

OVERVIEW

- Introduction
 - What is the chromosphere?
 - What do we observe?
 - What are the challenges?
- Numerical modelling General considerations
- Numerical models of the chromosphere
- The way forward in connection to ALMA

INTRODUCTION - WHAT IS THE CHROMOSPHERE?

- Literal definition from Greek "χρωμα" (color) and "σφαιρα" (ball):
 Coloured thin rim seen at solar eclipse.
 - Mainly Balmer $H\alpha$ line emission.
 - \rightarrow Chromosphere = Layer where H α emission originates

INTRODUCTION - WHAT IS THE CHROMOSPHERE?

• Definition based on average temperature stratification:

Atmospheric layer

INTRODUCTION - WHAT IS THE CHROMOSPHERE?

Definition based on physical properties:

Atmospheric layer out of radiative equilibrium with hydrogen mostly in neutral form (i.e. neutral - weakly ionized)

- Solar atmosphere
 highly dynamic
 intermittent
 dynamically coupled
- Structured on large range of spatial scales, down to (at least) 0.1 arcsec
- The Sun is dynamic on short timescales (down to seconds)
- Plethora of processes.
- Great plasma physics "laboratory"

Courtesy: L. Rouppe van der Voort

Ca II 854.2 nm Line center

Highly dynamic. Complicated structure

RECENT HIGH-RESOLUTION OBSERVATIONS

Hα 656.3 nm Line center

Highly dynamic.
Complicated
structure.
Magnetic fields
are clearly
important.

S. WEDEMEYER - THE DYNAMIC CHROMOSPHERE

RECENT HIGH-RESOLUTION OBSERVATIONS

- Combining information from different spectral indicators
- Qualitative change with height in the chromosphere

SST / CHROMIS Chromosphere Courtesy: Henriques, Jafarzadeh Height Photosphere

NOT a stack of flat layers!

RECENT HIGH-RESOLUTION OBSERVATIONS

- Partially opaque / transparent
- Different parts of the atmosphere coupled by radiation (non-local!)
- Extended formation height ranges of spectral features
- Challenging to interpret from a "integrated" observable!

"THE DIAGNOSTIC PROBLEM"

- Existing diagnostics for the chromosphere in the UV/visible/IR:
 - Few suitable diagnostics accessible
 - Complicated formation mechanisms and non-equilibrium effects (e.g., ionisation, non-LTE (non-local thermodynamic equilibrium))
 - → Non-linear relation between observables and plasma properties
 - → Uncertainties for the derived chromospheric plasma properties!
 - **→** Interpretation difficult.
 - → Should be supported by best possible numerical models.

TRYING TO MAKE SENSE ...

- Important region between photosphere and corona
- Still many open questions despite many decades of research

OBSERVATIONS AND MODELLING

Modern observations show:

- Highly dynamic
- Intermittent complex structure
- Large range of scales
- Atmospheric layers coupled

Improvements step by step

Practical solution:

- Simplifications + approximations
 - Reduced dimensions/domain size/ resolution
- Included physical processes
- Efficient numerical procedures

Model requirements:

- Time-dependent
- 3D
- Large domain with high resolution
- Extended height range

Technical limitations:

- Some ingredients computationally expensive!
- Available computing infrastructure (improves with time)

OBSERVATIONS AND MODELLING

Observational constraints Interpretation

COMPARISON

Tests: validation and discrepancies

Predictions

Models

YOU DON'T KNOW IT ALL

YOU CAN'T AFFORD IT ALL (YET) ...

Computational costs

 Becomes more affordable with advancing technology

FUTURE

CHALLENGE

FRONTIER

DOABLE

ROUTINELY DONE

FAST & EASY

TOO SIMPLE

ADVANCES IN MODELLING

	Theoretical modelling	Observation-driven modelling			
TOO SIMPLE	1D hydrostatic	1D hydrostatic semi-empirical			
FAST & EASY	2D/3D radiation hydrodynamics	1D hydrostatic semi-empirical			
ROUTINELY DONE	3D ideal radiation magnetohydrodynamics (RMHD)	Data inversion ("pixel-by-pixel")			
DOABLE	3D ideal RMHD + ionisation	Data inversion ("pixel-by-pixel")			
FRONTIER	3D RMHD with ion-neutral effects: • Generalized Ohm's law (GOL) • Multi-fluid / multi-species	Advanced spatially coupled (3D) data inversion			
CHALLENGE	3D RMHD with ion-neutral effects and coupled with particle-in-cell description (in sub-domains)	Advanced tempospatially coupled ("4D") data inversion based on very many observational data points			
FUTURE					

CHALLENGES - DOMAIN SIZE VS. RESOLUTION

SPATIAL DIMENSIONS

- Smallest spatial scales that need to be resolved?
 - Currently down ~1 10 km scale
- Largest spatial scales to be included in computational domain?
 - Currently ~10 000 km up to supergranulation scale (a few 10 000 km)
- Current 3D model sizes 512³ 1024³ cells
- Unresolved scales Sub-grid modelling

CHALLENGES - DOMAIN SIZE VS. RESOLUTION

TEMPORAL DIMENSION

- Courant–Friedrichs–Lewy condition: $C = rac{u \, \Delta t}{\Delta x} \leq C_{
 m max}$
 - Maximum time step Δt depends on grid cell size Δx and highest speed
 - → Higher spatial resolution with smaller grid cells
 - → Shorter time step Δt
 - → More time steps needed to cover same simulation time span
 - ~0.1 s for typical HD photosphere models
 - Down to ~1 ms for MHD (depending on field strength or rather wave speeds)
 - In most codes: Global time steps
 - A single grid cell (with extreme conditions) can set Δt for whole domain!
- Extended domains require often simulation time span of many hours! (Especially for relaxing from initial conditions in the convection zone)

EFFECTS OF NUMERICAL RESOLUTION

5000

4000

3000

2000

1000

y [km]

CO⁵BOLD Freytag et al. 2012

2006 8.0 Mm 286 cells

2017 9.6 Mm 960 cells

Courtesy: O. Steiner

x [km]

3000 4000 5000 6000 7000 Temperature [K] Gas temperature in horizontal cut at height 1000 - 1200 km

EFFECTS OF NUMERICAL RESOLUTION

CO⁵BOLD Freytag et al. 2012

> 2006 8.0 Mm 286 cells

2002 5.6 Mm 140 cells

1000 2000 3000 4000 5000 x [km]

2017 Initial magnetic field: 9.6 Mm Homogeneous, vertical 960 cells 50 G

Courtesy: O. Steiner

MODELLING: PHYSICAL PROCESSES

- Radiative transfer
- (Magneto-)hydrodynamics
- Thermodynamics (equation of state)
- Gravity
- Ionisation
- Conduction
- Chemistry
- Ion-neutral effects
- ...
- Deviations from equilibrium conditions:
 - Ionisation degree
 - Atomic level populations (non-LTE)
 - Molecules ...

RADIATIVE TRANSFER IN THE CHROMOSPHERE

- Neither fully transparent nor full opaque.
 - → Detailed description with wavelength dependence needed.
- Mean free path of photons:
 - Diffusion approximate in opaque media (convection zone)
 - In (partially) transparent regions radiation can couple far apart regions.
 - → Non-locality!
 - Back radiation from corona
- What exactly is needed from the RT for the intended modelling?
 - Reproduction of realistic spectral line profiles?
 - Or only the approximate impact on the atmospheric energy balance?

Two stages

- 1. Numerical simulations with focus on realistic plasma properties (energy balance)
- 2. Radiative transfer codes producing detailed synthetic observables

1D SEMI-EMPIRICAL

- Vernazza, Avrett, Loeser (1981, VAL)
- Many more, e.g.: FAL,
 Anderson & Athay 1989, ...
- Adjusting a hydrostatic stratification to match a large range of observations (spectral lines & continua)
- Advanced physics (non-LTE)
- Models for different types of region on the Sun
- Limits:
 - 1D
 - Static

1D THEORETICAL

- RADYN (Carlsson & Stein 1992-1997)
 - **Dynamic** time-dependent approach
 - Detailed treatment of physics (e.g., non-LTE, ionisation - uses model atoms)
 - Driven by empirical piston at the bottom
 - Produces observables that can be tested
 - → Explains observations of bright grains in Ca II H as result of propagating shock waves in the chromosphere
- Many other theoretical models (Ulmschneider 1971, etc)

1.5

z [Mm]

0.0 0.5

Limit: 1D only

0.0

0.5

3D IDEAL RADIATION MAGNETOHYDRODYNAMICS

- Spatially structure requires modelling in 2D/3D
- Small part of the atmosphere plus upper convection zone to drive dynamics selfconsistently
- Computational grid, advanced time step by time step
- Solving equations of (magneto)hydrodynamics with "realistic" equation of state plus radiative transfer (simplified with pre-calculated opacity look-up tables)

MAGNETIC FIELD STRUCTURE AND DYNAMICS

- Magnetic field in chromosphere is highly dynamic
 - Propagating shock waves compress magnetic field
 - Fast moving filaments of enhanced field

CHROMOSPHERE IN (VERY) QUIET SUN REGIONS

- Horizontal cut through model chromosphere at z=1000 km, gas temperature
- Hot shock fronts
 (~7000 8000 K)
 and cool post-shock regions
 (down to ~2000 K)
- Mean $T_{gas} \sim 4000 \text{ K}$
- Pattern produced by interaction of shock fronts
- Typical length scale
 ~1000 km (1.3")
- Timescales of 20 -30 s

CARBON MONOXIDE

How does CO fit in?

- Simulations with time-dependent treatment of a chemical reaction network + advection of particles + radiative cooling
- chemical reaction network:
 - 7 chemical species plus representative metal (≥He): H, H₂, C, O, CO, CH, OH, M
 - 27 chemical reactions

ID m.	reaction.			æ	β	r	ref.
						[K.]	
radiative association			$[am^3 s^{-1}]$				
3681	H+€	-	CH+ v	1.00(-17)	0.00	0.0	UMIST
3683	H + O	\rightarrow	OH + v	9.90(-19)	-0.38	0.0	UMIST
3707	C+0	-	CO+v	1.58(-17)	934	1297.4	UMIST
3-body association			$[am^8 s^{-1}]$				
5001	H + H+ H ₂	-	$H_2 + H_2$	9.00(-33)	-0.60	0.0	KCD
5002	H+H+H	-	$H_2 + H$	4.43(-28)	-4.00	0.0	BDHL72
7000	Q + H + H	\rightarrow	OH + H	1.00(-32)	0.00	0.0	BDHL72
7001	C+Q+H	-	CQ+H	2.14(-29)	-3.08	-2114.0	BDDG76
Species exchange			$[am^{3} s^{-1}]$				
1	H+CH	-	C+H ₂	2.70(-11)	0.38	0.0	UMIST
S	H + OH	\rightarrow	$O + H_2$	6.99(-14)	2.80	1950.0	UMIST
14	H + CO	\rightarrow	OH+C	5.75(-10)	0.50	77755.0	WSO
42	$H_2 + \mathbb{C}$	-	CH+H	6.64(-10)	0.00	11700.0	UMIST
48	$H_2 + Q$	\rightarrow	QH+H	3.14(-13)	2.70	31500	UMIST
66	C+OH	-	O+CH	2.2%(-11)	0.50	14 800 .0	UMIST
67	C+QH	-	CO+H	181(-11)	0.50	0.0	WSO
102	CH+O	-	OH+C	252(-11)	0.00	2381.0	UMIST
104	CH + Q	\rightarrow	CO+H	1.02(-10)	0.00	914.0	UMIST
collisional dissociation				[cm ³ s ⁻¹]			
4060	$H + H_2$	-	H+H+H	4.67(-07)	-1.00	55000.0	UMIST
4061	H + CH	\rightarrow	C+H+H	6.00(-09)	0.00	40 200 .0	UMIST
4062	H + OH	\rightarrow	Q + H + H	6.00(-09)	0.00	50900.0	UMIST
4069	$\mathbf{H}_2 + \mathbf{H}_2$	\rightarrow	$H_2 + H + H$	1.00(-08)	0.00	\$4,100.0	UMIST
4070	$H_2 + CH$	\rightarrow	$\mathbb{C} + \mathbb{H}_2 + \mathbb{H}$	6.00(-09)	0.00	40 200 .0	UMIST
4071	$H_2 + OH$	-	$O + H_2 + H$	6.00(-09)	0.00	50900.0	UMIST
7002	CO + H	\rightarrow	C+O+H	2.79(-03)	-352	128700.0	BDDG76
collision induced dissociation [cm³ s ⁻¹]							
4076	CO + M	-	Q+C+M	2.79(-03)	-352	128700.0	BDDG76
catalysed termolecular reactions				[cm ⁸ s ⁻¹]			
4079	H+M+0	-	OH + M	433(-32)	-1.00	0.0	UMIST
5000	H+M+H	-	$H_2 + M$	6.43(-33)	-1.00	0.0	KCD
4097	C+M+0	-	CO+M	2.14(-29)	-3.08	-2114.0	BDDG76

CARBON MONOXIDE

- Vertical cross-section CO abundance
- CO dissociated by moving hot shock waves in chromosphere, builds up again in cold post-shock regions
- CO as integral part of a highly dynamic environment
- CO observations (cold gas) and UV observations (hot gas) explained with same model

BIFROST

Hansteen 2004, Hansteen, Carlsson, Gudiksen 2007, Sykora, Hansteen, Carlsson 2008, Gudiksen et al 2011

- 6th order scheme, with "artificial viscosity/diffusion"
- Open vertical boundaries, horizontally periodic
- Possible to introduce field through bottom boundary
- "Realistic" EOS
- Detailed radiative transfer along 24 rays
 - Multi group opacities (4 bins) with scattering
- NLTE losses in the chromosphere, optically thin in corona
- Conduction along field lines
 - Operator split and solved by using multi grid method
- Non-equilibrium Hydrogen/Helium ionization
- Generalized Ohm's Law

"ENHANCED NETWORK" SIMULATION

"ENHANCED NETWORK" SIMULATION

QUIET SUN

QUIET SUN

- Propagating waves

ION-NEUTRAL INTERACTIONS

- So far ideal MHD but chromosphere partially ionized
- Next step: Single fluid MHD + Generalized Ohm's Law
 - Good approximation as long as collision times are short

MULTI-FLUID / MULTI-SPECIES

- Chromosphere (weakly) ionized
 - → Thermodynamics affected by interaction between ionized and neutral particles
- Next step: multi-fluid / multi-species 3D radiative MHD code
 - Hall and ambipolar diffusion in the electric field
 - Different modes:
 - 2-fluids (e.g., ions + neutrals or ions+free electrons)
 - 3-fluids (ions + neutrals + free electrons)
 - Multi-species (ions and neutrals for each species, e.g., H and He)
- Code in the testing / early production stage

DISPATCH

- Wanted: Detailed "self-consistent" simulations of regions with strong magnetic field incl. flares
 - Effects like particle acceleration to be included properly (e.g., particle-in-cell approach)
 - Computationally prohibitive to do for a large computational domain (otherwise needed for modelled region and needed resolution)
- Simulation framework DISPATCH (Nordlund et al. 2018)
 - Can combine different modelling approaches for different regions
 - Different regions can run on different grids, resolution, time steps

 Predictions by means of synthetic intensity maps calculated from 3D radiation magnetohydrodynamic simulations

3D radiation magneto-hydrodynamic code numerical model

What is what?

gas temperature at z=1000km

continuum intensity at $\lambda=1$ mm

3D hydrodynamical model pattern produced by the interaction of propagating shock waves

6 Mm (8")

PREDICTING ALMA OBSERVATIONS

gas temperature at z=1000km

continuum intensity at $\lambda=1$ mm

ALMA as linear thermometer for the chromospheric plasma!

→ Gas temperature in chromosphere closely mapped

 \times [Mm]

- Bifrost snapshot
 (Carlsson et al. 2016; cf.
 Loukitcheva et al. 2015)
- Enhanced magnetic network: patches of opposite polarity, coronal loops
- Used as benchmark for RT code comparison by SSALMON
 - A. "Quiet Sun"
 - B. Above magnetic field concentration
 - C. Coronal loops

 Taking into account non-equilibrium hydrogen ionisation reduces spread in height

ALMA AS NEW DIAGNOSTIC TOOL

Cycle 4 (12/2016), Quiet Sun, Band 6

Credits: ALMA (ESO/NAOJ/NRAO)

- ALMA: In future several 1000 spectral channels at 1s cadence
- Rich data sets for advanced data inversions
- Models of 3D dynamic structure of the chromosphere

RT calculations: ALMA and IRIS providing complementary information

SUMMARY AND OUTLOOK

- Chromosphere still a challenging object to model
- Provides though tests for numerical simulation codes
- Numerical models with increasing degree of realism
- Still a lot to do ...

