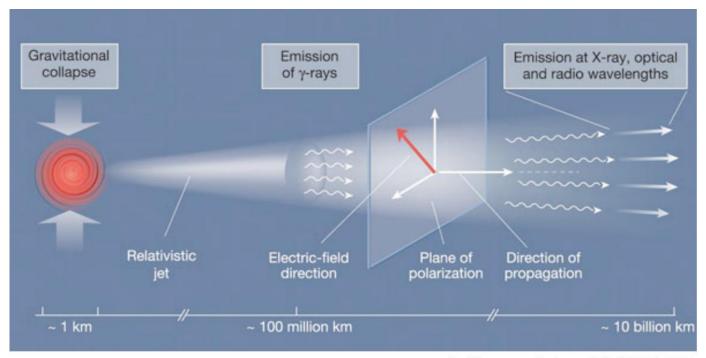
Polarization observations of GRB prompt emission by POLAR

Shaolin XIONG

xiongsl@ihep.ac.cn

(On behalf of the POLAR collaboration)


Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS)

Gamma-Ray Burst (GRB)

- **Discovered** in late 1960s
- Related Sciences
 - > star, galaxy, universe
- Observations
 - Prompt emission: short/long
 - > Afterglow: rich features
 - > Multi-messenger: GW, ...
- **Open questions**
 - > Progenitor
 - > Central engine
 - > Jet launch
 - ➤ Jet composition/structure
 - > Radiation mechanism
 - Standard candle?

Polarization of the prompt gamma-rays emission

E. Waxman, Nature 423 (2006) 388

- Many models give different predictions on the polarization parameters
- Polarization holds information on emission process/emission region/magnetic field, etc.
 - Synchrotron emission, Inverse Compton, photospheric emission
 - Ordered or random magnetic field

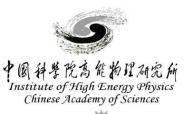
Previous polarization measurements

GRB	Instr./Sat.	Pol. (%)	Remark		
160530A	COSI	< 46%	low statistics		
110721A	GAP/IKAROS	84^{+16}_{-28}	Constant Pol. Angle		
110301A	GAP/IKAROS	70 ± 22	Constant Pol. Angle		
100826A	GAP/IKAROS	27 ± 11	Pol. Angle changes by $\approx 90^{\circ}$		
021206	RHESSI	80 ± 20	systematics		
021206	RHESSI	41^{+57}_{-44}	systematics		
140206A	IBIS/INTEGRAL	≥ 48	-		
061112	IBIS/INTEGRAL	≥ 60			
041219A	IBIS/INTEGRAL	$\leq 4/43 \pm 25$	Changing Angle and Degree		
041219A	SPI/INTEGRAL	98 ± 33	Inconsistent with IBIS		
960924	BATSE/CGRO	≥ 50	-		
930131	BATSE/CGRO	≥ 35	-		

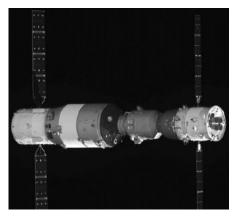
- Most measurements performed by non-dedicated instruments
- Non of the measurements is really constraining
- Required: A large sample of GRB constraining measurements

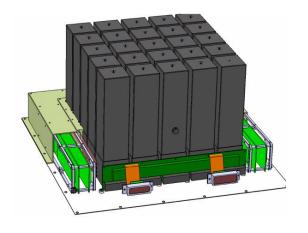
POLAR: a dedicated GRB polarimeter

- China-Europe Collaboration
- China's Space Lab. Tiangong-2
- Operation: 2016/9-2017/4
- Science Objectives
 - > Polarization GRB prompt emission
 - > **GW EM** counterpart
 - > Pulsar navigation experiment

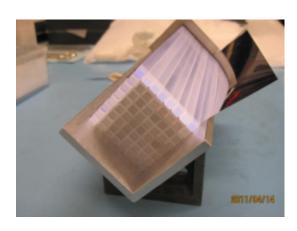

N. Produit et al. NIMA 2005, NIMA 2018

Electronics

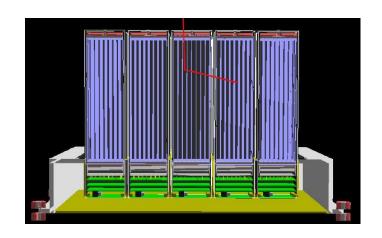


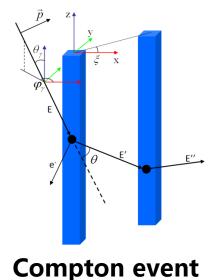


Launch



Installed on TG-2


How to measure (linear) polarization of X/gamma?


POLAR detector

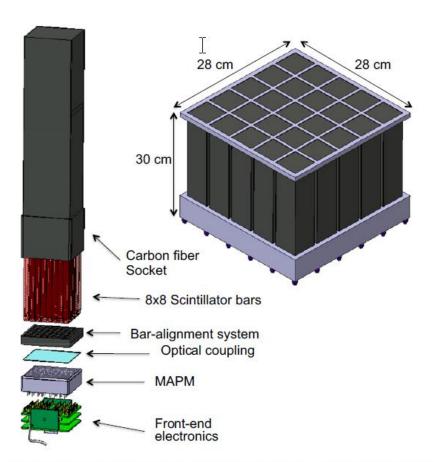
64 bars per module


1600 bars in total

 E_0 E_0 E'

 $d\sigma = \frac{r_o^2}{2} d\Omega \left(\frac{E'}{E_o}\right)^2 \left(\frac{E_o}{E'} + \frac{E'}{E_o} - 2\sin^2\theta\cos^2\eta\right)$

Klein-Nishina Formula


Modulation curve

Distribution function $C(\xi) = A\cos(2(\xi - \varphi + \frac{\pi}{2})) + B$

$$\mu = \frac{C_{\text{max}} - C_{\text{min}}}{C_{\text{max}} + C_{\text{min}}}$$

$$P = \frac{\mu}{\mu_{100}}$$
Modulation factor Polarization level

Basic facts of POLAR

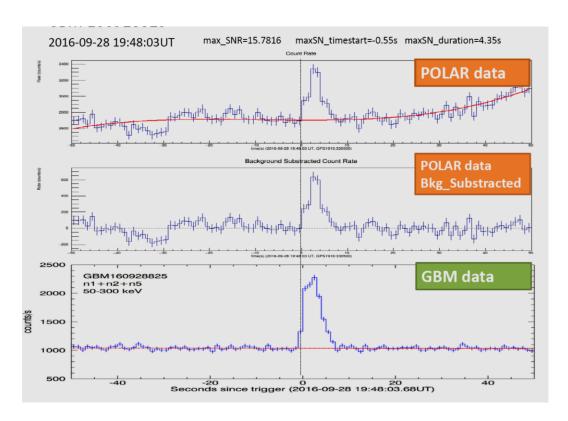


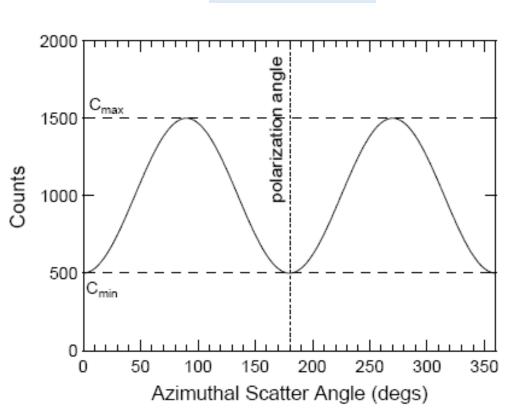
Fig. 1. Scheme of POLAR detector. *Left*: Exploded view of one module from POLAR target. *Right*: Complete POLAR target, i.e. the assembly of 25 modules, with its approximate dimensions.

N. Produit et al. NIMA 2018 Xiong et al. NIMA, 2009

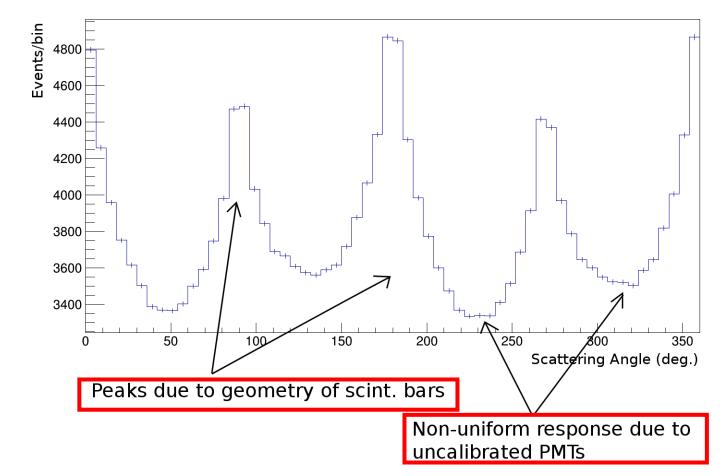
Items	value				
Detector material	Plastic scintillator (EJ-248M)				
Yearly detectable GRBs	~50 GRBs/year				
GRB localization accuracy	\leq 5° (Fluence \geq 10 ⁻⁵ erg cm ⁻²)				
Detection energy range	~50 - 500 keV				
Field of view	$\pm 70^{\circ} \times \pm 70^{\circ}$ (~1/3 of the sky)				
Modulation factor	40%@200 keV				
MDP	<10% (Fluence _{total} $\geq 3 \times 10^{-5}$ erg cm ⁻²)				
Detector geometry area	~570 cm ² (on-axis view)				
Mass	OBOX: 27.6 kg, IBOX: 3.52 kg				
Size	OBOX: 462×462×268.5 mm ³ IBOX: 247×160×85 mm ³				
Maximum power consumption	≤80 W				
Time accuracy(UTC)	±1 ms				
Reliability	0.90 (in 2 years lifetime)				

GRBs detected by POLAR

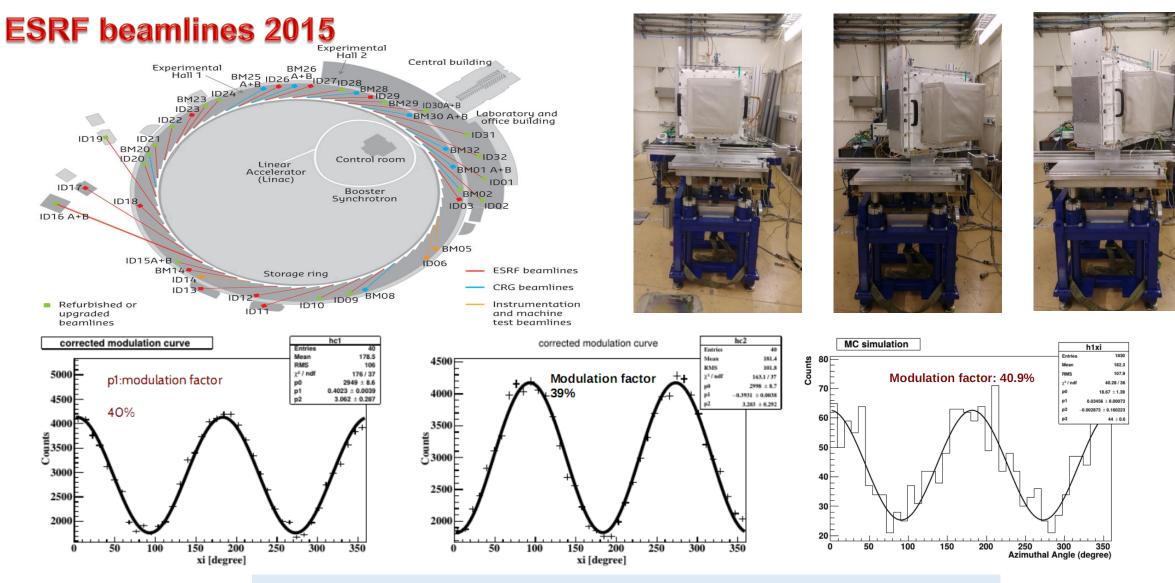
The first GRB GCN Circular!


```
GCN CIRCULAR
NUMBER:
        20126
SUBJECT: GRB 160928A: The first GRB detected by POLAR
         16/11/04 15:30:06 GMT
         Shaolin Xiong at IHEP <xiongsl@ihep.ac.cn>
S. L. Xiong (IHEP), N. Produit (UniGe), T. W. Bao (IHEP), T. Batsch (NCBJ),
T. Bernasconi, F. Cadoux, I. Cernuda (UniGe), J. Y. Chai, Y. W. Dong, M. Z. Feng (IHEP),
N. Gauvin (UniGe), M. Y. Ge (IHEP), W. Hajdas (PSI), J. J. He, Y. Huang (IHEP),
M. R. Kole (UniGe), M. N. Kong (IHEP), C. Lechanoine-Leluc (UniGe), H. C. Li,
L. Li, Z. H. Li, J. T. Liu, X. Liu, F. J. Lu (IHEP), R. Marcinkowski (PSI), S. Orsi, M. Pohl,
D. Rapin (UniGe), A. Rutczynska, D. Rybka (NCBJ), H. L. Shi, L. M. Song, J. C. Sun (IHEP),
J. Szabelski (NCBJ), R. J. Wang, Y. H. Wang, X. Wen, B. B. Wu (IHEP), X. Wu (UniGe),
H. L. Xiao (PSI), H. H. Xu, M. Xu, J. Zhang, L. Zhang, L. Y. Zhang (IHEP), P. Zhang (PSI),
S. N. Zhang, X. F. Zhang, Y. J. Zhang, Y. Zhao, S. J. Zheng (IHEP), A.
Zwolinska (NCBJ)
(i.e. the POLAR team):
POLAR, a dedicated Gamma-Ray Burst polarimeter, has been launched successfully
on-board the Chinese space laboratory Tiangong-2 (TG-2) on Sep 15, 2016.
During the commissioning operation phase, at 19:48:05.00 UT on 28
September 2016 (TO),
POLAR detected the GRB160928A in a routine ground search of the data,
which was also observed by the Fermi/GBM (trigger 496784887/160928825),
INTEGRAL/SPI-ACS (trigger #7579) and Konus-WIND (trig #4385).
```

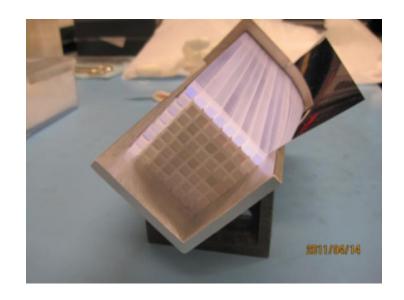
- Detected 55 GRBs, 49 GCN Circulars http://www.isdc.unige.ch/polar/lc/
- Discover ~150 GRB/year, one of the best sensitive GRB detectors
- Best polarimeter in 50-500 keV ever, with MDP~10%
- Localization error: ~ 5 degrees

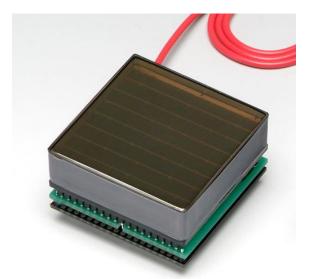

Many effects in the measured modulation curve

Ideal case

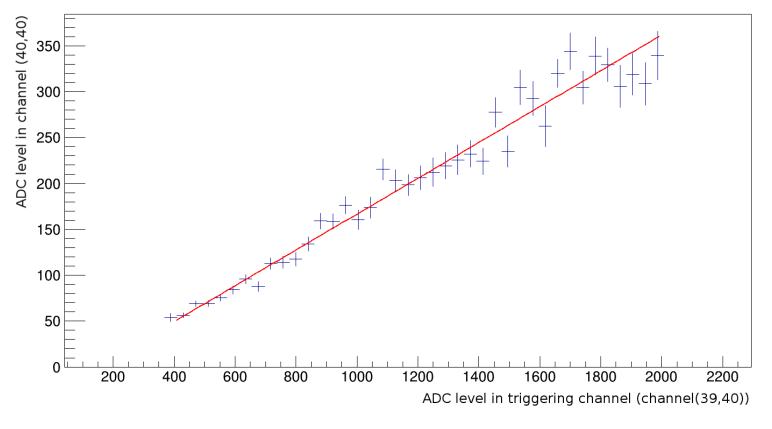


Real case

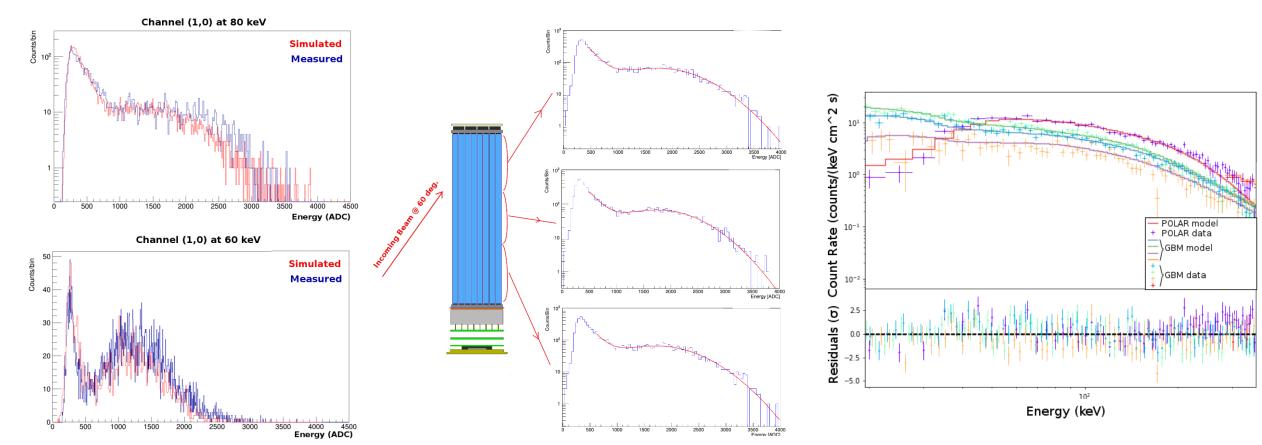



Comprehensive Calibrations

H. Xiao et al. NSS/MIC Conf. Proc. 2015 Kole et al. NIMA, 2017; Li et al. NIMA, 2018



Cross-talk effect



Cross Talk Channel (39,40) to Channel (40,40)

from: www.hamamatsu.com

Energy response

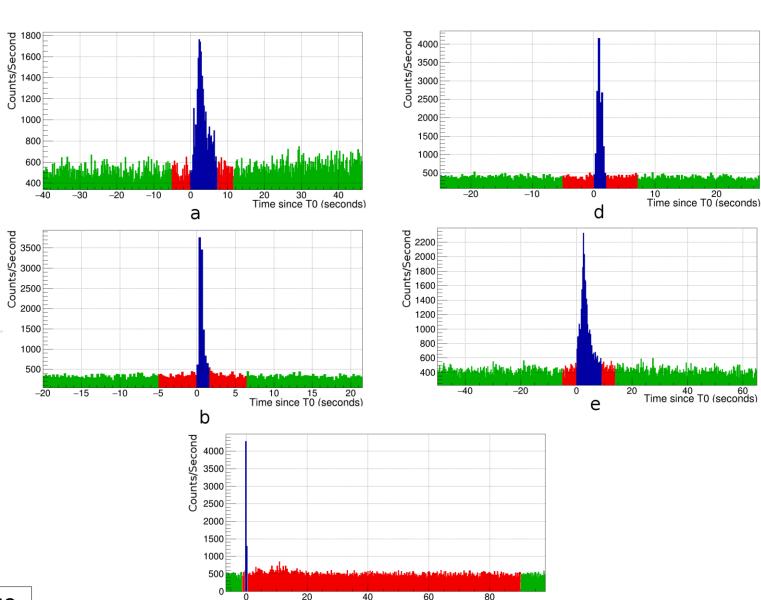
- Response includes temperature dependence, non-linear effects in electronics and interaction position in the bar
- Final calibration uncertainties result in a systematic error of 2% in polarization measurement

Accurate polarization measurement of 5 GRBs

The sample

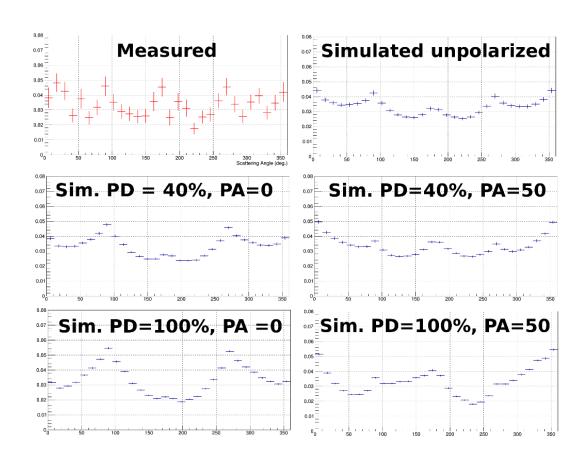
- a. 161218A
- b. 170101A
- c. 170114A
- d. 170127C
- e. 170206A

* Their location and spectra were measured by other GRB missions

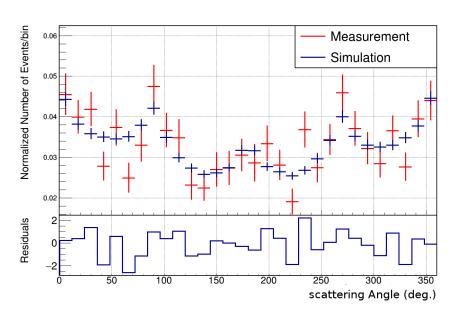


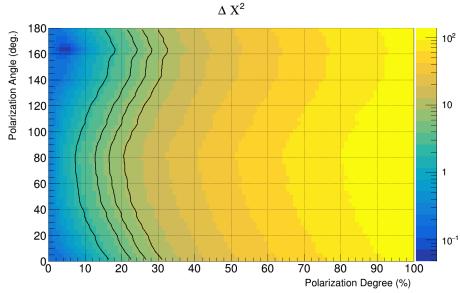
astronomy

Detailed polarization measurements of the prompt emission of five gamma-ray bursts

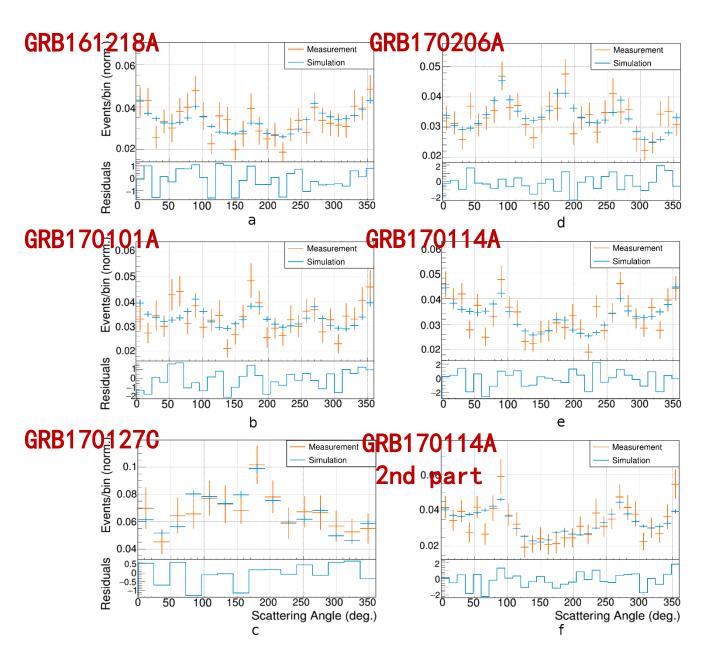

Shuang-Nan Zhang (12.10*, Merlin Kole (13.10*, Tian-Wei Bao¹, Tadeusz Batsch⁴, Tancredi Bernasconi⁵, Franck Cadoux³, Jun-Ying Chai¹², Zi-Gao Dai⁴.², Yong-Wei Dong¹, Neal Gauvin⁵, Wojtek Hajdas³, Mi-Xiang Lan⁴.9, Han-Cheng Li¹², Lu Li¹, Zheng-Heng Li (12.1², Ziang-Tao Liu¹, Xin Liu¹², Radoslaw Marcinkowski³, Nicolas Produit (15.5, Silvio Orsi³, Martin Pohl³, Dominik Rybka⁴, Hao-Li Shi¹, Li-Ming Song¹², Jian-Chao Sun¹, Jacek Szabelski⁴, Teresa Tymieniecka⁴, Rui-Jie Wang¹, Yuan-Hao Wang¹², Xing Wen¹², Bo-Bing Wu¹, Xin Wu³, Xue-Feng Wu⁰, Hua-Lin Xiao¹³, Shao-Lin Xiong¹, Lai-Yu Zhang¹, Li Zhang¹, Xiao-Feng Zhang¹, Yong-Jie Zhang¹ and Anna Zwolinska⁴

S.N. Zhang et al., 2019, Nature Astron., 3, 258




Time since T0 (seconds)

Simulate and fit the modulation curve



GRB 170114A

Modulation curves of 5 GRBs

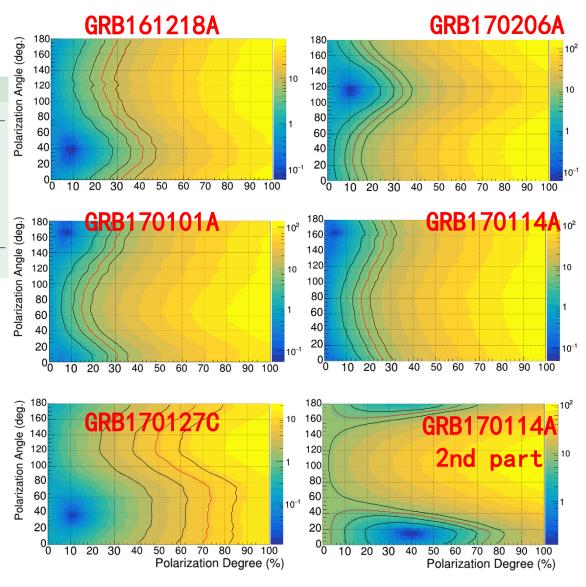
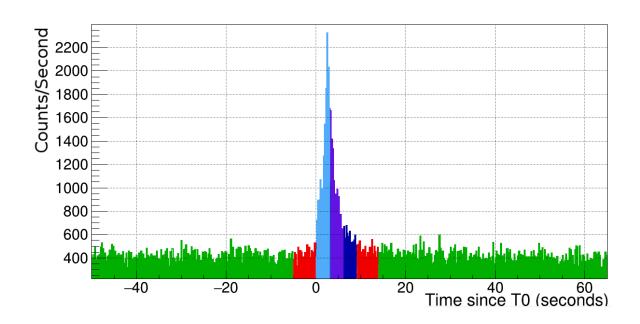
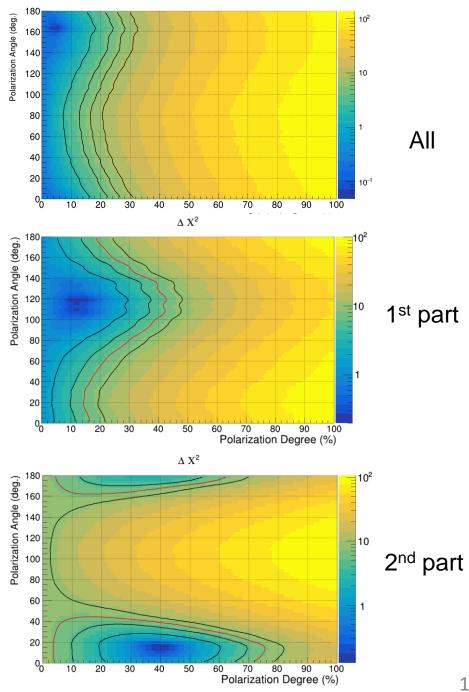

Polarization degree and angle

Table 1 Summary of the five GRBs											
GRB	T ₉₀ (s)	Fluence	PD	Probability (PD < 2%)	PD _{up} (99%)	PA (°)	PA change				
161218A	6.76	1.25×10 ⁻⁵	9%	9%	45%	40	No				
170101A	2.82	1.27×10 ⁻⁵	8%	13%	31%	164	No				
170127C	0.21	7.4×10^{-6}	11%	5.8%	67%	38	Unknown				
170206A	1.2	1.34×10 ⁻⁵	10%	12%	31%	106	No				
170114A	8.0	1.93×10 ⁻⁵	4%	14%	28%	164	Yes				
170114Ap1	NA	NA	15%	8%	43%	122	NA				
170114Ap2	NA	NA	41%	0.49%	74%	17	NA				


The different properties of the five GRBs and two time bins of GRB 170114A are included. In units of erg cm $^{-2}$ in the 10–1,000 keV energy range. NA, not applicable; PA, polarization angle; PD, polarization degree; PD $_{up}$ (99%), the 99% confidence upper limit in PD.


- All have rather low polarization, which disfavors high polarization models
- Discover the polarization angle evolution in a single pulse

S.N. Zhang et al., 2019, Nature Astron., 3, 258


Polarization angle evolution in GRB 170114A

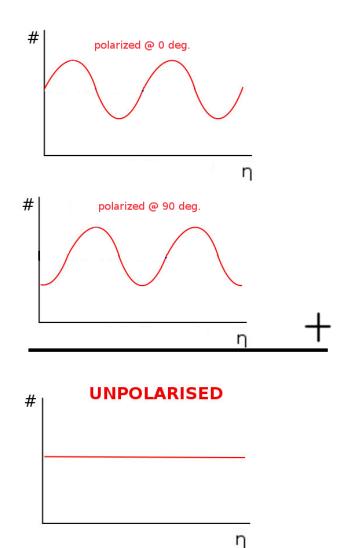
S.N. Zhang et al., 2019, Nature Astron., 3, 258

Time-resolved polarization of GRB 170114A

GBM: BGO0

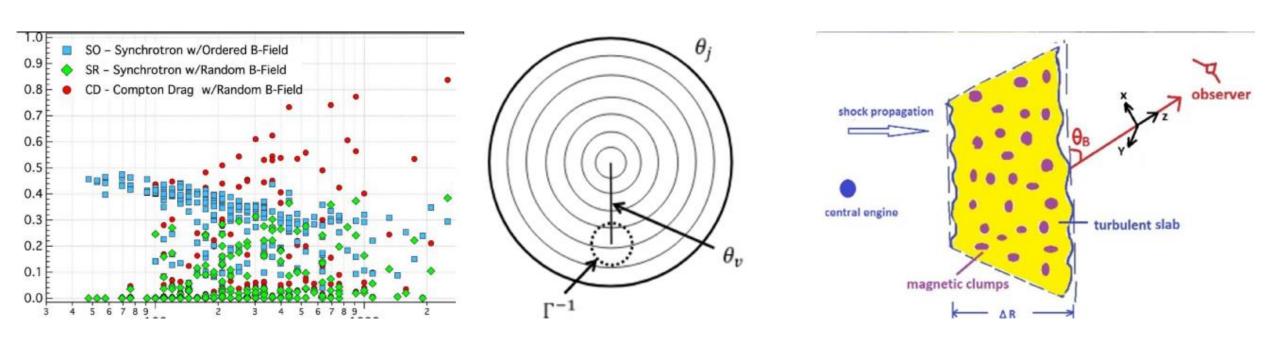
Time (s)

30


1500

2400

Rate (cnt s^{-1})


- Spectra data from both POLAR and GBM
- Polarization data from POLAR
- Results indicate the polarization angle changes during the GRB!

Polarization mixture effect?

- Low polarization is caused by the evolution of polarization angle in short timescale??
- Time-resolved polarization analysis need to improve in the future due to the limited statistics

How to interpret?

Not very clear yet, more theory work is needed

POLAR-2

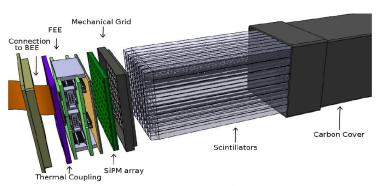
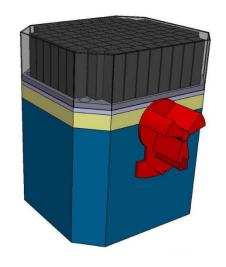
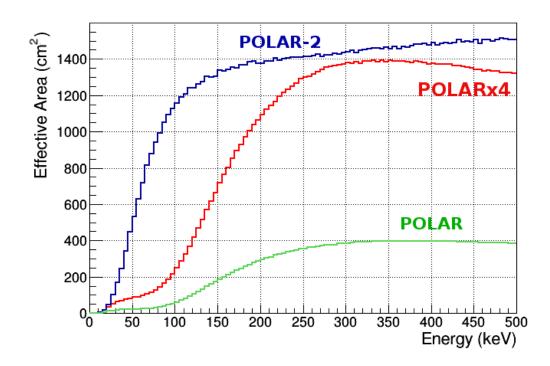




Figure 5. Schematic exploded view of a single POLAR-2 module

- Increase of modules by factor 4, technological improvement factor 2.5
- Can do polarization studies of GRBs with fluence down to 1E-7 erg/cm2 (like GRB170817A)

Summary

- Gamma-ray polarization measurement is very important but challenging
- POLAR did detailed polarization measurement of 5 bright GRBs
 - All 5 GRBs have rather low polarization degree, disfavor high polarization model
 - Polarization angle evolve in the single-pulse GRB
 - More GRB polarization analysis is ongoing
- POLAR-2 designed to be the most sensitive GRB detector in orbit
 - China's Space Station
 - Approved in June 2019, and launch planned in 2024

Thank you for your attention!