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Some important questionsSome important questions
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1. What do the kilonova observations and delay between the GW chirp 
signal and prompt gamma-ray onset tell us about the merger remnant?

2. Can we still use initially top-hat jet simulations to model afterglows?

3. Are there any diagnostics to help understand the structure of the 
outflow in future such events?

a. Flux-centroid motion b. Image shape and size c. Polarization



  

BNS Merger RemnantBNS Merger Remnant



  

4 possible options4 possible options

(Granot, Guetta, & Gill 2017)

● Chirp mass from GW signal

(Abbott+17)
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Maximum mass argument

● GW 170817:

● Threshold for direct collapse to BH

(Bauswein+13, 17; Koppel+19) 

● Max. mass supported by uniform rotation

(Breu & Rezzolla ‘16)

● Max. mass supported by differential rotation

(Weih+18)

Assuming:



  

Can it be a supra-massive magnetar?Can it be a supra-massive magnetar?

● Supported by rigid-body rotation and collapses to a BH on the spin-down time.

(Margutti+2018)
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● Energy injected by the spinning down NS in the form of an isotropic pulsar-type MHD 
wind would’ve powered an exceptionally bright afterglow.

● Early afterglow observations ruled out a supra-massive NS
(e.g. Granot+17; Margalit & Metzger ‘17; Pooley+18)



  

Hypermassive NS (HMNS) and mass ejectionHypermassive NS (HMNS) and mass ejection

(Gill, Nathanail, Rezzolla, ‘19; Kasen+17)
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(Kilonova observation: Arcavi et al. 2017; Cowperthwaite et al. 2017; Drout et al. 2017; Evans et al. 2017; Kasliwal 

et al. 2017; Kilpatrick et al. 2017; Pian et al. 2017; Shappee et al. 2017; Smartt et al. 2017; Troja et al. 2017; ...)

(Kasen+17)



  

Different mass ejection channels and their ratesDifferent mass ejection channels and their rates

(Gill, Nathanail, Rezzolla , 2019)
5/23



  

HMNS collapse time limit from blue ejecta massHMNS collapse time limit from blue ejecta mass

Collapse time of HMNS:

(also see, e.g., Granot+17; Metzger+18)

(Gill, Nathanail, Rezzolla , 2019)
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The delayed GRB onsetThe delayed GRB onset
(LVC+Fermi+INTEGRAL 2017)

● Temporal delay between GW chirp signal 
and SGRB onset:
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The delayed GRB onsetThe delayed GRB onset

● Temporal delay between GW chirp signal 
and SGRB onset:

● The delay time is a combination of three 
timescales:
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(Gill, Nathanail, Rezzolla , 2019)

(from pair opacity - Matsumoto+19)



  

The delayed GRB onsetThe delayed GRB onset
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and SGRB onset:

● The delay time is a combination of three 
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(Gill, Nathanail, Rezzolla , 2019)

● Jet breakout time depends on the 
properties of the jet and circum-merger 
(homologously expanding) ejecta:

(from pair opacity - Matsumoto+19)



  

The delayed GRB onsetThe delayed GRB onset

● Temporal delay between GW chirp signal 
and SGRB onset:

● The delay time is a combination of three 
timescales:

7/23

● We inject a uniform jet and use the semi-
analytic model of Bromberg+11 to 
calculate its breakout time.

(Gill, Nathanail, Rezzolla , 2019)

● Jet breakout time depends on the 
properties of the jet and circum-merger 
(homologously expanding) ejecta:

(from pair opacity - Matsumoto+19)



  

HMNS collapse time from delayed GRB onsetHMNS collapse time from delayed GRB onset

8/23

(Gill, Nathanail, Rezzolla , 2019)



  

HMNS collapse timeHMNS collapse time
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(Gill, Nathanail, Rezzolla , 2019)



  

Afterglow EmissionAfterglow Emission



  

Long lasting rise of the afterglowLong lasting rise of the afterglow

(Mooley+2017)

(Margutti+2018)
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Failure of the Failure of the initiallyinitially top-hat jet model – but wait! top-hat jet model – but wait!

● The initially top-hat jet model failed at explaining the data at early times (e.g., 
Margutti+18; Mooley+18)

● At early times, the model lightcurve rose much sharply as compared to a shallower rise of 
the flux.

(Margutti+18)
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● We conducted 2D hydro simulations of an initially top-hat jet with Blandford-McKee (1976) 
self-similar dynamics and derived the afterglow lightcurves by post-processing.

Angular time delay:

(Gill, Granot, De Colle, Urrutia, 2019)

Initially top-hat jet numerical simulationInitially top-hat jet numerical simulation
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Off-axis emission from a structured jetOff-axis emission from a structured jet
● Simulation of a jet emerging from non-relativistic NS-NS merger ejecta, giving the jet 

angular structure (Lazzati+18).

● Also see: Margutti+18; Xie+18 

(Lazzati+18)
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Four diagnostics of outflow structureFour diagnostics of outflow structure



  

Semi-analytic lightcurves from structured jets / cocoonsSemi-analytic lightcurves from structured jets / cocoons

Also see: Lamb & Kobayashi 18; Troja+18; Fraija & Veres+18; D’Avanzo+18; Troja+17,18; Resmi+18

(Gill & Granot 18)
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Afterglow imagesAfterglow images
● Important properties of the outflow can be derived from 

afterglow images.

●                  ; assumes local spherical dynamics (no lateral 
spreading).

(Gill & Granot 18)
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● Theoretical and numerical works find that magnetic fields are generated by the two-
stream / Weibel instability at the collisionless relativistic afterglow shock (Gruzinov & 
Waxman ‘99, Medvedev & Loeb ‘99, Silva+03, Frederiksen+04, ..)

● Its coherence scale is much smaller 
than the width of the shock:

● The generated field is randomly 
oriented in the plane transverse to 
the shock normal.

● In general, postshock field can be 
anisotropic

● Many works use volume averaged value for b=0 and assume an infinitely thin shell. 

(Sironi, Keshet, Lemoine, 2015)

Postshock magnetic field structurePostshock magnetic field structure
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● Linear polarization can distinguish 
between outflow structure and 
provide insight into magnetic field 
structure.

● Assume random B field:

and infinitely thin shell geometry

● Upper limit on linear polarization 
(Corsi+18)

show that for a structured jet

(Gill & Granot 18)

Polarization from random B-fieldPolarization from random B-field
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● Assuming the “frozen field” approximation, the radial structure of the magnetic field is 
(Granot+99):

(Similarity variable)
● Downstream of the shock, the magnetic field becomes more radial:

(Field anisotropy)

Radial structure of postshock magnetic fieldRadial structure of postshock magnetic field
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● We integrate over the shocked volume and assume a “frozen-field” approximation

● The field anisotropy just behind the shock is parameterized with

(Gill & Granot, in prep)

Polarization from volume integration of shocked regionPolarization from volume integration of shocked region
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● We integrate over the shocked volume and assume a “frozen-field” approximation

● The field anisotropy just behind the shock is parameterized with

Parameter mapping

(Gill & Granot, in prep)

Comparison between 2D and 3D integrationComparison between 2D and 3D integration
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Flux centroid motionFlux centroid motion

● Even if the image is unresolved at late times, 
the flux centroid can yield useful information 
about the outflow structure.

● Flux centroid motion has been measured 
from radio observations (Mooley+18):

(Mooley+18)

(Gill & Granot 18)

● Apparent superluminal motion
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(Ghirlanda+18)

Image sizeImage size

● The mean image size may not be a good discriminator between models.

● Structured jets show a larger axial ratio as compared to quasi-spherical outflow models

(Gill & Granot 18)
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● The total mass of the remnant and kilonova observations suggest that the remnant 
was a hypermassive NS. The total mass of the blue kilonova ejecta and the delay 
between the GW chirp signal and the prompt gamma-ray onset suggest that the 
HMNS survived for about 1 s.

● An initially top-hat jet can explain the afterglow lightcurve and image properties near 
and after the lightcurve peak when the core of the jet is visible to an off-axis observer.

● Semi-analytic models of structured flows are a useful tool to understand the afterglow 
lightcurve and image properties. However, improved analytic approaches are needed 
to capture the dynamics of the flow in the trans-relativistic regime.

● The shallow rise in the afterglow of GRB 170817 before the lightcurve peak (~150 d) 
can be explained by both a wide-angle quasi-spherical flow and a structured jet. The 
differences between the two models become apparent after the lightcurve peak. 

● The three diagnostics – linear polarization, flux centroid motion, and image size & 
axial ratio will be useful in distinguishing the properties of the flow in future events.

● Linear polarization upper limit of 12% for GW170817 can be used to constrain the 
anisotropic structure of the postshock magnetic field.

ConclusionsConclusions
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