

Solar flare energetics and X-ray diagnostics

Eduard Kontar School of Physics and Astronomy University of Glasgow, UK

In collaboration with N. L. S. Jeffrey, A.G. Emslie, N. H. Bian

Solar webinar

July 11, 2018

Solar eruptions and energetic particles

Energy ~2 10³² ergs

From Emslie et al, 2004, 2005

Solar corona T~10⁶ K => 0.1 keV per particle Flaring region T~4x10⁷ K => 3 keV per particle Flare volume 10²⁷ cm³ => (10⁴ km)³ Plasma density 10¹⁰ cm⁻³

Photons up to > 100 MeV Number of energetic electrons 10³⁶ per second Electron energies >10 MeV Proton energies >100 MeV

Large solar flare releases about 10³² ergs (about half energy in energetic electrons)

Sun et al, 2012, Aschwanden et al, 2016

But there is an order of magnitude uncertainties...

Standard model energetics

Magnetic Energy Turbulence/Fluctuating E field Acceleration/Heating **Electrons/Ions** Energy Deposition/Evaporation Radiation

Plasma turbulence plays an important role in virtually all key elements of standard solar flare model

X-rays and flare accelerated electrons

Motivation1:X-ray emission from typical flares

Photon Energy [kev]

Jniversity

Assuming isotropic electron distribution:

Photon flux spectrum

Mean electron flux spectrum

Normally collisional thick-target is used to estimate the mean electron flux spectrum:

 $I(\epsilon) = \frac{1}{4\pi R^2} \int_{\epsilon}^{\infty} \sigma(\epsilon, E) \langle nVF \rangle(E) dE$

$$\langle nVF \rangle(E) = \frac{E}{2K} \int_{E}^{\infty} AF_0(E_0) dE_0 \; .$$

Brown, 1971, Brown et al 2003

Injected or accelerated electron spectrum

Using spectroscopy (or imaging spectroscopy) we normally infer electron power or/and total rate above some energy or lower limit. We do not know the upper limit.

Can we better determine the lower energy cut-off and upper limits on power and injection rate?

Low-energy cut-off problem

Four uncertainty analysis methods from Ireland et al ApJ 2013

Warm and cold target models

The model from simulations

See Jeffrey et al ApJ 2015

To describe warm plasma environment we can use Fokker-Planck equation:

Finite temperature effects: e.g. Emslie, 2003, Galloway et al 2005, Jeffrey et al, 2014

The Model in equations

Integrating (twice) the kinetic equation one finds:

In a stationary state the number of electrons in the target is **balanced** between injection and diffusive escape of thermalized electrons:

$$\frac{3\sqrt{\pi}}{2K}\sqrt{\frac{kT}{E_{min}}}\dot{N} = \sqrt{\frac{8}{\pi m_e}}\frac{nN}{(kT)^{3/2}}$$

Integrating, one obtains the mean electron flux

WT fit and errors

From Kontar et al, submitted to ApJ 2018

Warm thick target and loop parameters

Conclusions

Fit Function Setup	. 🗆 🗙
Choose Fit Function Components and Set Parameters	
Choose: Isport-Single Power Low Ine-Gaussian	Add List
pledgi_nou-research data_eff() concerning of pledgi (Experies date) tempolate tempola	
1 Energy 4/- Verable Thermal 2Mr-Sum of two Verable Thermals v Value Plot Plot Units Fix v Photons Background Enor ✓ Residuals Refersh Fit RestAll Comp.⇒ PlotAll Fit Summary Accept⇒ Cencel	

Warm target effects play important role for solar flares.

Warm target model determines the low energy cut-off (~14% for the flare considered)

Provides the total number or injected electrons or the total injected power.

=> The energy partitioning can be studied

Extra slides....