

Konus-Wind gamma-ray bursts: temporal characteristics, hardness, and classification

D. S. Svinkin, V. D. Pal'shin, R. L. Aptekar, S. V. Golenetskii, D. D. Frederiks, P. P. Oleynik, A. E. Tsvetkova, and M. V. Ulanov

Ioffe Workshop on GRBs and other transient sources: 20 Years of Konus-Wind Experiment 22–26 September 2014, St.Petersburg

Outline

- Physical classification
- □ Konus-Wind experiment
- Duration
- □ Hardness
- Lags
- □ Comparison of classifications
- Conclusions

Physical classification

	Туре I	Type II	
Prompt emission (γ-rays)	short	long	
X-ray afterglows	not always observed;	always observed;	
	X-ray flares	X-ray llares	
Optical afterglows	rarely observed; weak	observed for most of bursts	
Host galaxies	early- and late-type galaxies; large offsets from their host centers	late-type galaxies; burst sources reside in the most bright blue regions	
Supernova	never observed; hard upper limits	observed (types Ib/c)	
Redshift (median)	~0.3	~1.8	
Suggested source	Coalescence of NS-NS or NS-BH	Collapse of massive stars ~> 100 M _{sun}	

Konus-Wind

- Two detectors NaI(TI) 4π FoV total, S_{eff} ~80–160 cm²
- Time history
 - recorded in 12 50 keV (G1), 50 200 keV (G2),
 200 760 keV (G3)
 - □ Two modes: waiting (resolution 2.944 s) and triggered (2 ms -256 ms, from T₀-0.512 s to T₀-230 s)
- Spectral measurements in the 20 keV -15 MeV band
- Very stable background (up to few days)

- We have analyzed 1834 GRBs detected during 1994 2010.
- Among them 84 with measured redshift (Tsvetkova talk)

Duration

- Durations are calculated in 80-1400 keV (G2+G3) band
 - Energy of the most GRBs is hard E_p (max EF_E) >80 keV
 - □ in G1 (20-80 keV) background is less stable
 - onset of X-ray afterglow in G1 can bias a duration
- \Box Burst begin (t₀) and end (t₁₀₀) are calculated at 5 σ level.
- T₅₀ и T₉₀ intervals of accumulation of 50% и 90% burst counts in a detector

$$T_{50} = 2.6 \pm 0.2 \text{ c}$$

 $T_{90} = 6.7 \pm 0.4 \text{ c}$

Durations (systematic effects)

- Signal-to-noise ratio (S/N; Bonnell et al. 1997)
- Cosmological time dilation
- Energy band (Fenimore 1995)
- Trigger algorithm

T_{50} and T_{90} distributions

- □ The burst sample contains 1834 GRBs (1994 -2010)
- Parameters of T₅₀ distribution is less sensitive to the search threshold.
- \Box T₅₀ was used for the classification.
- The sample is biased: lack of weak short GRBs (S/N<10, T₅₀ <1 s)</p>
- We used unbiased sample of 1168 GRBs with S/N>10. The boundary between long and short bursts is T₅₀ = 0.6 s
- □ The fraction of short GRBs (T₅₀ < 0.6 s) in the unbiased sample 22%, in the full sample 15% (BATSE -32%; Swift-BAT -8%; Fermi-GBM 15%)

 $\chi^2 = 9.3 (13 \text{ d.o.f})$ 7

Short GRBs with EE

- Morphology: short initial pulse, long, low intensity tail up to ~100 s (Lazzati et al., 2001; Connaughton, 2002; Frederiks et al., 2004; Norris & Bonnell 2006; Norris et al., 2011)
 22. condidates to about CDDs with 55 formed in KMA data
- 23 candidates to short GRBs with EE found in KW data
- □ Fraction among short GRBs:

Konus-Wind – 8% (23/296); BATSE – 25% (64/256); Swift – 23% (12/52).

Hardness

- Hardness ratio of count accumulated during burst in G3 and G2 (HR₃₂=G3/G2)
- □ We have analyzed 1143 GRBs
- The log T₅₀ logHR₃₂ distribution was fitted with two 2D Gaussian distributions.
- ☐ The fraction of short GRBs (T₅₀ < 0.6 s) in long/soft GRB cluster is 13%.
- Among 23 short GRBs with EE, initial pulses of *two* bursts are in long/soft GRB cluster

Hardness

D 2D Gaussian distribution (x=logT₅₀; y=logHR₃₂)

$$p(x,y|l) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-r^2}} \times \exp\left[-\frac{1}{2(1-r^2)}\left(\frac{(x-a_x)^2}{\sigma_x^2} + \frac{(y-a_y)^2}{\sigma_y^2} - \frac{C}{\sigma_x\sigma_y}\right)\right],$$
где
$$C = 2r(x-a_x)(y-a_y)$$

Likelihood

- $L = \sum_{i} \ln p(x_i, y_i),$
- $p(x,y) = \sum_{l} p(x,y|l)p_{l}$ $\Box \quad \text{Cluster parameters}$

Indicator function

$$I_l = \frac{p_l p(x, y|l)}{\sum_l p(x, y|l)}$$

l	a_x	T_{50c} , s	a_y	HR_{c}	σ_x	σ_y	r	p_l
$\frac{1}{2}$	$-0.940^{+0.032}_{-0.012}$ $0.835^{+0.017}_{-0.005}$	$\begin{array}{c} 0.115 \substack{+0.009 \\ -0.003} \\ 6.834 \substack{+0.265 \\ -0.081} \end{array}$	$-0.124^{+0.011}_{-0.019}$ $-0.499^{+0.001}_{-0.002}$	$\begin{array}{c} 0.752\substack{+0.020\\-0.032}\\ 0.317\substack{+0.001\\-0.002} \end{array}$	$\begin{array}{c} 0.442\substack{+0.033\\-0.015}\\ 0.560\substack{+0.003\\-0.019}\end{array}$	$\begin{array}{c} 0.221\substack{+0.008\\-0.010}\\ 0.216\substack{+0.003\\-0.003}\end{array}$	$\begin{array}{c} 0.020 \substack{+0.041 \\ -0.056 \end{array} \\ 0.176 \substack{+0.006 \\ -0.008 \end{array}$	$\begin{array}{c} 0.210 \substack{+0.011 \\ -0.003} \\ 0.791 \substack{+0.002 \\ -0.012} \end{array}$

Spectral lags

- □ Spectral lag (t_{lag}) is a measure of spectral evolution
- t_{lag} is calculated using a fit for cross correlation function (CCF) with 4th degree polynomial
- □ Confidence interval (68% CL) is calculated using bootstrap method

GRB 090618 $t_{lag} = 4.0 \pm 0.4 s$

GRB 120323A t_{lag} = (5. 4 ± 1.3) ×10⁻³ s

Spectral lags

□ Most of the short GRBs have |t_{lag} |<50 ms

 \Box Long GRBs t_{lag} distribution peaks at ~75 ms

□ Among long GRBs ~20% have |t_{lag} |<50 ms

Spectral lags

parameter, \boldsymbol{p}	channels	D_{KS}	P_{KS}
τ_{lag} (s)	G3-G1	0.678	8.5e-14
τ_{lag}/T_{50}		0.297	5.5e-03
τ_{lag} (s)	G2-G1	0.566	1.1e-15
τ_{lag}/T_{50}		0.245	2.7e-03
τ_{lag} (s)	G3-G2	0.568	2.2e-35
τ_{lag}/T_{50}		0.307	1.3e-10

Spectral lags of short GRBs

- □ 5 soft GRBs with T₅₀ <0.6 s have significant lags (t_{lag} >100 ms) and reside in the long/soft cluster.
- 2 GRBs classified as short GRB with EE reside in the long/soft cluster having t_{lag} >100 ms.
- □ Softer and longer bursts tend to have longer lags

Comparison of classifications

□ Konus-Wind sample contains 84 GRBs with measured z (detected up to the end of 2010)

- Type I 8 GRBs (7 short GRBs + GRB 060614)
- Type II 48 GRBs (Zhang et al., 2009; Kann et al., 2010, 2011)
- 28 unclassified with measured redshift

Comparison of classifications

- Konus Wind GRB redshifts
 - □ short < z > = 0.6
 - □ long < z > = 1.5
- Only one out of 6 short GRB has $E_p > 1$ MeV, while 16 out of 65 long GRBs have $E_p > 1$ MeV.

Conclusions

- Using the unbiased T_{50} distribution we derived the boundary between short and long KW GRBs $T_{50} = 0.6$ s with a fraction of short GRBs of 22%. The total number of short GRBs 296.
- □ Cluster analysis of KW GRBs suggests the existence of only two GRB classes: short/hard and long/soft.
- Spectral lag distributions of short and long GRBs differs significantly.
- Physical GRB types I and II corresponds to short/hard low-lag GRB and long/soft GRB classes, respectively.
- The hardness difference of the two GRB classes can be attributed to the difference of average source distances. Long bursts tend to be detected at large distances.
- The results were used in Pal'shin et al., Interplanetary Network Localizations of Konus Short Gamma-Ray Bursts, 2013 The second Konus catalog of short GRBs, in prep.

Thank you!