Implications of the sub-TeV emission from GRB 190114C

Tsvi Piran The Hebrew University, Jerusalem And **Evgeny Derishev** Institute ofApplied Physic, Nizhny Novgorod

ApJL August 2019

Ioffe Workshop Sept 2019 St Petersburg, Russia

Magic sub-TeV Mirzoyan + 19 MAGIC detects the GRB 190114C in the TeV energy domain The MAGIC telescopes detected very-high-energy gamma-ray emission from GRB

GCN 23701

Blazars

Observations

- Z=0.4245 (Some TeV absorption)
- $L_{peak}^{Iso} \simeq 1.6 \times 10^{53} \text{ erg/sec}$; $E^{Iso} \simeq 3 \times 10^{53} \text{ erg}$
- @ 70 sec $L_x^{Iso} \simeq 6 \times 10^{49} \text{erg/sec}$
- $E_{sub-TeV} \simeq 350 \text{ GeV}$
- $y=L_{Tev}$ ^{Iso}/ L_x ^{Iso} $\simeq 0.25$

A Gamma-Ray Burst Model

The Model

- Blast wave into wind or ISM
- Single Zone
- Single energy electrons*

Parameters: Γ , n, t, ε_{e} , ε_{B} that can be replaced by y,t_{dyn}/t_{cool}, ε_{R}

Origin of Sub-TeV?

- Synchrotron burn-off limit (Acc. time \simeq cooling time) $E_{burn-off} = \Gamma m_e c^2 / \alpha \simeq \Gamma 100 \text{ MeV} \text{ too low}$.
- Bypass burn-off limit: acceleration in a weak field and emission in a strong one (e.g. Kumar & Barniol-Duran 09) or "converter" acceleration.
- => Inverse Compton

The Lorentz Factors

- $\gamma \Gamma m_e c^2 > E_{IC} => \gamma \Gamma \simeq 10^6$
- @ 70 sec and longer Γ cannot be too large => $\gamma \gtrsim 10^4$
- Not unreasonable in an external shock with $\label{eq:gamma} \boldsymbol{\gamma} \simeq f(m_p/m_e) \Gamma$
- => Sub Tev is Inverse Compton of X-rays (Consistent with a comparable X-ray luminosity)

Opacity

- The optical depth for pair production $\tau_{IC,x}$ < 1 The usual opacity estimates for GRBs with L_x as the source of absorbing photons

$$\Gamma > 170 \, \left(\eta_a \frac{L_{X,51}^{\rm iso}}{t_2} \right)^{1/6}$$

- Somewhat different analysis if the X-rays are from "prompt" origin.
- Even this Γ requires low external density (e.g. $n_{ISM} < 10^{-2}$) => cannot expect much larger Γ => cannot expect much lower γ (γ Γ > 10⁶)

The Optical Depth

- The low density (e.g. n_{ISM} <10⁻²) may be the reason why sub-TeV observations are not common.
- Other events are typically self-absorbed (See also -Vrum & Beloborodov 2017).

What kind of IC? To KN or not to KN

The usual Comptonisation energy is $\gamma^2 \, E_{\text{seed}}$

If $\gamma^2 E_{seed} > \gamma m_e c^2$ we are in the <u>Klein</u> <u>Nishina (KN)</u> regime: $E_{IC} = \gamma m_e c^2$

What kind of IC?

The SSC Klein Nishina Energy

$$E_{\rm IC}^{\rm cr} = \Gamma \gamma_{\rm cr} m_e c^2 = \Gamma \left(\frac{B_{\rm cr}}{B}\right)^{1/3} m_e c^2$$

KN for
$$\Gamma < \Gamma_{\rm KN} \simeq 86 \ \frac{(L_{51}^{\rm iso})^{1/12}}{t_2^{1/6}}$$

=> With the opacity limit (Γ>100) the system is close to KN but in regular Comptonization

The electron's Lorentz factor

Combining the Opacity and KN limits:

Efficiency

(See also Sari, Narayan & TP 96)

Efficiency

 $E_X^{Iso} \simeq 10^{52} \text{ erg.}$

 $E_{tot}^{iso} = E_X^{lso} / \boldsymbol{\varepsilon}_{sy}$

But $\boldsymbol{\varepsilon}_{sy} = \mathbf{y} \boldsymbol{\varepsilon}_{B} \simeq 0.25 \boldsymbol{\varepsilon}_{B}$

 $\Rightarrow E_{tot}^{iso} \simeq 5 \times 10^{52} \text{ erg}/\varepsilon_{B}$

 $= \varepsilon_{\rm B} > 0.005 \ ({\rm E}_{\rm tot,max}^{\rm iso} / 10^{55})$

Caveats

- L_{sub-TeV} is underestimated because of self absorption => y is larger, maybe even > 1.
 ε_B and ε_B can be smaller (but not tiny).
- => **ɛ**e

A fraction of L_X arises from the "prompt component". This relaxes somewhat the efficiency problem but since y is unchanged the condition ε_B
> ε_e remains.

Partial Summary

- The electron's Lorentz factor ~10⁴
- The bulk Lorentz factor @100 sec ~ 100
- Low external density enables the sub-TeV photons to escape
- Relatively large magnetization $\boldsymbol{\varepsilon}_{\mathrm{B}}$ > 0.005 and $\boldsymbol{\varepsilon}_{\mathrm{B}}$ > $\boldsymbol{\varepsilon}_{\mathrm{e}}$
- IC slightly below the Klein Nishina regime

Coincidence?

Pair Balance Model

-orentz factor III Π 1) Very strong 1) Pre magnetic field acceleration Pair loading; 2) distance 2) Magnetic saturation ĪĪ field field build up around the hetic Klein Nishina Mag Π threshold

Derishev & TP 16

distance

Converter acceleration Derishev et al. (2003); Stern (2003)

Converter acceleration via high energy (IC) photons

Accelerate the flow Produce magnetic field via Weibel Instability

Modified structure

gnetic field, in the downstream, accelera

upstream increase the multiplicity of the

Three emission components

Summary

- The electron's Lorentz factor ~10⁴
- The bulk Lorentz factor @100 sec ~ 100
- Low external density enables the sub-TeV photons to escape
- Relatively large magnetization $\boldsymbol{\varepsilon}_{\rm B}$ > 0.005 and $\boldsymbol{\varepsilon}_{\rm B}$ > $\boldsymbol{\varepsilon}_{\rm e}$
- IC slightly below the Klein Nishina regime
- The configuration is consistent with the pair balance model (Derishev & TP 2016).