

Future Astro-H Capability in Observing Gamma-Ray Bursts and their Afterglows see ASTRO-H White Paper coming soon

Makoto S. Tashiro (Saitama Univ.), Daisuke Yonetoku (Kanazawa Univ.), Masahiro Ohno, Takafumi Kawano (Hiroshima Univ.), Hiroaki Sameshima, Tadayuki Takahashi (ISAS/JAXA), Kazutaka Yamaoka (Nagoya Univ.), Richard Mushotzky (GSFC/NASA) and ASTRO-H GRB teams

ASTRO-H will be launched in FY2015

X-RAY OBSERVATORY HSTRD-H	NASA Aoyama Gakuin U. U. of Cambridge CEA/DSM/IRFU CfA/Harvard Chubu U. Chubu U. Columbia U. CSA Dublin Institute for Advanced Studies Durham U. Ehime U. ESA U. of Geneva Gunma Astronomical Observatory Hiroshima U.	Kanazawa U. Kochi U. of Tech. Kobe U. Kogakuin U. Kyoto U. LLNL U. of Maryland Miami U. U. of Michigan MIT Miyazaki U. Nara Women's U. Nihon Fukushi U. Nihon Fukushi U. Nihon U: NIMS Osaka U. RIKEN	Rutgers U. Saint Mary's U. Saint Mary's U. Saitama U. Shibaura Inst. Tech. SRON Stanford U./KIPAC STScl Toho U. Tokyo Inst. Tech Tokyo Inst. Tech Tokyo U. of Sci. U. of Tokyo U. of Tsukuba. Waseda U. U. of Wisconsin Yale U.
------------------------------	---	--	--

ASTRO-H	Performance
Soft X-ray Spectrometer (SXT-S+XCS) X-ray μ-calorimeter array 0.3-12 keV	Angular resolution 1.7 arcmin (HPD) Effective area 210 cm ² @6 keV Energy resolution 4-7 eV FWHM FOV 3 arcmin @ 6 keV
Soft X-ray Imaging System (SXT-I+SXI) X-ray BI CCD 0.5-12 keV	Angular resolution <1.7 arcmin (HPD) Effective area 360 cm ² @6 keV Energy resolution 150 eV FOV 34 x 34 arcmin ²
Hard X-ray Imaging System (HXT+HXI) multi-layered hard X-ray mirror DS-Si-D+ CdTe 5-80 keV (F.L 12 m)	Angular resolution 1.7 arcmin (HPD) Effective Area 300 cm ² @30 keV Energy resolution 2 keV FOV 9 arcmin @ 30 keV
Soft Gamma-ray Detector (SGD) Si-Pad+ CdTe-Pad 10-600 keV	Compton Camera Effective area 100 cm ² @100 keV Energy resolution 2 keV 1mCrab @ 200 keV polarimetry

Prompt emission with SGD-Shield

✓ Effective area ~800 cm² at 1 MeV (2 x of WAM)
✓ Energy range: 150(TBR)-5000 keV
✓ High speed spectroscopy:

32 enegy ch in every 16 ms (covers 5.376 s /GRB)
→enhance the hard-X-ray spectroscopy science

Suzaku-WAM Observed over 1000 confirmed GRBs

twice of Suzaku-WAM's

Short GRB simulation with SGD-shield

~0.1 s time resolution

Afterglow observation with telescopes

luminosity functions of GRB afterglow based on 572 samples of 6year Swift/XRT data. Evans et al. (2009, MNRAS, 397, 1177)

Flux	To + 10 hr.	To + 30 hr.	To + 50 hr.
$> 10^{-11} \text{ erg s}^{-1} \text{ cm}^{-2}$	1.7 GRB/yr.	o.5 GRB/yr.	0.2 GRB/yr.
$> 10^{-12} \text{ erg s}^{-1} \text{ cm}^{-2}$	20 GRB/yr.	10 GRB/yr.	3 GRB/yr.

GRB970508 (Piro et al.) GRB970828 (Yoshida et al.) GRB011211 (Reeves et al.) Mg XI sec/keV 0.0 7 Si XIV ö S XVI a) (ph cm⁻² Counts s⁻¹ keV⁻ 4×10^{-3} 0.15 10-3 counts, Ar XVIII counts/s/keV 3 3.5 Line Energy (keV) 0.1 Normalîzed Ca XX 10 2×10^{-3} 0.05 0 N \odot × 10 2 0.5 10 0.2 0.5 GRB991216 (Piro et al.) 2 GRR0002 ntonelli Observed energy (keV) 50 atson et 43.5 3 15 mic features in X-ray afterglow spectra 10 Energy (keV) GRB990705 (Amati et al.) 0.5 5 10 15 channel energy (keV) $\lambda(\text{Å})$ GRB001025A (Watson et al.) ke' b ${ m Photons/cm}^{2}$ ∞ 0.1 \sim ∞

0.01

10

100

channel energy (keV)

Afterglows with SXS+SXI

Fe features from Ejecta/CSM assuming the case of GRB991216 (Piro et al. 2000)

Simulation of X-ray afterglow spectra10 ksec exposureSearch the emission lines in X-ray afterglow spectra.10 ksec exposureWeak iron emission lineSoft X-ray emission linesEW = 50 eVas reported from GRB 011211 by XMM (Reeves et al.)

Doppler velocity and time variation of emission lines show a geometrical structures of GRB explosions. We can trace the circumstellar chemical environment of GRB progenitors.

functions. Note the overall similar absorption amplitude irrespective of z.

et al.

Afterglows with SXS+SXI Including WHIM structure at z = 0.1 by XSTAR

(100 ks exp. F=3x10⁻¹² erg/cm²/s, T=10⁵ K, Z = 0.2 Z_{SUN}, N_H = 10²² cm⁻²)

Fine spectroscopy of Afterglows Search for the missing baryons --- WHIM

WHIM elements detectability

 $F_{2-10keV} = 2 \times 10^{-12} \text{ cgs (100 ks)}$ WHIM of $N_{\text{H}} = 10^{22} \text{ cm}^{-2}$ $T_{WHIM} = 10^{5} \text{ K}$ $Z_{WHIM} = 0.2 Z_{\text{solar}}$

Hard X-ray/Gamma-ray Sensitivity

Expected sensitivity of SXI, HXI and SGD

Schedule

Summary Suazku to ASTRO-H

Suzaku

1. Prompt emissions with WAM

- Confirmed BATSE like spectral parameter distribution w/ ~1200 GRB
- Temporal studies using large sample

2. Afterglows with XIS+HXD

- Spectral study of 4 GRBs afterglows

ASTRO-H SXS-XCS (flight model) 2014-09-6

ASTRO-H

- Prompt with SGD-Shield Doubled area than that of Suzaku/HXD-WAM High time resolution spectroscopy
- 2. Follow-up with narrow fovs
 - Elemental features in spectra
 - Ejecta/CSM search with the High resolution spectroscopy with SXS (ΔE ~ 7eV @ 6keV)
 - ✓ WHIM at distant universe
 - ✓ wide band high sensitivity observation up to 80 (600) keV by SXT-SXI + HXT-HXI (+SGD)