

Future KONUS experiments

V. D. Pal'shin, R. L. Aptekar, D. D. Frederiks, S. V. Golenetskii, A.L. Lysenko, P.P. Oleynik, D. S. Svinkin, A. E. Tsvetkova, M.V. Ulanov *A.F.Ioffe Physical-Technical Institute, St.Petersburg, Russia*

Konus-UF onboard the World Space Observatory-Ultraviolet (WSO-UV)

http://www.wso-uv.org/wso-uv2/

Konus-UF

$\begin{array}{c} 3 \\ 4 \\ 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		
	Energy range	10 keV – 16 MeV
	FoV	$2 \times 2\pi = 4\pi$
	Energy resolution (FWHM)	7.5% at 662 keV
	Dead time per event	3 μs
	Eff. area	~100-160 cm ²
	Sensitivity	~1×10 ⁻⁷ erg cm ⁻²
Konus-UF detector unit: $1 - Nal(TI)$ crystal	Data	~100 Mb/day
(D=13 cm, H=7.5 cm), 2 – beryllum entrance window, 3- aluminium housing, 4 – lead glass, 6 – photomultiplier, 12, 13, 14 – electronic boards.	Weight	24 kg
	Power consumption	<10 W

Goals: observations of GRBs, SGR bursts, solar flares and other transient phenomena

Future KONUS experiments GRB 2014 St Petersburg, Russia, 22-26 September 2014

HELIKON-I onboard the Interhelioprobe

|--|

- Multi-wavelength solar observations at short distances from the Sun (up to 60RS)
- Out-of-ecliptic solar observations (up to 30°) and observations of the Sun's opposite side
- □ Lunch: ~2020-2021
- □ <u>Orbit</u>:

Perihelion: 60-70 R_{Sun} (~0.3 AU)

Aphelion: 250-260 R_{sun} (~1.2 AU)

Inclination: up to 30° to the ecliptic.

<u>HELIKON-I:</u>
Single NaI(TI) or LaBr₃(Ce) detector:
NaI(TI) (D=13 cm, H=7.5 cm) – similar to Konus-UF
LaBr₃(Ce) (D=7.6 cm, H=7.6 cm)

http://www.izmiran.rssi.ru/projects/space/INTERHELIOPROBE/

HELIKON-I (LaBr₃)

Goals: studying solar flares (by measurements of the 'tail' of the thermal component, non-thermal component and gamma-ray lines: annihilation line, nuclear lines), GRBs, SGR bursts, and other transient phenomena

 $LaBr_3(Ce)$ D=7.6 cm H=7.6 cm, AI housing

GRB 2014 St Petersburg, Russia, 22-26 September 2014

Ioffe Physical Technical Institute

KONUS-FG onboard GAMMA-400

http://gamma400.lebedev.ru

- GAMMA-400 (Gamma
 - Astronomical Multifunctional
 - Modular Apparatus) the
 - main instrument pair-
 - conversion γ -ray telescope
 - (100 MeV 3 TeV)
- □ Launch: ~2020-2022
- High elliptical orbit: an apogee is 300000 km, a perigee is 500 km, orbital period is 7 days, an inclination angle is 51.8 deg
- KONUS-FG: 4 DN detectors and 2 DS detectors
- DN: NaI(Tl) D=13 cm, H=1.5 cm (lead shield)
- DS: NaI(Tl) D=13 cm, H=7.5 cm similar to Konus-UF
- Be entrance window

Konus-FG

Konus-FG-DS/2 Konus-FG-DS/2	4 DN detectors (D=13 cm, H=1.5cm) – autonomous localization system	
	Energy range	10 keV – 1 MeV
	FoV	0.7×2π (4.4 sr)
	Loc. accuracy	down to ~1 deg
	Weight (4 det.)	24 kg
	2 DS detectors (D=13 cm, H=13cm) – spectroscopic, similar to Konus-UF	
Goals: observations AND AUTONOMOUS LOCALIZATION of GRBs, SGR bursts, solar flares and other transient phenomena	Energy range	10 keV – 16 MeV
	FoV	$2 \times 2\pi = 4\pi$
	Eff. area	~100-160 cm ²
	Sensitivity	$\sim 1 \times 10^{-7} \text{ erg cm}^{-2}$

GRB 2014 St Petersburg, Russia, 22-26 September 2014

Not new: omnidirectional scintillation detectors, moderate effective area (~100 cm²), moderate energy resolution (≅7.5% at 662 keV), wide energy range (~10 keV – 16 MeV)

Electronics:

- Better, faster signal processing
- Much larger amount of the data can be accumulated and transmitted to the ground
- That enables sophisticated trigger algorithms and much more detailed measurements of trigger events and background

- There can be several KONUS experiments in operation in ~2018-2025
- In interplanetary space they will serve as continuous monitors of hard X-ray and gamma-ray transients in a wide energy range ~10 keV - 16 MeV with a sensitivity down to ~1×10⁻⁷ erg cm⁻²
- Flying at distances up to 900 light seconds they will be basic vertexes of Interplanetary Network (IPN)
- Operating simultaneously they will constitute their own independent IPN and provide reliable measurements of temporal and spectral features in GRBs, SGR bursts and other transients