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Outline

Prompt emission

= Photospheric emission from dissipative jets
Photon number and spectral peaks
Non-thermal spectra

GeV (+optical+TeV) flashes

= Forward shock in a pair-loaded progenitor wind
= Examples: 080916C, 130427A



GRB prompt emission:
optically thin vs. thick
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Peak sharpness and position

GRB 990123 S cifens) Blazars Ghisellini (2006)
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Peak sharpness and position

GRB 990123 Blazars Ghisellini (2006)
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Low-energy slope
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Optically thin + radiatively efficient

Low Energy Power Law Index

= o > -1.5 (synch. or IC)
Preece et al. (2000)



Photospheric emission

Spectral peaks
s Narrow: can be as narrow as Planck

= Position
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Observed

—> photon production

Non-thermal shape

Dissipation



Photon production
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Photon production

Blackbody
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Number of photons at the peak established below/near the Wien radius
Most efficient mechanism: synchrotron
Observed E,, -s < modest I" ~ a few tens at r~10'! - 10*>cm






Radiative transfer

_ _ h | Processes: Compton, synchrotron,
eIy - Pl gis pair-production/annihilation

Continuous dissipation
throughout the jet

= [hermal and non-thermal channels

€. pairs

Heating

Acceleration:
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Dissipation mechanism: example

Neutron-proton collisions (Beloborodov 2010)
= Internal (radiation mediated) shocks: Neutrons penetrate through

= Proton and neutron flows decouple at 1720 = drift

= Nuclear collisions:
Elastic: Thermal heating of e, via Coulomb collisions

Inelastic: Injection of relativistic e, with y~300
via pion production and decay
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Spectral formation et
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Initial spectrum: Wien

Peak shifted to lower energies
due to photon production

Broadening starts near
Wien radius, proceeds
through the photosphere

Final spectrum: Band
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‘Fits’ to data: GRB 990123

Spectrum (cosmological rest frame)

Simulation parameters:
= Initial T'(r,,) = 80; r,,=3 x 101° cm
= Final Lorentz factor I'; = 600
= gg= 0.03

Red — fit (Band)
- Blue - simulation

Fit: Band (Briggs et al. 1999)
a=-0.6;=-3.11
E=720(1+z) keV;z=1.6



Photon Energy (MeV)




‘Fits’ to data: GRB 130427A

Spectrum (cosmological rest frame)

Simulation parameters:
= Initial T'(r,,) = 100; r,,,=3 x 101° cm
= Final Lorentz factor I’ = 450
m gg= 0.03
= Heating at t<1, passive at t>1

Red — fit (Band)
Blue - simulation

Fit: Band (Golenetskii et al 2013)
a=-0.96; p = -4.17
E,=1.028(1+z) MeV; z = 0.34



‘Fits’ to data: GRB 090902B

Red — fit (Band+PLY]
Blue - simulation ]

Simulation parameters:
= Initial ['(r,;,) = 70; r,=3 x 10° cm
= Final Lorentz factor I's = 1200
= gg= 0.02
= Strong non-thermal heating

0.01 0.1 1 10 1001000 10* 10°%
E [MeV]

Fit: Band + power-law (bin b, Abdo et al. 2009)
a=0.07;,=-39;1T,=-1.9%

pl —
E=908(1+z) keV; z = 1.8



Summary

Photospheric emission from dissipative jets
= Naturally lead to Band-like spectra
= Different heating histories result in a variety of spectral shapes
= Only way to generate narrowly peaked spectra
Typical E,, -s require
= efficient dissipation at r~10!! cm
= bulk Lorentz factor I'~tens at the same radii

= At least moderate magnetization g;>10-3

Continuous dissipation throughout the jet?



GeV (+optical) flashes



Observations: LAT lightcurves
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Fermi LAT collaboration (2013)

‘Regular’ behaviour:

= Delayed rise

m Peaks during the prompt: likely not assoc.
with deceleration

s Extended monotonic decay (lasts well
beyond Ty

External origin (forward shock)?

Tos (GBM)

: o=1.40+0.10
: o,=1.70+0.08
Yo,z 1.27+0.12

Flux [ph cm? s1]
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Emission mechanism

Kumar & Barniol Duran (2009)

9 Asano et al. (2009)
SynChrOtron ] Razzaque et al. (2010)

Ghisellini (2010)

= Theoretical limit: a few 10 MeV (comoving)

— ~ 10 GeV (observed); limit tighter at late times
e.g. Nakar & Piran (2010)

s Observed: 95 GeV @ 243 s, 32 GeV @ 34 ks (GRB 130427A)

Inverse Compton Bosnjak et al. 2009
Toma et al. 2011

= GeV peak during prompt = intense IC cooling by prompt radiation



Number of IC photons

Bright GeV flashes:

No. of emitted IC photons MR

~ 10% ZLRigM_s
(w.o. Pair loading): RN + 1116Vl

No. of emitted IC photons [ - Pmec® 10
per single electron: (EpkErc)"

Wil RVl 1ol () ~ 2 x 10% ¢cm s *

Required pair multiplicity: PZilee 10%



Proposed mechanism: inverse Compton scattering
of prompt MeV radiation in the forward shock
In a pair-enriched external medium

Forward shock

EXTERNAL
MEDIUM

PROMPT RADIATION



Pair-enrichment of the external medium

@:

pROMPT RADIATION

% e
e.g Thompson & Madau (2000) /
Beloborodov (2002) NG
Kumar & Panaitescu (2004) ., Ypre

1. ISM particle scatters a prompt photon
2. Scattered photon pair-produces with another prompt photon
3. New pairs scatter further photons etc.

Prompt radiation pair-loads and pre-accelerates the
ambient medium ahead of the FS

Loading and pre-acceleration controlled by
the column density of prompt radiation



GRB 080916C:
pair-loading and pre-acceleration

Pair loading at the forward shock Pre-acceleration and blastwave Lorentz factors
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Beloborodov, Hascoet, IV (2013)




GRB 080916C:
thermal injection Lorentz factor

Early decay due to fast
evolution of y;,; and Z,




GRB 080916C: light curve

Flux above 100 MeV

Delayed rise
Peak during the prompt
Persists well after Tqs

>100 MeV)
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External medium:
Progenitor wind
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Beloborodov, Hascoet, IV (2013)

Non-thermal particle acceleration NOT required



Extended GeV emission: GRB 130427A

GeV lasts up to a day

Seed photons for IC:
transition from prompt (EIC)
to afterglow (SSC)

Fast cooling = smooth
transition

Flux [0,1 - 100 GeV]
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9 ~  GBM (10 keV - 10 MeV, ergcm* s7°)
XRT+BAT (0.3-10 keV, erg cm ™ # s71)

+ LAT energy flux (0.1-100 GeV, erg cm ™ s7')

+ LAT photon flux (0,1-100 GeV, ph,cm~ s7!)
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Ackermann et al. (2014)




GRB 130427A: GeV + optical flash

130427A

g3, GeV (Fermi/LAT)
Lt gyl merse comper

GeV-emitting particles also
radiate optical via synchrotron

= Optical peaks simultaneously |
with GeV (Vestrand et al. 2014) cal
Fhi,f synchrotron optica

= Yields forward shock 3 L (RAPTOR)
magnetization: eg= 2 x 10

10 100 1000 104 105
time from MeV trigger [s]

IV, Hascoet, Beloborodov (2014)



GRB 130427A: TeV flash

130427A

-;H - GeV (Fermi/LAT)

TeV emission e .;]ﬂ ﬁﬁhﬁfiﬂlnverse Compton
s Peak T~1 min
= E~10°! erg
= Detectable by current Cerenkov

observatories

= Veritas upper limit at 1 day ““‘ﬁ synchrotron optical
consistent with model R (RAPTOR)

10 100 1000 104 105
time from MeV trigger [s]

IV, Hascoet, Beloborodov (2014)



GeV (+optical) flashes: summary

= GeV/TeV flash:
= Forward shock in a pair-loaded Wolf-Rayet wind

= Radiative mechanism: inverse Compton of prompt and/or
afterglow radiation

= Emitting particles quasi-thermal (even for TeV)
= Can infer I',,, and external medium density

= Optical flash:
= Peaks simultaneously with GeV
= Radiative mechanism: synchrotron
= Yields g in the FS



