection, N
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different systems may have different localization mechanisms.

* Turbulence!? 1f yes, how does it affect reconnection rate?

— 3D rate in turbulent-reconnection appears to be similar to the 2D rate.

* X-line orientation can be determined by maximizing the rate.

* X-line spread can be dictated by the “Onset physics™

— difficult to spread in Alfvénic speed if sheet thickness 2 d






Backup slides



* Turbulence!? if yes, how does 1t affect reconnection rate?
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® 3D & 2D rates are similar~~~



* Plasmoids (i.e., secondary tearing modes)

PIC with collisions

resistive-MHD when 1 is very small
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(Y.-M. Huang+ 2010, Loureiro+ 2007...)
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* (my opinion) Tearing may provides the localization, enhancing the rate,
but cannot explain the fast rate value ~ O(0.1).



A After all, be careful about the periodic boundary ~~~

mi/me=25
256 x 256 x 24 di A

i 1.5
0.6 1 0

H 0.4 0.5
0.2
0.0 1.0
-0.2 0.0

-1.0

-2.0

-100 -50 0 50 100

® Be careful, because the periodic boundary inside a small box can make
everything turbulent quickly...

® Reconnection could be more laminar than we previously thought...?



