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STANDARD MODEL FOR SOLAR ERUPTIVE EVENTS
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"PROBLEMS” WITH STANDARD MODEL
NUMBER “PROBLEM"

Electron flux required to produce observed X-ray emission is ~1036 electrons/s. (Hoyng etal 1976, 1978)

Number of electrons in typical flaring region nV ~ 10°’
=> evacuation of the flaring region in seconds
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Extended Standard model for electron propagation with return currents
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Which electrons carry the return current?
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Outstanding questions

Is there a feedback between the large scale propagation effects and the acceleration process itself?

How much and where is the electrons energy dissipated?

Do electron beams accelerated in the solar corona produce the observed spectral
properties?



How do return current losses affect X-ray spectra?
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Lowest energy electrons lose the
highest fraction of their energy

Flatten electron distribution at low-energies

A large enough value of the low energy cutoff is also
observed as a flattening in the X-ray spectrum

Question

To what extent is the shape of X-ray spectra a consequence
of the acceleration mechanism or beam propagation?




Photons s™' keV™' cm™

log wI(S) (photons(cm?s KeV)")

Mechanisms which affect the HXR emission

—
o
N

100.00 f

* Not included in latest beam propagation models

N y \\\ \//

. @D HXR above-

Return |
Current.

—_
o
N
I T

10.00

1.00F

—
o
)
T .

photons s cm™ keV”’

e \ —NAI
ool \ § \ X-point source V=0
0.01 . L e V=2380kV
10 100 \ g \\
Energy keV \ _ )
Kontar & Brown 2006 \ \ I_'LXRI above 10°% s
\ the looptop Photon energy (keV)
\
\ 104 L '
sl _ - \ ow-ener _
. Non-uniform Corona \ Thermal : Cutoffgy
sl \\\lonlzatlon \ 102F -

Fully ionized \

photons s'cm2 keV-

2 » N 00F Electron distribution ="
i \ -—“‘ hw‘ A A p : !
h Transition region' ‘ b = 30kev
T 28 | __HXR |
. . . / S — ,
o N Partially ionized ' , \\\\ nonthermal 102}
I S T Chromosphere '/ \ , 1
hotosphere o
10 100
Brown 1973; Su et al. 2011 N

With imaging spectroscopy with higher range of sensitivity (dynamic range),
high spatial and temporal resolution: can differentiate between these effects



Number of spectra

Are current-driven instabilities responsible for X-ray flattening?
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Observational and theoretical motivation for runaway model
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Electric field strength from models without runaways
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Kinetic modeling of electron beam propagation in flares

Model description Applicability conditions
‘Standard model’ High value of low
o RC losses Collisions in cold target energy cutoff Hot
5 ligibl . _ plasma
k= NEGugIvie Collisions and scattering Any low energy
*i but no return currents (Warm target) cutoff
_§ oC losses \ Return currents and collisions High value of low
é significant In cold target energy cutoff Any
c ru"?_""_i‘[s Return currents in warm target HEIPEELTE
*§ \ NEGHYIbe ) Ohm’s law assumed (no runaways)  aAny low energy
L ) i cutoff
@ Both RC & Return currents in warm target
" runaways _
= significant Ohm’s law not assumed
Fully runaway Return currents in warm target Any plasma
regime Co-spatial plasma fully running away co-spatial

References

Brown 71, 73; Emslie 78

Jeffrey+2014, 2019; Kontar+ 2015, Emslie 2003

Lharkova et al 99, 10; Zharkova & Gordovsky 05,06
Siversky & Zharkova 2009 Knight & Sturrock 1977

Holman 2012
Allred, Alaoui, Kowalski, Kerr 2020

Alaoui, Holman, Allred, Eufrasio 2021

Not modeled self-consistently yet

Cold target: Energy of the beam electrons>> energy of plasma with which they interact:

It does not mean that the plasma hasalow T



Model Description: Alaoul et al. 2021

POWER-LAW INJECTED| accelerated electrons continuously injected at apex of 1D loop model

CURRENT BALANCE J he am(x) =J RC(X) Ohm’s law Runaway growth rate from Landreman et al. (2014)

‘—V J drift(x) +J runaway(x)

STEADY-STATE Time scales >> than electron-ion collision time, i.e., return current/beam system
reached steady-state (Van den Oord 1990, Siversky & Zharkova 2009)

BOUNDARY CONDITION No runaway electrons at the footpoints.  J,,,,,.,,(x = L) =0
STABLE RETURN CURRENT No current-driven instabilities. Resistivity is Spitzer
SUB-DREICER ELECTRIC FIELD Ep- < 0.11E;, everywhere along the electrons’ path

We use higher values for Ej - but the accuracy of the solution decreases with increasing Ej-

THERMALIZATION OF ELECTRONS If energy of direct beam electrons reaches thermal energy, electrons lost from beam




Return current affects acceleration region and chromosphere
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Main implications
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Current density linearly proportional to flux density

(1) 437% of flux returning to acceleration region
Is suprathermal (energy gain 21 keV)

(2) Electron flux injected into chromosphere reduced
due to thermalization by the return current




Electric field & potential drop spatial evolution
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Energy of runaway electrons at looptop (gain of 21 keV) >> thermal energy

Electrons returning to the acceleration region are already suprathermal=> further accelerated to keep acceleration ongoing



Return current energy losses dominate over Coulomb collisions

Low-energy cutoff 25 keV Same parameters (number flux density)
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Return currents cannot be neglected Lower low-energy cutoff results in thermalization of

Even when considering heating reduction more beam electrons in the corona=>reduced electron flux

due to presence of runaways :
P y into chromosphere



In hotter plasmas return currents are still significant

Same atmosphere with apex temperature 10 MK, same spectral index 0=4
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+Coulomb collisions contribute to reducing transition region
the heating especially in runaway case



Fraction of runaways at the looptop: Various regimes for propagation
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Fraction of injected energy flux reaching the transition region is reduced by the return current

Function of number flux

Function of energy flux
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How much of the injected energy flux
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Misinterpretation of the energy flux injected into
the transition region and therefore also the
accelerated flux density injected at the top of the loop



How neglecting return current losses affects the thermal response
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The heating in the chromosphere is overestimated when
return currents are not considered




Many large flares are associated with higher flux densities than previous examples

Recent modeling which requires accounting for the return current energy losses Total potential drop [ KV
<007 787 1568 2348 3125 3908
Kowalski et al 2022 Range of injected fluxes between vertical red lines 50
model ID Beam Flux [ergs ' cm™2%] § E. [keV] puo, Beam Duration [s] Comment loss::(:]reg;},ligihle
c15s-5F11-25-4.2 5 x 10 (5F11) 4.2 25 0.1 15 “Extended heating” 5F11 in Paper I. 15
c20s-F11-25-4 10! (F11) 4 25 0.1 20 Published in Kuridze et al. (2020).
c20s-F11-15-5 10* (F11) 5 15 0.1 20 Published in Graham et al. (2020).

Grahametal 2020  Only lower energy cutoffs are consistent with observations
BUT the chromosphere gets heated faster in the simulations

Unresolved -
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deposition in the corona, can timing inconsistencies between Y R B

models and observations be resolved simply by including them 0 Energy flux density [erg em s

In the simulations?

What constraints on the beam energy distribution and the initial atmosphere can be deduced?

Do electron beams accelerated in the solar corona produce the observed spectral properties?



Summary

Understanding electron beam/return current propagation is important for:

THERMAL RESPONSE

(1) Corona is heated faster and to higher temperatures; below TR stays cooler for longer

(2) The injected energy (and flux) at the looptop is significantly different from that injected into the
chromosphere

Flares with high injected flux densities should be reanalyzed to include the return current effects

ELECTRON BEAM ACCELERATION

Runaways provide suprathermal particles to the looptop. Are particles accelerated there? If so, the
runaways are seed particles for continuing acceleration

Runaways energies ~10-30 keV; runaway fractions can be tens of % at the looptop






