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Non-self-consistent lagrangian methods
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Test-particle method
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Non-self-consistent lagrangian methods

Guiding-centre approximation
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Non-self-consistent lagrangian methods
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Full trajectory

- Need to resolve
Larmor radii

Guiding-centre
approximation

- Larmor radii need to be much
smaller than characteristic E &
B scales

- Larmor periods need to be
much smaller than typical E &
B variation times



Non-self-consistent lagrangian methods
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F1G. 1.—A Typical proton orbit in the current sheet of a two-ribbon flare. Inside the sheet the motion along the § and 7 axes is scaled down by a
factor 250, respectively, 500 for clanty of presentation. 0
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Fig. 2.—Typical trajectories of protons in the (X, Z)-plane with protons
entering from the top. The label **1” corresponds to the case B, < 0, while the
label “*2” corresponds to the case B, > 0.



Non-self-consistent lagrangian methods
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Fic. 2.—(a) Starting position of electrons crossing the R = Ry boundary within 1 s for B. = 10~ T and 7 =2.5x1072 s at secondary ¢ = w/4 and 57/4
footpoints (red ), ¢ = 37 /4 primary footpoint ( green), and ¢» = 77 /4 primary footpoint (blue). (b) Cartoon of field lines for an X-point field with finite B.. A positive
E. will have a component parallel to the magnetic field such that most electrons in regions 1 and 4 will be accelerated to the ¢ = 7n/4 footpoint.

Hamilton et al 2005



Non-self-consistent lagrangian methods
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Non-self-consistent lagrangian methods
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Figure 5. Distribution of protons and electrons with the energy >10 keV near the “footpoint” boundaries (|z| > 9.5 Lg).

Gordovskyy et al 2014




Non-self-consistent lagrangian methods

Non-self-consistency problem

- Method is valid if E
and jpart << jsys

part << Esys

Undersampling problem

- Limited number of test-particles causes
problems when the distribution function is small



Non-self-consistent lagrangian methods

Test-particles with collisions
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Self-consistent lagrangian methods

Particle-In-Cell method
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Self-consistent lagrangian methods

Particle-In-Cell method
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Self-consistent lagrangian methods

Maxwell’s Equations (Eulerean)
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Self-consistent lagrangian methods

Limitations of PIC method

Resolve Debye length

Resolve plasma frequency

Resolve Larmor radii and periods

Unrealistic ion/electron mass ratio



Self-consistent lagrangian methods

Limitations of PIC method

Resolve Debye length

Resolve plasma frequency

e Larmor radii and periods
Gyrokinetic or drift-kinetic PIC

Unrealistic ion/elec ass ratio



Self-consistent lagrangian methods

Limitations of PIC method

- Resolve Debye length Assume quasi-neutrality,
~ < solve Maxwell-Faraday and

Ampere for fields ??7?

~
~

- Resolve plasma frequency._

~

e Larmor radii and periods
Gyrokinetic or drift-kinetic PIC

- Unrealistic ion/elec ass ratio



Self-consistent lagrangian methods
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Figure 2. The electron out-of-plane current j.. at four
times (r=11.0, t = 14.0, t = 20.0 and ¢ = 24.0) from a run
with B, = 1.0 and other parameters as in Figure 1 but L, =
64.0. (a) Note the large island growing on each current layer
and the intense current layer driven at each of the x-lines.
(b—d) Note the formation, growth and merger of magnetic
islands is an ongoing process.

Drake, Swisdak & co 2005-
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FIG. 4: Time evolution of the spatial distribution of total
current density, j., in the X-Y plane at (a) t = 0, (b) 100,
(c) 170 and (d) 250 for a = 1.20. The total current density is
normalised by the initial value, jo = noevdo.

Tsiklauri & Haruki 2007
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FIG. 5: Time evolution of the spatial distribution of the out-
of-plane magnetic field, B., at (a) t = 0, (b) 100, (c) 170
and (d) 250 for @ = 1.20. The magnetic field intensity is
normalised by the initial value, Bo.
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Self-consistent eulerean methods

- Distribution function defined in the phase spacer, V

- Solve kinetic equation — conservation equation for the phase
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Eulerean methods

L ow-dimensional Vlasov-Maxwell methods

- Use of GCA (gyro-kinetic or drift-kinetic approaches) makes it
possible to get rid of one V dimension

- 1D3V and 1D2V models: beam propagation in magnetised
plasmas

- Assumptions about particle distribution in respect of velocity,
“Reduced kinetics” (Gordovskyy & Browning 2016 arxiv)



Eulerean methods
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Zharkova & Siversky 2011



Eulerean methods

Getting rid of evolving fields does not make the problem much
simpler.
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Fig. 11. Mean flux spectra of the electrons injected as a short impulse. The beam parameters are the same as in Fig. 10

Siversky & Zharkova 2009



Hybrid methods

- Aka “fluid-kinetic approaches”

- Only non-thermal part of plasma is treated using one of the
kinetic approaches, the rest is treated as a fluid

- Fluid electrons + kinetic ions
- Fluid plasma + small fraction of kinetic particles

- Particles are kinetic only in a part of the computational domain

- Etcetc



