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I. General Remarks

Cosmology with discrete sources
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Method For Measuring Cosmological Distance

1. Standard Candle: Constant Luminosity @i =EiEzmne
2. Standard Yardstick: Constant Diameter @G@i=a=D]8
3. OR: Find a tight relation between a

distance dependent and a distance independent parameter
Well known examples:

A. Cepheids: Luminosity-Period relation

B. Type la Supernovae: Peak luminosity-Light profile width
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Examples of Correlations After Few Redshifts

1. Variability-Luminosity (reichart et al. 2001)
2. Lag-Luminosity (Norris, Maeani & Bonnell 2000)

3. Epelk = Eiso 0N Epak =8y (amati; Ghirlanda et al )

4. And Several Variations
on These

(see Schaeffer et al.)

1000 F

[kev]

-
100 F

bl 1 1 1 I 1 1
1048 1049 1050 1051 1052 1053 1054 1058
Energy [erg]



SOME RELEVANT EQUATIONS POSSIBLE EVOLUTIONS

1. “Luminosity Function” and Correlation Eco=E x g(2)f (21 ﬁ)
U (Eoy Bp) = 0(Eol ER])C(Ep) SHAPE SPECTRAL and ENERGY
$(Eio) o O[(Ec — Ef(EL/Ep)], eg. flz) =
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Curnulotive Distribukion
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Determination of Global Cosmological Parameters

1. Type la Supernovae: Standard Candle and well understood
BUT Low z
2. Galaxies and Quasars (AGNSs): High z but broad distributions
Galaxies least understood astrophysical sources
3. Gamma-Ray Bursts: High z and not well understood

Question: SN-like or Galaxy-like?
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First Step
Determination of the Luminosity Function W(L,z)
Without loss of generality we can write
V(L z) = p(2)(L/g(2))/9(2)
p(z) Is the (co-moving) Density Evolution

g(2) Is the Luminosity Evolution
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II. The Luminosity Function

and its Evolution



Lurninosity (erg/s)

Redshift vs. Luminosity for 200 Swift Bursts
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Lurninosity (erg/s)
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III. Procedures

Forward Fitting
US

Non-parametric LPL
Methods

Efron and Petrosian Apd 1992
Lynden-Bell 1973
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The common practice is to assume forms for the GRB

“Luminosity” Function ¥ (L. z) = p(2)¥(L/g(2))/9(2)

Luminosity Evolution L(z) = Log(z); g(z) = (1 + 2)"
Density Evolution ~ p(2)
Energy Spectrum Power-low, Broken Power-law, etc

Difficulty: Involves many functions each with several parameters

Uniqueness??
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Some past non-parametric methods

Schmidt (1968) V/Vmax or Lynden-Bell (1973) C- methods
These however assume that Luminosity and Redshift are

Uncorrelated or are Independent variables
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More recently (Efron and VP, 1992, 1999) have
developed a method that first determines the L-z

correlation; i.e. g(z)

Then remove this correlation by defining L, = L/g(z)
Which is now independent of redshift and allows
Determination of all distributions non-parametrically and
directly from the data with very few assumptions or

prescribed functional forms
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1.4 GHz luminosity density [erg s Hz™]

Spearman Rank Order Test: Distribution of Ranks i}
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Remove the correlation by a variable transformation e.g.

LE — Li/ﬂi(‘z)

g9(2) = (1+2)*

3§ ' T e =T T " T T T
1E :

T o
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Remove the correlation by a variable transformation e.g.

L; = L;/g:(2) 2— \

g(z) = (1 + 2)*

T o
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1.4 GHz luminosity density [erg s Hz™]
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The method gives the cumulative L and z distributions

Non-parametrically and with no binning

O(L;) = fj W(L)dL =TI{(1 + 1/N;)

o) = [ pldV/de)dz = (1 +1/0,)
0
From these we get the sought differential distributions

U(L) and p(z)
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IV. Application to
Swift Long Gamma-ray
Bursts

Density (rate) Evolution vs Star
Formation Rate
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1. Gamma-ray trigger
Peak count or flux threshold
2. Localization
X-ray flux threshold
3. Optical follow-up and Redshift
Optical Magnitude etc
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Strong Correlation between  «—
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There is no good criteria for redshift bias.

The optical flux can be used as

no well defined limit.

Opt.-X-ray fluxes correlated

So use X-ray threshold

to correct for this bias

(data from Nysewander et al. 2009)
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Log Cumulative Luminosity Function ¢(L)
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Density Rate Evolutions p(z)
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Density Rate Evolutions p(z)
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Figure 8. Comparison between GRB formation rate p(z) (blue) and the
observed SFR. The SFR data are taken from Hopkins & Beacon (2006), which
are shown as red dots. The SFR data from Bouwens et al. (2011) (stars) and
Wang (2013} (open circles) are also used. All error bars are 1s errors.

001

WM

i

Konus-WIND at 25

1+z

10



[
Yu et al.

Konus—WIND
et al. -

r— S~ Petrosian
SV A\ _
0.8 - / 7

o
O -

0.7 -

0.6 —Pescalli et al -
\\

SFR Madau and Dickinson, 3014 |

0.5 -

o
&
I

Density Rate Evolutions p(z)
8 2
I |

0.1 | | I | | |
1 2 3 4 5 6 7

Redshift Z=1+2z




1. In order to use GRBs as Cosmological Tools we need a better
understanding of the distribution and evolution of their characteristics.

2. We have emphasized the advantages of non-parametric approach and
demonstrated how to determine luminosity and rate density evolutions.

GRB Formation Rate very different than the Star Formation Rate.

3. Further studies can improve our understanding of the phenomenon
which will help in using them as tools to explore

The high redshift universe.
4. In the long run, GRBs may prove to be useful for
GLOBAL cosmological studies.
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More uncertain because fewer SGRBS

1. Sample selection
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More uncertain because fewer SGRBS
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Log Cumulative Luminosity Function ®(L)
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2. Results: Luminosity Evolution L (z) o Zk/(l + Z/Z.;)k; kE=3.6

b. Cumulative Luminosity Function (I} (L) c. Density Rate Evolution p (E)
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2. Results:

a. Luminosity Evolution L (z) o Zk/(l + Z/Z.;)k; kE=3.6

b. Cumulative Luminosity Function (I} (L) c. Density Rate Evolution p (E)
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1 All Short
i! All Long

5
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1. Small samples that can be considered “complete”

2. Preliminary results show
a. Similar luminosity evolution as Long GRBsS
b. Luminosity function steeper at low luminosities
c. Rate evolution similar to the low redshift part of the LGRBSs:
Perhaps delayed SFR

3. The high rates of both at low redshift will have important consequence
for gravitational wave rate.
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Backups
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GRBs Can be useful probes for study of the early

universe such as Relonization, Star Formation Rate,
Metalicity Evolution

However
For this we need to determine the evolution of their

characteristics (e.g. Formation Rate, Luminosity, .....)

This requires a large sample with redshifts and well defined
observational selection criteria and data truncation
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