Fermi/GBM view of Magnetar Bursts: Bursts, Burst Active Episodes & Burst Induced Changes

Ersin Göğüş
Sabancı University, Istanbul

in collaboration with the Fermi/GBM team
General Properties of Magnetars

- Slowly rotating systems ($P_{\text{spin}} \sim 2 - 12$ s)
- Rapidly spinning down ($dP/dt \sim 10^{-13} - 10^{-11}$ s/s)
- Bright X-ray sources ($L \sim 10^{34} - 10^{35}$ erg/s)
- Transient magnetars ($L \sim 10^{32}$ erg/s in quiescence)
- Young systems as deduces from their galactic locations
- Unique X-ray spectral properties
- Characterized by bright hard X-ray / soft gamma ray bursts
Typical Magnetar Bursts

- Brief (~0.1–few s)
- Irregular times between bursts (seconds - years)
- Diverse time profiles
- Intense ($\sim 10^{36} - 10^{41}$ erg/s)
- Distinct from giant flares in duration, luminosity and energy spectrum
Intermediate Events

Woods & Thompson 2006
More Intermediate Events

SGR 1550–5418

Mereghetti et al. 2010

SGR 1806–20

Gözüsz et al. 2010
Giant Flares

SGR 0526–66

Mazets et al. 1979

SGR 1900+14

Hurley et al. 1999

SGR 1806–20

Hurley et al. 2005
The Gamma-ray Burst Monitor

- 4 x 3 NaI Detectors with different orientations.
- 2 x 1 BGO Detector either side of spacecraft.
- View entire sky while maximizing sensitivity to events seen in common with the LAT

The Large Area Telescope (LAT)

GBM BGO detector
- 200 keV – 40 MeV
- 126 cm², 12.7 cm
- Triggering, Spectroscopy
- Bridges gap between NaI and LAT.

GBM NaI detector
- 8 keV – 1000 keV
- 126 cm², 1.27 cm
- Triggering, Localization, Spectroscopy.
1. GBM magnetar burst catalog

2. Activity based classification of magnetars

3. Burst induced effects in:
 - Persistent soft & hard X-ray emission
 - Pulse profile
 - Source environment
<table>
<thead>
<tr>
<th>Magnetar</th>
<th>Active Period</th>
<th>Triggers</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGR J0501+4516</td>
<td>Aug/Sep 2008</td>
<td>26</td>
<td>New source at Perseus arm</td>
</tr>
<tr>
<td>SGR J1550-5418</td>
<td>Oct 2008</td>
<td>7</td>
<td>Known source - first burst active episodes</td>
</tr>
<tr>
<td></td>
<td>Jan/Feb 2009</td>
<td>117/331+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar/Apr 2009</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>June 2013</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SGR J0418+5729</td>
<td>June 2009</td>
<td>2</td>
<td>New source at Perseus arm</td>
</tr>
<tr>
<td>SGR 1806-20</td>
<td>Mar 2010</td>
<td>1</td>
<td>Old source - reactivation</td>
</tr>
<tr>
<td>1E 1841-045</td>
<td>Feb 2011</td>
<td>3</td>
<td>Known source - first burst active episodes</td>
</tr>
<tr>
<td></td>
<td>June/July 2011</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SGR 1822-1606 Swift 1834-0846</td>
<td>July 2011</td>
<td>1</td>
<td>New sources in galactic center region</td>
</tr>
<tr>
<td></td>
<td>Aug 2011</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4U 0142+61</td>
<td>July 2011</td>
<td>1</td>
<td>Old source - reactivation</td>
</tr>
<tr>
<td>1E 2259+586</td>
<td>April 2012</td>
<td>1</td>
<td>Old source - reactivation</td>
</tr>
<tr>
<td>Unconfirmed Origin</td>
<td>2008-2013</td>
<td>21</td>
<td>Multiple error boxes include new source 3XMM J185246.6+003317</td>
</tr>
</tbody>
</table>
All triggers: temporal properties

Unknown event avg $T_{90} = 61$ ms (known sources avg ~ 100 ms)
All triggers: spectral properties
Burst Energetics

SGR 1550-5418
Fluence: $7 \times 10^{-9} - 1 \times 10^{-5} \text{ erg/cm}^2$
$E = (2 \times 10^{37} - 3 \times 10^{40}) \text{ d}_5 \text{ erg}$
Flux: $8 \times 10^{-7} - 2 \times 10^{-4} \text{ erg/cm}^2\text{s}$
$L: 5 \times 10^{38} - 1 \times 10^{41} \text{ erg/s}$
Total Energy Release: $6.6 \times 10^{41} \text{ d}_5 \text{ erg (8-200 keV)}$

SGR 1806-20: $3.0 \times 10^{36} - 4.9 \times 10^{39} \text{ erg}$
SGR 1900+14: $7 \times 10^{35} - 2 \times 10^{39} \text{ erg}$
SGR 1627-41: $10^{38} - 10^{41} \text{ erg}$

SGR 0501+4516: $2 \times 10^{37} - 1 \times 10^{40} \text{ erg}$
1E 2259+586: $5 \times 10^{34} - 7 \times 10^{36} \text{ erg}$
NEW: GBM Bursts detected since Fermi launch
SYNERGY: Swift-Fermi-RXTE-IPN

Old source reactivation

- SGRs
- AXPs

Kouveliotou et al. 2014
Magnetars with Low Burst Rates

SGR 0418+5729
van der Horst et al. 2010

$B_d = 6 \times 10^{12} \, \text{G}$
Rea et al. 2010; 2013

SGR 1833 – 0832
Göğüş et al. 2010
Magnetars with Low Burst Rates

SGR 1822.3–1606 \Rightarrow
$B_d = 2.7 \times 10^{13} \, \text{G}$
Rea et al. 2012

SGR 1834.9–0846
Esposito et al. 2012

SGR 1745–29 \Rightarrow
Kannea et al. 2013
Magnetars with Low Burst Rates

How can sources with low dipole magnetic fields (e.g., SGR 0418+5729 or SGR 1822.3–1606) generate bursts?

XMM – Newton observations of SGR 0418+5729 on 2009 August 12 for 65 (36) ks gave the answer: Güver, Göğüş, Özel (2011), Tiengo et al. (2013)
T_{90} Duration of Burst Active Episode

T_{90}: Time since the onset of an outburst during which 90% of all observed bursts are recorded.

Onset of a burst active episode: If at least 5 bursts were observed from the same magnetar in 24 hours.

<table>
<thead>
<tr>
<th>Source</th>
<th>Outburst</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGR 1550–5418</td>
<td>2009</td>
</tr>
<tr>
<td>SGR 1627–41</td>
<td>1998</td>
</tr>
<tr>
<td>SGR 0501+4516</td>
<td>2008</td>
</tr>
<tr>
<td>SGR 1900+14</td>
<td>1998, 2002</td>
</tr>
</tbody>
</table>

Göğüş 2014

Göğüş 2014
SGR 1900+14: 1998, 2002

SGR 0501+4516 (2008)
SGR 1550+5418 (2009)
T_{90} of Burst Active Episode

<table>
<thead>
<tr>
<th>Source</th>
<th>T_{90}–BurstActivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGR 1550–5418 (2009)</td>
<td>5.6 days</td>
</tr>
<tr>
<td>SGR 1627–41 (1998)</td>
<td>9.1 days</td>
</tr>
<tr>
<td>SGR 0501+4516 (2008)</td>
<td>6.3 days</td>
</tr>
<tr>
<td>SGR 1900+14 (1998)</td>
<td>183 days</td>
</tr>
<tr>
<td>SGR 1806–20</td>
<td>112 – 311 days</td>
</tr>
</tbody>
</table>

Burst active episode of a prolific transient lasts less than 10 days.
Classification of Magnetars Based on Their Bursting Behavior

<table>
<thead>
<tr>
<th>Prolific Bursters</th>
<th>Prolific Transients</th>
<th>AXPs with SGR-like Bursts</th>
<th>Transients with Low Burst Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGR 1900 + 14</td>
<td>SGR 1627 - 41</td>
<td>1E 1048-5937, 1E 2259+586</td>
<td>SGR 0418 + 5729</td>
</tr>
<tr>
<td>SGR 1806 – 20</td>
<td>SGR 1550 - 5418</td>
<td>4U 0142+61, 1E 1841-045</td>
<td>SGR 1833 - 0832</td>
</tr>
<tr>
<td>SGR 0526 – 66</td>
<td>SGR 0501 + 4516</td>
<td>CXO J164710.2-455216</td>
<td>Swift 1822.3 – 1606</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XTE J1810-197</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Swift 1834.9– 0846</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AX J1818.8 - 1559?</td>
<td>SGR 1745 – 29, SGR 1935+2154?</td>
</tr>
</tbody>
</table>
SGR 1745–29 & SGR 1833–0832

Flux Decay

X-ray flux of SGR 1745–29 is constant for ~10 days following the onset

Similar flux trend was seen in SGR 1833 – 0832

Continuous heating of the crust by trapped fireball?

Kannea et al. 2013
SGR 1550-5418 = 1E 1547.0-5408

ASCA, XMM: “Magnetar Candidate” Gelfand & Gaensler 2007
Radio observation: \(P = 2.0698 \text{ s}, \ \dot{P} = 2.3 \times 10^{-11} \text{ s / s} \)
\(B = 2.2 \times 10^{14} \text{ G} \rightarrow \text{Magnetar} \) Camilo et al. 2008

SGR-like bursts:
- Oct 2008 (~1 week)
- Jan-Feb 2009 (~1 month)
- Mar-Apr 2009 (~1 month)

Most intense bursting on January 22, 2009
~450 bursts
GBM Trigger 090122037

- Trigger at 00:53:52 UT on January 22, 2009
- 1st of 41 GBM Triggers
- Trigger data for 600 s
- 58 untriggered bursts identified within 600 s

Enhanced Persistent Emission

Kaneko et al. 2010
Pulsation Detection

(a) 12-27 keV
(b) 27-50 keV
(c) 50-102 keV
(d) 102-293 keV
Timing Analysis

Lomb – Scargle test:

P: 0.1 → 10 s in 50 – 100 keV

\[P = 2.0699 \pm 0.0024 \text{ s} \]

Coherent signal: strongest in \(T_0 + 120 – 210 \text{ s} \)

No other episode of pulsations on this day or the following four days.
Pulse Profiles

- Double peaked at low E
- Single peak at high E
- No pulsation > 110 keV

(a) 10 – 14 keV
(b) 14 – 22 keV
(c) 22 – 33 keV
(d) 33 – 50 keV
(e) 50 – 74 keV
(f) 74 – 110 keV
RMS Pulsed Fraction Spectrum

- Correlates with energy
- Peaks in 50 – 74 keV
- Not significant > 110 keV
- Indication of a “dip”
Spectral Analysis

Time Integrated Spectrum \([T_0 + 72 – 248 \text{ s}]\)

8 – 909 keV Burst Free

Power Law

Total Energy
\[4.3 \times 10^{40} \text{ ergs}\]

Additional Blackbody \((kT = 18 \text{ keV})\):
\[\Delta C_{\text{stat}} = 13.5 \text{ (for 2 DOF)}\]
Time Resolved Spectra (νF_{ν})

$[T_0 + 72 – 117, 122 – 169, 173 – 223 \text{ s}]$

74 – 117 s Power Law only (Blackbody is not needed)

122 – 169 s Power Law

173 – 223 s Power Law

$F_{BB}/F_{TOTAL} = 26\%$

25\%
Evidence of the Blackbody Component

Temporal Properties
- Pulsations most significant in 120 – 210 s
- Pulse fraction peaks in 50 – 74 keV
- Pulsations not seen above 110 keV

Spectral Properties
- Blackbody required in 122 – 223 s
- Blackbody $kT \sim 17$ keV
- $F_{BB} \rightarrow 25\%$
- $F_{PWRL} \rightarrow 75\%$
Blackbody: Radius of the Emitting Region

Assuming a hot spot of radius R_{HS} on the neutron star surface

For $D = 5$ kpc, $kT = 17$ keV :

$A_{HS} \approx 0.044 \left(\frac{D}{5 \text{ kpc}}\right)^2 \text{ km}^2$

$\rightarrow R_{HS} \approx 120 \text{ m}$

\rightarrow Sign of a trapped fireball

Kaneko et al. 2010
The GBM Magnetar Team

- C. Kouveliotou (NASA/MSFC, USA), G. Younes (USRA, USA), S. Guiriec (UoMD, USA)
- M. Baring (Rice University, USA)
- E. Göğüş, Y. Kaneko, (Sabancı University, Turkey)
- A. Watts, A. van der Horst, D. Huppenkothen, M. van der Klis, R. Wijers, T. van Putten (U. of Amsterdam, The Netherlands)
- O. Kargaltsev (GWU), G. Pavlov (PSU)
- J. Granot (The Open University, Israel)
- J. McEnery, N. Gehrels, A. Harding (NASA/GSFC, USA)
- L. Lin (APC, U of Paris, France)