

Instituto Argentino de Radioastronomía

Among the first collapsars: gamma-ray binaries in the early Universe

with the collaboration of **P. Sotomayor Checa**

Ioffe GRB - KONUS Workshop September 11, 2019 Ioffe Institute, St. Petersburg, Russia

Gustavo E. Romero

IAR-CONICET/FCAyG-UNLP, Argentina

Reionization: initiated by the first stars - ended by the first quasars

The formation of the first stars occurred at redshifts $z \sim 20 - 30$, after the recombination, in the so-called dark era. These stars are predicted to form in dark matter minihalos, comprising total masses of $\sim 10^6 \, M_{\odot}$.

These first stars are called Population III stars

Population III are extremely metal-poor stars (EMP). They form from primeval gas and constitute a hypothetical population of massive and hot stars with virtually no metals, except possibly for intermixing ejecta from other nearby Pop III supernovae. Their existence is inferred from physical cosmology, but they have not yet been observed directly.

Current models suggest that Pop III stars were typically massive, or even very massive, with $M_* \sim 10 - 100 M_{\odot}$; these models also predict that the first stars formed in small groups, including binaries or higher-order multiples.

Using abundances of 53 extremely metal-poor stars, Fraser et al. (2017) inferred the masses of their Population III progenitors. They found that the mass distribution is well-represented by a power law IMF with exponent $2.35^{+0.29}_{-0.24}$ (close to Salpeter's). The inferred maximum progenitor mass for supernovae from massive Population III stars is $M_{max} = 87^{+13}_{-33} M_{\odot}$, with no evidence in for a contribution from stars with masses above $120 M_{\odot}$.

$$\times M^{-x}$$
,

dN

Binary and multiple systems formed (Stacy et al. 2009)

Most Pop III should be in binary systems

Field of view – 2000 AU Collapsing metal-free cloud fragments into 10 and 6 M_o cores. Accretion rates = 0.06 M_☉/yr

GW detections by LIGO from black hole mergers with holes of masses in the range 30-60 M_{\odot} support the idea that Pop III stars had masses not beyond 100 M_{\odot} and formed binaries.

Evolution of a Pop III binary (Inayoshi et al. 2017)

Such systems are thought to be progenitors of some black hole binaries whose final mergers were detected as gravitational wave events by LIGO.

For Pop III GRBs see Toma et al. (2016) review

Typical properties of Pop III stars

$$R_* \simeq 5 R_\odot \left(\frac{M_*}{100 M_\odot} \right)^{1/2} \; ,$$

$$L = 4\pi R_*^2 \sigma_{\rm SB} T_{\rm eff}^4 \simeq 10^6 L_{\odot} \left(\frac{M_*}{100M_{\odot}}\right)$$

$T_{\rm eff} \simeq \left(rac{l_{\gamma}}{R_{\star}} ight)^{1/4} T_I \sim 10^{-3} T_I \sim 10^5 \, {\rm K} \; .$

$$t_* \simeq \frac{0.007 M_* c^2}{L_{\rm EDD}} \simeq 3 \times 10^6 \, {\rm yr}, \label{eq:t_edge}$$

No metals, no winds

Pop III binary systems

The differences between these systems and the current types of MQs lie in the peculiar features of Pop III stars.

In the MQ phase the radius of the star is approximated by the average radius of its Roche lobe.

Pop III accreting binaries were extremely super-Eddington

Mass transfer in this binaries must occur through overflow of the Roche lobe

Hypercritical accretion

Vertical Force =
$$-\frac{GMz}{R^3} + \frac{\sigma_T}{m_p c}F$$
,
 $R = \sqrt{r^2 + z^2}$
 $F = \sigma T^4 = 3GM\dot{M}/(8\pi r^3)$
 h
 $r_{\rm cr} = \frac{9\sqrt{3}\sigma_{\rm T}}{16\pi m_p c}\dot{M}_{\rm input}$,
 $\dot{M}(r) = \frac{16\pi cm_p}{9\sqrt{3}\sigma_{\rm T}}r$,
 $\dot{M}_{\rm wind}(r) = \dot{M}_{\rm input} - \dot{M}(r)$.

(and at the critical radius).

Outside r_{cr} , the accretion rate is constant and the disk is a radiation-pressure dominated standard disk. Inside r_{cr}, the accretion rate decreases with the radius so as to maintain the critical rate, expelling any excess mass by the radiationdriven wind.

Fukue 2004

 dM_{input}/dt is the accretion rate at the outer edge of the disk

Disk structure

The main characteristic of supercritical accretion discs is the presence of photon trapping (see e.g. Begelman 1978; Ohsuga et al. 2003, 2005). Photon trapping occurs when the photon diffusion timescale exceeds the accretion timescale

H [rg]

-200

-400

Under such circumstances, photons generated via the viscous process are advected inward with the accreted flow without being able to go out from the surface. Advection of photons decreases the luminosity and energy conversion efficiency of the accretion disk.

Disk structure

- accretion disk model.
- with a strong wind.
- toroidal magnetic field model.

 $Q_{adv} = Q_{vis}$

• For $r > r_{crit}$ the disk is well described by standard radiation-dominated • For $r_0 < r < r_{crit}$ the disk is well described by critical accretion disk model • For $r < r_0$ the disk is well described by an optically thick ADAF with a

$$_{\rm s} - Q_{\rm rad} = f Q_{\rm vis}$$

$$\Sigma = \Sigma_0 r^s,$$

Parameter	Symbol	Value	Unit
Total wind mass-loss rate	$\dot{M}_{ m wind}$	7.3×10^{-5}	$M_{\odot}{ m yr}^{-1}$
Total jet mass-loss rate	$\dot{M}_{\rm jet}$	2.1×10^{-6}	$M_{\odot}{ m yr}^{-1}$
Mass-accretion rate in the inner edge	$\dot{M}_{\rm in}$	2.9×10^{-13}	$M_{\odot} \mathrm{yr}^{-1}$
Wind Lorentz factor at r_{cr}	$\Gamma_{\rm wind}(r_{\rm cr})$	1.0002	
Wind Lorentz factor at r_0	$\Gamma_{\rm wind}(r_0)$	1.0099	

Accretion power	$L_{\rm accr}$	1×10^{43}	erg
Jet luminosity	$L_{\rm jet}$	1×10^{41}	erg
Jet's bulk Lorentz factor	Γ_{iet}	1.47	
Jet semi-opening angle tangent	x	0.1	

Based on Inayoshi et al. (2017) we adopt a binary system whose components are a Population III star of $M_{\star} = 41 M_{sun}$ and a black hole of $M_{BH} = 34 M_{sun}$ in order to make some quantitative estimates.

(this evolves to the binary BH system GW150914).

Parameter

Donor star mass Black hole mass Star radius Star luminosity Star temperature Orbital semiaxis Orbital period Mass loss rate Eddington accretion rate Black hole Eddington luminos Gravitational radius

	Symbol	Value	Unit
	M_*	41	M_{\odot}
	$M_{\rm BH}$	34	M_{\odot}
	R_*	14.2	R_{\odot}
	L_*	1×10^{6}	L_{\odot}
	T_*	5×10^{4}	Κ
	a	36	R_{\odot}
	Р	2.9	days
	\dot{M}_{*}	7.5×10^{-5}	$M_{\odot} \mathrm{yr}^{-1}$
	$\dot{M}_{\rm Edd}$	2.2×10^{-8}	$M_{\odot} \mathrm{yr}^{-1}$
ity	$L_{\rm Edd}$	4.3×10^{39}	erg s ⁻¹
_	rg	50	km

Disk structure

SED - total disk

log₁₀ L_y [erg/s] log₁₀ L_γ [erg/s]

log₁₀ (T / K)

The wind masks the disk emission

 $\beta = V/C$

log₁₀ (L_{ph} / erg s⁻¹)

Jet A jet is magnetically launched from the innermost region (~100 r_g)

$$L_{\text{jet}} = L_{\text{acc}} - L_{\text{disk}} - L_{\text{in}} - L_{\text{wind}},$$

$$L_{\text{jet}} = \frac{GM_{\text{BH}}2\dot{m}_{\text{jet}}}{r_0} + \left(\Gamma_{\text{jet}} - 1\right)2\dot{m}_{\text{jet}}c^2.$$

$$\frac{B^2(z_0)}{8\pi} = \frac{L_{\rm jet}}{2\pi r_0 v_{\rm jet}},$$

$$B(z) = B(z_0) \left(\frac{z_0}{z}\right),$$

See Romero & Vila 2008 and Vila, Romero & Casco A&A 2012 for details

Radiative losses

Electron/positron pairs $b(E) = -\frac{dE}{dt}\Big|_{Synchr} - \frac{dE}{dt}\Big|_{IC}$

Protons and charged pions

$$b(E) = -\frac{dE}{dt}\Big|_{Synchr} - \frac{dE}{dt}\Big|_{Synchr}$$

$$-\frac{dE}{dt}\Big|_{Bremsstr} -\frac{dE}{dt}\Big|_{e^{\pm} \to \gamma\gamma}$$

dEdt IC Bremsstr

Non-thermal spectral energy distribution of the radiation produced in the jet by the population of primary particles. The adopted viewing angle is 60 deg.

Spectral energy distribution of the synchrotron radiation for electron-positron pairs. The adopted viewing angle is 60 deg.

Total SED (primary plus secondary)

Sketch of the orbital dependence of the annihilation between γ -rays from jets and ultraviolet photons from the donor star. Orbital phase $\phi = 0$ and $\phi = 1$ corresponds to the source of γ -rays in opposition. Orbital phase $\phi = 0.5$ corresponds to inferior conjunction.

Attenuation by photon absorption (inner source)

Terminal region of the jets

Reverse shock

Additional sites of particle acceleration

Recollimation shock

Distance from source to terminal region r~10²¹ cm

 $z_{\text{recoll}} \approx 1$

 $2L_{jet}v_{jet}$ $\bigvee (\gamma + 1)(\Gamma_{\text{jet}} - 1) \pi c^2 P_{\text{c}}^2$

SEDs outer jet

Sotomayor Checa & Romero, A&A 2019

Total SED

- Pop III MQs are hyper accreting sources with strong radiative winds ejected from the disks. • The typical power of their jets is about ~ 10^{41} erg/s.
- •This power is deposited at distances of ~10²¹ cm, allowing for delionization well beyond the stelar ionization bubble.
- •Bulk velocities are jet. $\Gamma_{\rm jet} \sim 2$
- Electrons and protons in the jets can reach energies of about 10 GeV and 10 PeV, respectively. •Absorption and pair production is important. The jets inject low energy pairs in the Inter proto-
- GM, far away from the source.
- •Total ionizing power very significant: Pop III MQs might have been important in the reionisation of the universe, especially the inter bubble medium, if cascades resulted in high multiplicities. Eion~13.6 eV

Conclusions

Thanks!

•Pop III.1

- -Gas of primordial composition
- -Initial conditions purely cosmological •Pop III.2
- -Gas of primordial composition stars, but not chemical feedback

Nomenclature

-Initial conditions modified by radiative or kinetic feedback of Pop III.1

Fate and Remnants of Pop III Stars non-rotating models (Heger & Woosley 2002)

phenomenon

We assume a steady and axisymmetric disk and all physical quantities de-) end only on the radius r. The basic equations are:

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}(r\Sigma v_{\mathrm{r}}) = 2\dot{\rho}H, \qquad (1)$$

$$v_{\mathrm{r}}\frac{\mathrm{d}v_{\mathrm{r}}}{\mathrm{d}r} - \Omega^{2}r = -\Omega_{\mathrm{K}}^{2} - \frac{1}{\rho}\frac{\mathrm{d}}{\mathrm{d}r}\left(\rho c_{\mathrm{s}}^{2}\right), \qquad (2)$$

$$v_{\mathrm{r}}\frac{\mathrm{d}}{\mathrm{d}r}\left(\Omega r^{2}\right) = \frac{1}{\rho r H}\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\alpha\rho c_{\mathrm{s}}^{2}r^{3}H}{\Omega_{\mathrm{K}}}\frac{\mathrm{d}\Omega}{\mathrm{d}r}\right), \qquad (3)$$

$$\Omega_{\mathrm{K}}^{2}H^{2} = c_{\mathrm{s}}^{2}. \qquad (4)$$

$$\frac{\Sigma v_{\rm r}}{\gamma - 1} \frac{{\rm d}c_{\rm s}^2}{{\rm d}r} + 2Hc_{\rm s}^2 \left(\dot{\rho} - v_{\rm r} \frac{{\rm d}\rho}{{\rm d}r}\right) = f \frac{\alpha \Sigma c_{\rm s}^2 r^2}{\Omega_{\rm K}} \left(\frac{{\rm d}\Omega}{{\rm d}r}\right)^2,\tag{5}$$

Disk structure

Ne solve the equations of the dynamics of the accreted fluid using self-similar reatment (e.g. Naravan and Yi 1994). $Q_{adv} = Q_{vis} - Q_{rad} = fQ_{vis}$

Typical Pop III MQ's parameters.

Type of parameter	Parameter	Symbol	Value	Unit
Fixed	Stellar mass	M_*	50	M_{\odot}
Fixed	Black hole mass	$M_{ m BH}$	30	M_{\odot}
Calculated	Eddington accretion rate	$\dot{M}_{ m Edd}$	1.58×10^{-7}	$M_{\odot}{ m yr}^{-1}$
Calculated	Stellar mass loss rate	\dot{M}_{*}	$6.58 \times 10^{-4} (4 \times 10^3)$	$M_{\odot}{ m yr^{-1}}(\dot{M}_{ m Edd})$
Calculated	semiaxis	\boldsymbol{a}	6.70	R_{\odot}
Calculated	Period	P	5.4	hs
Calculated	Disk inner radius	$R_{ m in}$	44.31	km
Calculated	Disk outer radius	$R_{ m out}$	3.86	R_{\odot}

Calculated Fixed Calculated Calculated accretion power gravitational radi disk inner radiu disk outer radiu critical radius

	Symbol	Value	Unit
r	$L_{\rm acc}$	4.91×10^{43}	$ m ergs^{-1}$
ius	$r_{ m g}$	4.43×10^{5}	\mathbf{cm}
IS	$R_{ m in}$	1	$r_{ m g}$
IS	R_{out}	6.67×10^{4}	$r_{ m g}$
	$R_{ m crit}$	5.06×10^{4}	$r_{ m g}$

$$L_{\rm disk} = \int_{r_{\rm in}}^{100r_{\rm g}} 2\sigma T_{\rm eff}^4 2\pi r dr \int_{T_{\rm in}}^{100r_{\rm g}} 2\sigma T_{\rm eff}^4 dr dr$$

 $\int r_{\rm cr}$ $_{\rm g} 2\sigma T_{\rm eff}^4 2\pi r dr + \int_{r_{\rm cr}}^{\infty} 2\sigma T_{\rm eff}^4 2\pi r dr$ $100r_{\rm g}$

$$t \sim$$

where
$$\gamma$$
 is the ratio of specific heats.

 en_e

 $\frac{\partial \vec{B}}{\partial t}$

 $rac{B(z_0)}{\partial B/\partial t}$ $\sim 10^{11} \text{ s} \sim 4500 \text{ yr.}$

Losses of relativistic particles

p

 \boldsymbol{e}

Losses for pions and muons

The first quasars, on the other hand, are predicted to have formed later on, at $z \sim 10-15$, in more massive dark matter halos, with total masses, ~ $10^8 M_{\odot}$, characteristic of dwarf galaxies.

