

Konus-Wind observations of ultra-long GRBs

D. Svinkin, D. Frederiks, R. Aptekar, S. Golenetskii, M. Ulanov, A. Tsvetkova, A. Lysenko, A. Kozlova loffe Institute, St.Petersburg, Russia

T. L. Cline NASA Goddard Space Flight Center; Emeritus,

and K. Hurley Space Sciences Laboratory, University of California, Berkeley

Ioffe Workshop on GRBs and other transient sources: 25 Years of Konus-Wind Experiment

Known ultra-long GRBs observed by Konus-Wind

Very long GRB data

Instrument	Energy band [*] , keV	Number of bursts		
		T₉₀>250 s	T₉₀>∼1000 s	
CGRO-BATSE	50 - 300	22	1**	
BeppoSAX-GRBM	40 - 700	7	0	
Swift-BAT	15 - 150	58	~20	
Fermi-GBM	50 - 300	30	0	
Konus-Wind	50 - 1500	~100	~20 this work	

^{*}used for duration calculation

^{**} GRB 970315

Meegan et al. BATSE current GRB cat.; Frontera et al., 2009; Lien et al., 2016; Bhat et al., 2016

Joint Russian-US Konus-Wind experiment

□ Launch 1994 - 24+ years of continuous operation;

Waiting mode – continuous record of count rates in the 20-80 keV (G1), 80-350 keV (G2), and 300-1200 keV (G3) bands with 2.944 s resolution;

Advantages:

- stable background (up to a few days),
- 2 ×2 π FoV,
- duty circle ~95%,
- observes all bright transients;

Extremely useful for a search of very log duration transients.

Konus-Wind triggered GRB classification

The boundary between "short" and "long" GRBs was adopted to be T₅₀=0.6 s: 15% - short GRBs
 Hardness-duration distribution is well fitted wit 2 2D Gaussians.

Institute Konus-Wind waiting mode event search

- Bayesian block decomposition of KW waiting mode time history 1994-2017;
- □ Selection of transients occurred in both detectors and/or at least in two energy bands;
- Preliminary event classification: GRB, Solar flare, hard X-ray transient (e.g. Cyg -X1, V404 Cyg), particle event (using Wind-3DP particle monitor), or instrument glitch;

KW waiting mode event search results

loffe Institute

HR₂₁ = 80-300 keV peak. rate /20-80 keV peak. rate

Event type	Number		
Solar Flares	~12 000		
GRB candidates +	~9 000		
Other transients			
Confirmed GRBs	~5 000		
Total	~26 000		

The confirmed and unconfirmed GRBs include ~120 events with T₁₀₀ > 250 s and S/N > 10 (at T₁₀₀) which allow to analyze the tail of the KW GRB duration distribution.

Institute Confirmation of multi-episode GRBs

- Association of close in time events with a single source using detections by other instruments (Inter Planetary Network, IPN).
- The IPN instruments used: CGRO-BATSE, Fermi-GBM, Swift-BAT (at low earth orbit); INTEGRAL-SPI-ACS (at the elongated oribit up to 0.5 lt-s); Ulysses-GRB (670 -3180 lt-s); Mars Odyssey-HEND (Mars, up to 1200 lt-s); MESSENGER-GRNS (Mercury, up to 700 lt-s)
- Confirmed: 99 GRB candidates (single and multi-episode) T₁₀₀ > 250 s, 17 u-long GRB – T₁₀₀ > 1000 s (including 8 known KW u-long GRBs and 9 new candidates).

U-long GRBs. Duration and hardness.

- The T_{90} distribution of the GRBs with 250 s < T_{90} < 1000 s is consistent with a tail of the triggered GRB population with P_{KS} =30%.
- There is an excess of bursts in the tail (T_{90} > 1000 s) with P_{chance} =3×10⁻⁶.
- Ultra-long GRBs extend the softer/longer part of the long GRB distribution.

Spectral analysis

- □ KW waiting mode is a continuous 3-channel spectrum in the ~20—1500 keV band.
- Up to 3 model parameters (including normalization) may be estimated:
 PL (1 d.o.f.), Cutoff PL, Band function with one fixed parameter (i. e., beta).

Spectral analysis results

17 GRBs with $T_{100} > 1000$ s

loffe Institute

- Most of E_{peak} are in the ~100-300 keV range with 2 hard (~1 MeV) and 1 soft (~40 keV) outliers.
- □ U-long GRBs are consistent with other bursts in terms of fluence and peak flux.

11

Discovered KW ultra-long GRBs

The hardest and the softest discovered burst

KW Ulong GRBs in the rest frame: Hardness-duration distribution

- Konus-Wind has detected 337 GRBs with known redshifts (Anastasia Tsvetkova talk on Wednesday)
- □ U-long GRBs are still the longest bursts in the rest frame.

Tsvetkova et al., ApJ 850, 161, 2017

KW Ulong GRBs in the rest frame: Amati and Yonetoku relations

□ U-long GRBs nicely follow the Amati relation for 'classic' long GRBs and reside on the low luminosity side of the Yonetoku relation.

InstituteKW Ulong GRBs in the rest frame

There are 12 u-long GRB candidates with unknown z. What we can learn about them?

- Most of the found u-longs may originate at a broad range of z > ~0.2
- □ U-long GRBs seem to be inhomogeneous in hardness also in the rest frame.

Summary

- KW provides an excellent opportunity to observe prompt emission of ultra-long GRBs for their whole duration.
- We have found 9 new u-long GRB candidates with durations in the range ~1000 – 4500 s.
- □ A hint of excess was found in the T₉₀ distribution at T₉₀>~1000 s above the lognormal fit derived for classical long GRBs.
- Spectral analysis of KW u-long GRBs shows that most of the events have E_{peak} in the range of 100-300 keV with one soft and two hard outliers.
- The u-long GRBs with unknown redshifts nicely follow the Amati relation for 'classic' long GRBs and reside on the low luminosity side of the Yonetoku relation.
- □ U-long GRBs seem to be inhomogeneous in hardness also in the rest frame.

Thank you!

Discovered KW ultra-long GRBs

 $T_{100} = 1007 \text{ s} (25-1470 \text{ keV})$ $T_{90} = 830 \pm 116 \text{ s}; T_{50} = 277 \pm 51 \text{ s}$ time averaged: **Ep =1.06 (-0.4,+1) MeV**

Konus-Wind ultra long GRBs

GRB	Z	dT (s)	LC shape	E _{peak} (keV)	Fluence (erg cm ⁻²)	E _{iso} (erg)
971208ª		~2500	FRED	~144	~2.6x10 ⁻⁴	~6.9x10 ^{53**}
020410 ^b	~0.5 ^f	~1600	Multi-episode	~180	~2.8x10⁻⁵	~1.8x10 ⁵²
060814B ^a		~2700	FRED	~340	~2.4x10 ⁻⁴	~6.4x10 ^{53**}
080407°		~2100	Multi-episode	~290*	~4.5x10 ⁻⁴	~1.2x10 ^{54**}
091024 ^d	1.1 ^d	~1200	Multi-episode	~280	~1.3x10 ⁻⁴	~4.5x10 ⁵³
111209A ^e	0.7 ^g	~10000	Multi-episode	~310	~4.9x10 ⁻⁴	~5.8x10 ⁵³
121027A	1.8 ^h	>3500	Multi-episode	~300	~7.4x10 ⁻⁵	~5.9x10 ⁵³
130925A	0.35 ^e	~5000	Multi-episode	~152	~6.2x10 ⁻⁴	~1.9x10 ⁵³

* 1st pulse

^{**} at z=1

^aPal'shin+2008, ^bNicastro+2004, ^cPal'shin+2013, ^dVirgili+2013, ^eGolenetskii+2011, ^fLevan+2005, ^gVreeswijk+2011, ^hTanvir+2012, ^eVreeswijk+2011

GRB episode association using InterPlanetary Network

- □ The 3rd IPN is in operation since 1990
- At present time consists of 7 s/c: AGILE, Fermi, RHESSI, and Swift (at low earth orbits); INTEGRAL (at the elongated oribit up to 0.5 lt-s); Wind (up to 7 lt-s) and Mars Odyssey (Mars, up to 1200 lt-s)
- Included also: MESSENGER, Suzaku, BATSE, Ulysses, etc.
- Continuous full sky monitor with sensitivity of ~10⁻⁶ erg cm⁻² (1 phot. cm⁻² s⁻¹)

IPN detections

GRB 121217A, observed by Fermi and Swift

20

IPN detections

