Fermi-GBM GRBs with characteristics similar to GRB 170817A

von Kienlin A. et al., 2019, ApJ, 876, 89

Andreas von Kienlin

Max-Planck-Institut für extraterrestrische Physik (MPE), Garching

First EM Signal with a GW Counterpart GW 170817 / GRB 170817A Abbott+ 2017, ApJL, 848, L13 Goldstein+ 2017, ApJL, 848, L14

Association

at 5.3 o

- Temporal association: $\Delta t = 1.74 + -0.05 s$
- Spatial association

CONFIRMED → BNS – short GRB Association

Science

- Directly measured the speed of gravity
- Probed the neutron star (NS) equation of state: constrained the maximum mass of a NS
- Investigated the emission physics of relativistic jets and the engine that produces the short GRB
- Estimated the rate of joint detections, suggesting they should be reasonably common

Question: are there similar GRB events in the GBM GRB database?

GRB 170817A: A short GRB with a low-energy tail

Goldstein+ 2017, ApJL, 848, L14

- The main hard peak is best fit with by a an exponentially cutoff power law (Comptonized model) with E_{pk} = 185 ± 62 keV
- The soft tail is best fit by a black body with kT = 10.3 ± 1.5 keV
- Spectra with photospheric components have been seen (e.g. Ryde, Guiriec), but not in this order

GRB 170817A: A short GRB with a low-energy tail

Goldstein+ 2017, ApJL, 848, L14

GBM temporal analysis results

 GRB 170817A is 3 times more like to be a <u>short GRB</u> than a long GRB, although it is spectrally softer than many sGRBs

GRB 170817A: Standard GBM Catalog analysis

Goldstein+ 2017, ApJL, 848, L14

- Average fluence for a short GRB compared to the catalog distribution
- Relatively weak in peak flux in the lower third in the 64ms peak flux distribution
- It appears as a typical sGRB in the observer frame

GRB 170817A: Source Frame Energetics

Abbott+ 2017, ApJL, 848, L13

GRB 170817A was extremely under luminous compared to other GRBs

- > It was the closest (of GRBs with measured redshift) and least luminous GRB ever detected
- > Estimated isotropic-equivalent energy is ~2-3 orders of magnitude lower than previous observations

Search for GRBs with Similar Characteristics

A. von Kienlin et al. 2019, in preparation

The **GBM GRB online catalog** is updated **within 1 hour**: → http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html

Selection of Candidates

- 1. Significantly luminous initial peak, brighter over 50 300 keV than in 8 50 keV
- 2. Weak tail, bright over the 8 50 keV energy range and disappears at higher energies
- 3. Discernible change of the lightcurve (avoiding GRBs with hard-to-soft spectral evolution)
- Verification
 - Localization of the main and soft emission episodes must coincide
 - Spectral characteristics of the soft tail must be similar to that of GRB 170817A

\rightarrow 13 Candidates

- \rightarrow Including GRB 170817A
- \rightarrow and GRB 150101B,
 - A second Nearby Event with a Short Hard Spike and a Soft Tail (Burns+ 2018, Troja+ 2018)

not claiming for completeness

13 Candidates

Table 2. Standard <i>Fermi-GBM</i> burst catalog parameters of the final sample of 13 candidate GRBs, which is including the reference GRB 170817A.											
			Dura	rations Localiza		calizati	on	Total Fluence	Peak Flux		
GRB Name	Trigger ID ^a	Time	T90	T50	RA	Dec.	error	$(\mathrm{erg}\ \mathrm{cm}^{-2})$	(64 ms)	$Detect.^{d}$	References
		(UTC)	(s)	(s)	$\left(\mathrm{deg.} \right)$	$\left(\mathrm{deg.} \right)$	$\left(\mathrm{deg.} \right)$	$\times 10^{-7}$	$({\rm ph}\;{\rm cm}^{-2}\;{\rm s}^{-1})$		
GRB 081209A ^b	bn081209981	23:41:56.39	0.192 ± 0.143	0.128 ± 0.143	45.3	63.5	4.9	14.66 ± 1.49	25.4 ± 1.2	KW, S^e, A	Golenetskii (2008a,b)
GRB 100328 A^{b}	bn100328141	03:22:44.60	0.384 ± 0.143	0.192 ± 0.091	155.9	47.0	4.8	10.01 ± 0.24	13.4 ± 0.8		Abadie et al. (2012)
GRB 101224A	bn101224227	05:27:13.86	1.728 ± 1.68	0.192 ± 0.286	285.9	45.7	0.1^{f}	1.92 ± 0.27	6.7 ± 1.0	S	Krimm (2010); Nugent & Bloom (2010);
CDD 110717Ab	hp110717190	04.10.50.66	0.112 ± 0.072	0.022 ± 0.022	208 E	7.0	75	9.51 ± 0.19	105 1 1 0	KW IA	Ecomi CPM Only
$CPR 111024C^{b}$	bn1110717180	04.19.50.00 21.20.02.24	0.112 ± 0.072	0.032 ± 0.023	01 9	-7.9	12.0	2.31 ± 0.12	10.3 ± 1.0 7.4 ± 1.2	IXVV, IA	Fermi CBM Only
CDB 120202Bb	bn120202722	21.30.02.24	0.900 ± 1.032	0.230 ± 0.143 0.512 \pm 0.466	$\frac{91.2}{24.1}$	-1.8	13.2	3.80 ± 0.10 1 10 \pm 0 16	7.4 ± 1.2 6.2 ± 1.5	IA	Fermi CBM Only
GRD 120502D	bn120302722	00.00.41.64	1.000 ± 0.779 0.576 \pm 1.218	0.312 ± 0.400	24.1	9.1	13.9 5 0	1.19 ± 0.10 5.06 ± 0.26	0.2 ± 1.3	TA SW	Fermi CPM Only
GRD 120915A	bii120913000	17:50:20.74	0.370 ± 1.310	0.320 ± 0.091	209.4	07.5	0.9	5.00 ± 0.20	0.0 ± 0.9	IA, SW	Fermi-GBM Olly + LAI
GRB 130502A	DN130502743	17:50:30.74	3.328 ± 2.004	2.304 ± 0.572	138.0	-0.1	0.0-	0.27 ± 0.35	0.0 ± 1.4	5, 01	de Ugarte Postigo (2013):
											Gorosabel (2013) ; Breeveld (2013)
GRB $140511A^{c}$	bn140511095	02:17:11.56	1.408 ± 0.889	0.256 ± 0.181	329.8	-30.1	8.8	3.71 ± 0.32	9.4 ± 1.0		Fermi-GBM Only
GRB 150101B	bn150101641	15:23:34.47	0.08 ± 0.928	0.016 ± 0.023	188.0	-11.0	0.0^{f}	2.38 ± 0.15	10.5 ± 1.3	S, IA, C,	Troja et al. (2018); Burns et al. (2018);
										X, z	Fong et al. (2016)
GRB 170111B ^c	bn170111815	19:34:01.39	3.072 ± 1.318	0.32 ± 0.091	270.9	63.7	6.7	5.96 ± 0.12	7.6 ± 1.0		Fermi-GBM Only
GRB 170817A	bn170817529	12:41:06.47	2.048 ± 0.466	1.28 ± 0.405	197.5	-23.4	0.0^{f}	2.79 ± 0.17	3.7 ± 0.9	L, z, C,	Abbott et al. (2017a)
										IA, HST	
										and more	
GRB 180511A ^c	bn180511364	08:43:35.79	0.128 ± 1.207	0.032 ± 0.045	250.4	-8.2	15.1	1.53 ± 0.21	9.2 ± 1.0	IA	Fermi-GBM Only

. . C (1 C 1 1 (10 1.1 CDD 1 * 1 * * 1 1* C CDD 1700174 1 1

 \succ Properties of the final candidates \rightarrow next slides!

Candidate Properties: Spectral Hardness vs. Duration

Hardness-duration plot

From 10-year GBM GRB catalog

1st group:

- Soft tail below a hardness value of 1
- ≻ T₉₀: 1 4 s,
- 7 GRBs including GRB 170817A

◆ 2nd group:

- > T₉₀ < 0.6 s / hardness: 0.7 6 / large errors
- ➢ 6 GRBs, including GRB 150101B
- + Peak energy as proxy for hardness
- Main pulse of the short group has systematically higher peak energies compared to the longer population!

• final sample

- GRB 170817A + GRB 150101B
- GRBs (with $T_{90} < 5 s$) with redshift

Candidate Properties: Correlation Analysis

- between parameters of the main pulse and soft tail
 - \succ Photon- and energy-fluxes, fluence and characteristic energies: kT and E_{Peak}
 - Derived from spectral analysis
- No significant correlation between the fluence and characteristic energies
- Significant correlation in Photon Fluxes

Candidate Properties: Pulse Fitting and Variability

- Inspection of lightcurves using pulse-fitting techniques
- Fit function composed of two pulses
 - Relation main pulse / tail
 - > Analytical functions: \rightarrow Norris et al. (1996, 2005)
- Cases where the two episodes
 - clearly separated

➢ overlap

- Determination of minimum variability timescale dt_{min}
 - Method of Golkhou et al. (2015)
 - Describes the shortest coherent variation in the lightcurve
 - Radius emission region

Candidate Properties: Pulse Fitting and Variability

- Inspection of lightcurves using pulse-fitting techniques
- Fit function composed of two pulses
 - > Relation main pulse / tail
 - > Analytical functions: \rightarrow Norris et al. (1996, 2005)
- Cases where the two episodes
 - clearly separated
 - ➤ overlap
- Determination of minimum variability timescale dt_{min}
 - Method of Golkhou et al. (2015)
 - Describes the shortest coherent variation in the lightcurve
 - Radius emission region

GRB name	$\sigma_{t_{ m rise,main}}$	dt_{\min}	$t_{\rm peak, soft} \ \text{-} t_{\rm peak, main}$	Main/Tail relation
GRB 081209A (v)	25 ± 3	< 14.9	133 ± 14	joined
GRB 100328A (v)	77 ± 21	< 10.6	1153 ± 65	separated
GRB 101224A	23 ± 23	47.4 ± 7.6	1360 ± 625	separated
GRB 110717A (v)	36 ± 11	11.4 ± 3.0	712 ± 2097	separated
$\mathrm{GRB}\ 111024\mathrm{C}$	33 ± 17	40.7 ± 8.8	106 ± 20	separated
GRB 120302B	16 ± 19	< 119.6	1545 ± 134	separated
GRB 120915A (v)	312 ± 75	40.6 ± 13.2	632 ± 717	separated
GRB 130502A	169 ± 63	220.7 ± 34.0	2092 ± 765	separated
GRB 140511A	23 ± 7	<94.4	385 ± 424	joined
GRB 150101B	6 ± 1	7.9 ± 0.7	52 ± 11	joined
	110 - 00	.02.1	865 ± 71	separated
GRB 170111B	110 ± 36	<63.4	-502 \pm 104 $^{\rm a}$	separated
GRB 170817A	263 ± 103	124.6 ± 6.4	1201 ± 774	joined
GRB 180511A (v)	15 ± 4	< 5.3	94 ± 65	joined

(v): candidates, where the variability timescale is less than the rise time with more than 2 sigma significance, indicating pulse sub-structure

⇒ We find that short-hard candidates with the exception of GRB 150101B have significant variation within the main pulse, i.e they are composed of multiple overlapping pulses

Discussion

- Sample of GRBs that show similarities to GRB 170817A
 - > Soft emission episode with a BB spectrum that follows the main peak
 - > Soft emission separate from the main peak reported for the first time
- Two emerging groups of candidates in hardness duration diagram plot
 - ➤ Viewing angle effect? ⇒ similar GRBs viewed off-axis will become softer and of longer duration.
 - Short timescale structures present in on-axis lightcurves will be smoothed out for an off-axis observer

Discussion

- Proposed model (e.g. Lazzati et al. 2017)
 - > Main peak: successful GRB jet, with lateral angular structure that is viewed off-axis
 - > Soft emission: from the photosphere of a wide angled cocoon
 - > Could explain both, the highly-variable main emission and the soft tail
- Cocoon shock breakout model (Gottlieb et al. 2018) \rightarrow from candidate sample:
 - > Strong variability could not come from the shock breakout emission!
 - > Unclear how to account for the soft tails, temporally clearly separated from the main pulse!
- Matsumoto & Piran: <u>arXiv:1909.03049</u>, Sept 9, 2019
 - Study of similarity of our candidate sample and GRB 170817A
 - > Two of them could be a cocoon shock-breakout events
 - > Sample GRBs can be associated with a wing emission scenario

Conclusion

◆ 12 GRBs similar to 170817A (including 150101B) over 10 years ⇔ ~1.3/year

- Short GRBs ranging in duration from ~0.1 to ~3 s
- > All seem to have a similar soft (blackbody?) tail
- > Tail not part of natural hard-to-soft spectral evolution observed in many GRBs
- Could be signatures of low-z binary neutron star mergers
 ➢ Most short GRBs do not have this observed tail, far away ⇒ too weak to be observed?
- Only 170817A and 150101B have measured redshift
- GRB 170101B has an intriguing soft precursor