Radiative transfer in GRB jets

Indrek Vurm (Columbia University)

in collaboration with Andrei M. Beloborodov (Columbia University) Romain Hascoet (Columbia University)

Saint Petersburg 2014

Outline

Prompt emission
 Photospheric emission from dissipative jets

 Photon number and spectral peaks
 Non-thermal spectra

 GeV (+optical+TeV) flashes

 Forward shock in a pair-loaded progenitor wind
 Examples: 080916C, 130427A

GRB prompt emission: optically thin vs. thick

Peak sharpness and position

Spectra narrowly peakedPeak energies cluster

Synch. peak

Goldstein et al. (2012)

Peak sharpness and position

GRB 990123

Spectra narrowly peakedPeak energies cluster

Synch. peak

Low-energy slope

Preece et al. (2000)

 $N_n \mu F_n / n \mu n^a$

• Optically thin + radiatively efficient $\Rightarrow \alpha > -1.5$ (synch. or IC)

Photospheric emission

Spectral peaks

- Narrow: *can* be as narrow as Planck •
- Position
 - Natural scale

$$\overline{E}_{\rm ph} \sim 3kT_0 L_{52}^{1/4} r_{0.7}^{-1/2} \sim 5 \,{\rm MeV}$$

Observed

 $\overline{E}_{\rm pk} \sim 500 \, \rm keV \implies$ photon production

Non-thermal shape

Dissipation

Photon production

Photon production

Number of photons at the peak established below/near the Wien radius
 Most efficient mechanism: synchrotron
 Observed E_{pk} -s ⇔ modest Γ ~ a few tens at r~10¹¹ - 10¹² cm

Radiative transfer

$$\frac{\partial I_{\nu}}{\partial \ln R} = (1-\mu) \left(\frac{\partial I_{\nu}}{\partial \ln \nu} - 3I_{\nu} \right) - (1-\mu^2) \frac{\partial I_{\nu}}{\partial \mu} + \frac{(j_{\nu} - \kappa_{\nu}I_{\nu})R}{(1+\mu)\Gamma}$$

- intensity μ - photon angle

Processes: Compton, synchrotron, pair-production/annihilation

- Continuous dissipation throughout the jet
 - Thermal and non-thermal channels
- Acceleration:

$$\frac{d\ln\Gamma}{d\ln r} = \frac{1}{2 + \Gamma/\eta} \left[2\left(1 - \Gamma/\eta\right) - 4\frac{d\varepsilon_{\rm h}}{d\ln r} \right]$$

Magnetization:

$$\epsilon_B \sim 10^{-3} - 10^{-1}$$

Dissipation mechanism: example

Neutron-proton collisions (Beloborodov 2010)

- Internal (radiation mediated) shocks: Neutrons penetrate through
- Proton and neutron flows decouple at $\tau_T \approx 20 \Rightarrow$ drift

Nuclear collisions:

- Elastic: Thermal heating of e_± via Coulomb collisions
- Inelastic: Injection of relativistic e_± with γ~300 via pion production and decay

$$\pi^{+}, \pi^{-}, \pi^{0} \qquad m_{\pi}c^{2} \approx 140 \text{ MeV}$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}; \ \pi^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu}; \ \pi^{0} \rightarrow \gamma + \gamma$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}; \ \mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$

Spectral formation

- Initial spectrum: Wien
- Peak shifted to lower energies due to photon production
- Broadening starts near Wien radius, proceeds through the photosphere
- Final spectrum: Band

т_=1

r_{Wien}

r_{min}

W

IEN

Spectra at different stages of expansion

$$L_{jet} = 10^{52} \text{ erg s}^{-1}$$
$$h = 300$$
$$\theta_B = 0.01$$
$$\frac{dL_{heat}}{d\ln R} = const$$

'Fits' to data: GRB 990123

Spectrum (cosmological rest frame)

Fit: Band (Briggs et al. 1999) $\alpha = -0.6; \beta = -3.11$ $E_{pk}=720(1+z) \text{ keV}; z = 1.6$

Simulation parameters:

- Initial $\Gamma(r_{min}) = 80$; $r_{min} = 3 \times 10^{10} \text{ cm}$
- Final Lorentz factor $\Gamma_{\rm f} = 600$
- $\epsilon_{\rm B} = 0.03$

'Fits' to data: GRB 130427A

Spectrum (cosmological rest frame)

Fit: Band (Golenetskii et al 2013) $\alpha = -0.96$; $\beta = -4.17$ $E_{pk}=1.028(1+z)$ MeV; z = 0.34

Simulation parameters:

- Initial $\Gamma(r_{min}) = 100$; $r_{min} = 3 \times 10^{10}$ cm
- Final Lorentz factor $\Gamma_f = 450$
- \bullet $\varepsilon_{\rm B} = 0.03$
- Heating at $\tau < 1$, passive at $\tau > 1$

'Fits' to data: GRB 090902B

Fit: Band + power-law (bin b, Abdo et al. 2009) a = 0.07; β = -3.9; Γ_{pl} = -1.94 E_{pk}=908(1+z) keV; z = 1.8

Summary

Photospheric emission from dissipative jets Naturally lead to Band-like spectra Different heating histories result in a variety of spectral shapes Only way to generate narrowly peaked spectra Typical E_{pk} -s require • efficient dissipation at $r \sim 10^{11}$ cm • bulk Lorentz factor Γ ~tens at the same radii • At least moderate magnetization $\varepsilon_{\rm B} > 10^{-3}$

Continuous dissipation throughout the jet?

GeV (+optical) flashes

Observations: LAT lightcurves

Fermi LAT collaboration (2013)

- 'Regular' behaviour:
 - Delayed rise
 - Peaks <u>during</u> the prompt: likely not assoc. with deceleration
 - Extended monotonic decay (lasts well beyond T₉₅
- External origin (forward shock)?

T₉₅ (GBM)

Emission mechanism

Synchrotron?

Kumar & Barniol Duran (2009) Asano et al. (2009) Razzaque et al. (2010) Ghisellini (2010)

Theoretical limit: a few 10 MeV (comoving)
 ⇒ ~ 10 GeV (observed); limit tighter at late times
 e.g. Nakar & Piran (2010)

Observed: 95 GeV @ 243 s, 32 GeV @ 34 ks (GRB 130427A)

Inverse Compton

Bosnjak et al. 2009 Toma et al. 2011

• GeV peak during prompt \Rightarrow intense IC cooling by prompt radiation

Number of IC photons

λτ

Bright GeV flashes:

$$N_{\rm GeV} \sim 10^{57}$$

No. of emitted IC photons (w.o. Pair loading):

$$N_{\rm GeV} = Z_{\pm} \mathcal{M} \frac{\dot{M}R}{\mu_{\rm e} m_{\rm p} w} \sim 10^{53} \, Z_{\pm} R_{16} \dot{M}_{-5}$$

No. of emitted IC photons per single electron:

 $\mathcal{M} \sim \frac{\Gamma m_{\rm e} c^2}{(E_{\rm pk} E_{\rm IC})^{1/2}} \sim 10$

Wind velocity

$$w \sim 2 \times 10^8 {\rm ~cm~s^{-1}}$$

Required pair multiplicity:

$$Z_{\pm} \sim 10^4$$

Proposed mechanism: inverse Compton scattering of prompt MeV radiation in the forward shock in a pair-enriched external medium

Pair-enrichment of the external medium

- 1. ISM particle scatters a prompt photon
- 2. Scattered photon pair-produces with another prompt photon
- 3. New pairs scatter further photons etc.

Prompt radiation pair-loads and pre-accelerates the ambient medium ahead of the FS

Loading and pre-acceleration controlled by the column density of prompt radiation

GRB 080916C: pair-loading and pre-acceleration

Pair loading at the forward shock

Pre-acceleration and blastwave Lorentz factors

Beloborodov, Hascoet, IV (2013)

GRB 080916C: thermal injection Lorentz factor

GRB 080916C: light curve

Flux above 100 MeV

Delayed rise Peak during the prompt Persists well after T_{95} **External medium:** Progenitor wind $\dot{M} = 10^{-5} M_{\rm Sun} / {\rm yr}$ Wind parameter $A \approx 2.5 \times 10^{11} \text{ g cm}^{-1}$ $\Gamma = \frac{A}{r^2}$

Beloborodov, Hascoet, IV (2013)

Non-thermal particle acceleration NOT required

Extended GeV emission: GRB 130427A

- GeV lasts up to a day
- Seed photons for IC: transition from prompt (EIC) to afterglow (SSC)
- Fast cooling \Rightarrow smooth transition

Ackermann et al. (2014)

GRB 130427A: GeV + optical flash

130427A

 GeV-emitting particles also radiate optical via synchrotron

> Optical peaks simultaneously with GeV (Vestrand et al. 2014)

• Yields forward shock magnetization: $\epsilon_B = 2 \times 10^{-4}$

IV, Hascoet, Beloborodov (2014)

GRB 130427A: TeV flash

130427A

TeV emission

- Peak T~1 min
- E~10⁵¹ erg
- Detectable by current Cerenkov observatories
- Veritas upper limit at 1 day consistent with model

IV, Hascoet, Beloborodov (2014)

GeV (+optical) flashes: summary

GeV/TeV flash:

- Forward shock in a pair-loaded Wolf-Rayet wind
- Radiative mechanism: inverse Compton of prompt and/or afterglow radiation
- Emitting particles quasi-thermal (even for TeV)
- **Can infer** Γ_{bw} and external medium density

Optical flash:

- Peaks simultaneously with GeV
- Radiative mechanism: synchrotron
- Yields $\varepsilon_{\rm B}$ in the FS