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Outline

 Prompt emission

 Photospheric emission from dissipative jets

 Photon number and spectral peaks

 Non-thermal spectra

 GeV (+optical+TeV) flashes

 Forward shock in a pair-loaded progenitor wind

 Examples: 080916C, 130427A
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GRB prompt emission:
optically thin vs. thick

?
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 Spectra narrowly peaked

 Peak energies cluster
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Preece et al. (2000)
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 Optically thin + radiatively efficient

  > -1.5 (synch. or IC)
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Photospheric emission

 Spectral peaks

 Narrow: can be as narrow as Planck

 Position

 Natural scale 

 Observed 

 Non-thermal shape

Dissipation

 photon production
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Photon production

R0

T=1y~10

PLANCK W I E N

Blackbody

T~102

 Number of photons at the peak established below/near the Wien radius

 Most efficient mechanism: synchrotron

 Observed Epk -s  modest  ~ a few tens at r~1011 - 1012 cm

T~104

1012 cm
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Radiative transfer

- intensity - photon angle
Processes: Compton, synchrotron,

pair-production/annihilation

 Continuous dissipation

throughout the jet

 Thermal and non-thermal channels

 Acceleration:

 Magnetization:

Heating

e± pairs

injection



Dissipation mechanism: example

 Neutron-proton collisions (Beloborodov 2010)

 Internal (radiation mediated) shocks: Neutrons penetrate through

 Proton and neutron flows decouple at T20  drift

 Nuclear collisions:

 Elastic: Thermal heating of e± via Coulomb collisions

 Inelastic: Injection of relativistic e± with ~300

via pion production and decay
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Spectral formation

Spectra at different stages of expansion

 Initial spectrum: Wien

 Peak shifted to lower energies
due to photon production

 Broadening starts near
Wien radius, proceeds
through the photosphere

 Final spectrum: Band

rWien
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L jet =1052  erg s-1

h = 300

eB = 0.01

dLheat

dln R
= const



‘Fits’ to data: GRB 990123 

 Simulation parameters:

 Initial (rmin) = 80; rmin=3 x 1010 cm

 Final Lorentz factor f = 600

 B = 0.03

α


Red – fit (Band)

Blue - simulation

Spectrum (cosmological rest frame)

Fit: Band (Briggs et al. 1999)

α = -0.6;  = -3.11

Epk=720(1+z) keV; z = 1.6





‘Fits’ to data: GRB 130427A 

 Simulation parameters:

 Initial (rmin) = 100; rmin=3 x 1010 cm

 Final Lorentz factor f = 450

 B = 0.03

 Heating at <1, passive at >1

Spectrum (cosmological rest frame)

Red – fit (Band)

Blue - simulation

α


Fit: Band (Golenetskii et al 2013)

α = -0.96;  = -4.17

Epk=1.028(1+z) MeV; z = 0.34



‘Fits’ to data: GRB 090902B 

Red – fit (Band+PL)

Blue - simulation

 Simulation parameters:

 Initial (rmin) = 70; rmin=3 x 1010 cm

 Final Lorentz factor f = 1200

 B = 0.02

 Strong non-thermal heating

Fit: Band + power-law (bin b, Abdo et al. 2009)

α = 0.07;  = -3.9; pl = -1.94

Epk=908(1+z) keV; z = 1.8
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 Photospheric emission from dissipative jets

 Naturally lead to Band-like spectra

 Different heating histories result in a variety of spectral shapes

 Only way to generate narrowly peaked spectra

 Typical Epk -s require

 efficient dissipation at r~1011 cm

 bulk Lorentz factor ~tens at the same radii

 At least moderate magnetization B>10-3

Summary

Continuous dissipation throughout the jet?



GeV (+optical) flashes



Observations: LAT lightcurves

080916C

090902B
090926A

T95 (GBM)

Fermi LAT collaboration (2013)

 ‘Regular’ behaviour:

 Delayed rise

 Peaks during the prompt: likely not assoc.

with deceleration

 Extended monotonic decay (lasts well

beyond T95

 External origin (forward shock)?



Emission mechanism

 Synchrotron?

 Theoretical limit: a few 10 MeV (comoving)

 ~ 10 GeV (observed); limit tighter at late times

 Observed: 95 GeV @ 243 s,  32 GeV @ 34 ks (GRB 130427A) 

 Inverse Compton

 GeV peak during prompt  intense IC cooling by prompt radiation

e.g. Nakar & Piran (2010)

Kumar & Barniol Duran (2009)

Asano et al. (2009)

Razzaque et al. (2010)

Ghisellini (2010)

Bosnjak et al. 2009

Toma et al. 2011



Number of IC photons

Wind velocity

Bright GeV flashes:

No. of emitted IC photons 

(w.o. Pair loading):

Required pair multiplicity:

No. of emitted IC photons

per single electron:



Proposed mechanism: inverse Compton scattering 

of prompt MeV radiation in the forward shock

in a pair-enriched external medium

Forward shock

GeV
EXTERNAL
M E D I U M



Prompt radiation pair-loads and pre-accelerates the 
ambient medium ahead of the FS

Pair-enrichment of the external medium

FS

1. ISM particle scatters a prompt photon

2. Scattered photon pair-produces with another prompt photon

3. New pairs scatter further photons etc.

e-

e± e-

Loading and pre-acceleration controlled by 

the column density of prompt radiation

Z±,pre

e.g Thompson & Madau (2000) 

Beloborodov (2002)

Kumar & Panaitescu (2004)



GRB 080916C:
pair-loading and pre-acceleration

Pair loading at the forward shock Pre-acceleration and blastwave Lorentz factors

Beloborodov, Hascoet, IV (2013)



GRB 080916C:
thermal injection Lorentz factor

 Flash peaks when:

 Early decay due to fast 
evolution of inj and Z±

- pair loading



GRB 080916C: light curve

 Delayed rise

 Peak during the prompt

 Persists well after T95

T95 (GBM)

Flux above 100 MeV 

External medium:

Progenitor wind

Non-thermal particle acceleration NOT required

Beloborodov, Hascoet, IV (2013)

Wind parameter

r =
A

r 2



Ackermann et al. (2014)

Extended GeV emission: GRB 130427A

 GeV lasts up to a day

 Seed photons for IC:
transition from prompt (EIC) 
to afterglow (SSC)

 Fast cooling  smooth 
transition
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GRB 130427A: GeV + optical flash

 GeV-emitting particles also 
radiate optical via synchrotron

 Optical peaks simultaneously 
with GeV (Vestrand et al. 2014)

 Yields forward shock 
magnetization: B= 2 x 10-4

IV, Hascoet, Beloborodov (2014)
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GRB 130427A: TeV flash

 TeV emission

 Peak T~1 min

 E~1051 erg

 Detectable by current Cerenkov 
observatories

 Veritas upper limit at 1 day 
consistent with model

IV, Hascoet, Beloborodov (2014)



GeV (+optical) flashes: summary

 GeV/TeV flash:

 Forward shock in a pair-loaded Wolf-Rayet wind

 Radiative mechanism: inverse Compton of prompt and/or 

afterglow radiation

 Emitting particles quasi-thermal (even for TeV)

 Can infer bw and external medium density

 Optical flash:

 Peaks simultaneously with GeV

 Radiative mechanism: synchrotron

 Yields B in the FS


