**Comprehensive** Overview of SGR J1550-5418 Bursts **Detected** with Fermi/GBM Alexander van der Horst **Anton Pannekoek Institute** University of Amsterdam





Thanks to the GBM Magnetar Team

## SGR J1 5 50-5418 • SGR J1550-5418 = AXP 1E1547.0-5408 • ASCA, XMM-Newton: magnetar candidate • Radio: P = 2.07 s, $Pdot = 2.3 \times 10^{-11}$ s/s, $B = 2.2 \times 10^{14}$ G • Fastest rotating magnetar; only 4 radio magnetars



Kaneko et al. 2010

von Kienlin et al. 2012

**Spectral Analysis of Bursts** 

- Time-integrated & time-resolved spectroscopy
  Photon models:
  - Power law (PL)
  - Black body (BB)
  - Optically Thin Thermal Bremsstrahlung (OTTB)
  - Comptonized: PL with exponential cut-off
  - Power law + Black body (PL+BB)
  - Black body + Black body (BB+BB)





# 1<sup>st</sup> Active Episode

# Best spectral fits for Oct 2008: Black body (~12 keV) Comptonized: index ~ 1







2<sup>nd</sup> & 3<sup>rd</sup> Active Episode Best spectral fits for Jan-Apr 2009: • OTTB • Comptonized: index ~ -1

**Brightest bursts:** 

BB+BB frequently preferred (~5 and ~14 keV)





#### van der Horst et al. 2012

# January 2009 Bursts



van der Horst et al. 2012

Comptonized index ~ -1 → OTTB recovered
Clear difference: Oct 2008 vs Jan-Apr 2009
SGR J0501+4516 with GBM: index ~ -0.3
Varying indices caused by differences in

magnetic field strength, geometry, plasma temperature, opacity

# Hardness vs Brightness



GBM data → E<sub>peak</sub> as hardness indicator

 More accurate than hardness ratios

 Large flux/fluence range: not a simple

 (anti-)correlation

 Similar to SGRs J0501+4516, 1806-20, 1900+14

# **BB+BB** Correlations



# **Emission Area vs Temperature**



van der Horst et al. 2012

#### Low-temperature BB

- Area comparable to NS area
- High-temperature BB:
  - Area down to few hundredths of km<sup>2</sup>
  - Strong area-temperature anti-correlation

# **Broadband Spectra**



Lin et al. 2012

## GBM + XRT

- 42 bursts in Jan 2009
- Best spectral fits:
  - 31 bursts: BB+BB
  - 1 burst: Comptonized
- Comptonized index ~ -0.5 instead of ~ -1
- Multiplicative factor between GBM and XRT: ~1



Lin et al. 2012

# Time-resolved Spectroscopy 49 brightest bursts: Comptonized & BB+BB



#### Younes et al. 2014

# **Comptonized Results**



Younes et al. 2014

# **BB+BB:** Correlations



# **BB+BB:** Flux Dependence



Younes et al. 2014

Trends in Time-Resolved Spectra
Comptonized:

- E<sub>peak</sub> flux correlation: break at 10<sup>-5</sup> erg cm<sup>-2</sup> s<sup>-1</sup>
- New: index flux correlation break at same flux
- BB+BB:
  - high-kT: R<sup>2</sup> increases & kT decreases with flux
     adiabatic cooling of fireball
  - low-kT:
    - < 10<sup>-5.5</sup> erg cm<sup>-2</sup> s<sup>-1</sup>: R<sup>2</sup> increases & kT constant with flux
    - > 10<sup>-5.5</sup> erg cm<sup>-2</sup> s<sup>-1</sup>: R<sup>2</sup> saturates & kT increases with flux
    - saturation R = 30 km  $\rightarrow$  maximum fireball R
    - → internal magnetic field > 4.5x10<sup>15</sup> G
  - flux dependence of R<sup>2</sup> kT correlation

# Conclusions

- Extreme bursting activity of SGR J1550-5418: wealth of data and lots of "food for thought"
- Time-integrated spectral analysis:
  - Spectral evolution over burst activity episodes: BB in Oct 2008 vs OTTB/BB+BB in Jan-Apr 2009
  - Complex E<sub>peak</sub> fluence (anti-)correlation
  - BB+BB: ~10 km cool BB and small hot BB
  - GBM+XRT: BB+BB preferred
- Time-resolved spectral analysis:
  - E<sub>peak</sub> flux & index flux correlations with break
  - high-kT BB: adiabatically cooling fireball
  - low-kT BB: coupled with high-kT BB, but nature uncertain