

Перовскитные светоизлучающие и лазирующие нано- и микроструктуры

Сергей Макаров

рук. Лаборатории Гибридной Нанофотоники и Оптоэлектроники ("PeroLab") Университет ИТМО

Санкт-Петербург, Россия

ФТИ, 15.04.2019

Introduction to halide perovskites

Reversibly tunable perovskite nanoantennas

Extremely fast method of nanowire lasers synthesis

✓ Large-scale laser printing of perovskite microlasers

✓ All-dielectric nanolasers...

I. Introduction to perovskites

Perovskites: XIX century

Discovered perovskite...

sponsored...

Gustav Rose (1839)

Lev Perovski

 $CaTiO_3$

first perovskite (**CaTiO**₃) was discovered by **Gustav Rose** in 1839 in Ural mountains of Russia and named after Russian minister and mineralogist **Lev Perovski**.

Perovskites: XX century

Described perovskite structure

Halide perovskites

J. Phys. C12 (1979) 5933.
J. Phys. Soc. Jpn. 47 (1979) 232.
Acta Cryst. A36 (1980) 7.

First organic-inorganic halide perovskites

David Mitzi @ IBM (around 1995)

 $MAPbI_{3}$ $MAPbBr_{3}$ $MAPbCI_{3}$ $MA = CH_{3}NH_{3}$

Victor Goldschmidt (1938)

ITMO UNIVERSITY metalab.ifmo.ru

Revolution in photovoltaics

wet chemistry processing

- Low cost process
- Service Substrate
- Tandem Perovskite-Silicon application

ARTICLE

Received 19 Aug 2016 Accepted 20 Apr 2017 Published 1 Jun 2017

DOI: 10.1038/ncomms15684 OPEN

One-Year stable perovskite solar cells by 2D/3D interface engineering

G. Grancini¹, C. Roldán-Carmona¹, I. Zimmermann¹, E. Mosconi^{2,3}, X. Lee⁴, D. Martineau⁵, S. Narbey⁵, F. Oswald⁵, F. De Angelis^{2,3}, M. Graetzel⁴ & Mohammad Khaja Nazeeruddin¹

ITMO UNIVERSITY Light-emitting properties and PeroLEDs

Bulk perovskites and quantum dots

- High PL quantum yield: 50-90%
- 🔮 🛛 Tuning in entire visible range
- Narrow luminescence spectra
- Flexible

Perovskite lasers

- V High gain, low-threshold
- Tuning in entire visible range
- V Flexible
- Electrical pump is possible

Nature Photonics 11, 784 (2017)

Basic properties of halide perovskites

metalab.ifmo.ru

ITMO UNIVERSITY

High quantum yield **High light absorption** Absorption coefficient (cm⁻¹) A **Defect-intolerant Defect-tolerant** CdSe, GaAs APbX, 10⁵ CB CB 10⁴ Pb(6p) 10³ metal shallow or 10² intra-band CH₃NH₃Pbl₃ states states nonmetal 10^{1} GaAs X(3,4,5p c-Si 10⁰ Pb(6s) 1.5 2.5 3.0 1.0 2.0 VB Photon energy (eV) Wan-Jian Yin et al. Journ.Mat.Chem. A (2014)

Basic materials of all-dielectric nanophotonics

ITMO UNIVERSITY metalab.ifmo.ru

Perovskites based nanophotonics

Why halide perovskites?

Basic designs

Makarov et al, "Halide-Perovskite Resonant Nanophotonics" Advanced Optical Materials, 7 (1), 1800784 (2019)

II. Perovskite based nanoscale light sources

metalab.ifmo.ru

Nanoscale tunable light-sources

Ultracompact photonic devices:

- optical modulators
- quantum computing
- gas sensors
- liquid sensors

Problems of nanoscale light sources:

- Needs multistep and expensive lithography or epitaxial growth
- Oifficult to tune spectrally
- Low quantum efficiencies of luminescence
- Source and nanoantenna

Methods of perovskite light sources fabrication

Laser transfer

Direct laser imprinting

Chemically synthesized

Stamp-imprinted

Nanoscale tunable light-sources

metalab.ifmo.ru

Mie theory

Gustav Mie

First magnetic mode

books Born&Wolf, Bohren&Huffman

ITMO UNIVERSITY Mie resonances in perovskite NPs

Emission rate enhancement

Tiguntseva et al. Nano Lett. 18 (2), 1185-1190 (2018)

metalab.ifmo.ru

ITMO UNIVERSITY **Perovskite resonant nanoparticles**

Color change

metalab.ifmo.ru

Laser printing

Mie+Exciton=Fano resonance

metalab.ifmo.ru

ITMO UNIVERSITY

PHYSICAL REVIEW

VOLUME 124, NUMBER 6

DECEMBER 15, 1961

Effects of Configuration Interaction on Intensities and Phase Shifts*

U. FANO National Bureau of Standards, Washington, D. C. (Received July 14, 1961)

of phase normalizations. These curves are represented by

This function is plotted in Fig. 1 for a number of values of q, which is regarded as constant in the range of interest. Notice that

continuum

Fano resonance

FIG. 1. Natural line shapes for different values of q. (Reverse the scale of abscissas for negative q.)

credits to M.Rybin and M. Limonov

narrow resonance

Fano resonance in perovskite NP

ITMO UNIVERSITY metalab.ifmo.ru

Tiguntseva et al. Nano Lett. 18 (9), 5522-5529 (2018)

Fano resonance in single NP

Tiguntseva et al. Nano Lett. 18 (9), 5522-5529 (2018)^{Wavelength (nm)}

Chemical doping in vapor phase

Chemical doping in vapor phase

Reversible tuning of Fano resonance

Tiguntseva et al. Nano Lett. 18 (9), 5522-5529 (2018)

Towards to micro- and nano-lasers metalab.ifmo.ru

Towards to micro- and nano-lasers

Absorption/gain ~ $10^4 - 10^5 \text{ cm}^{-1}$

- ✓ High gain
- ✓ Easy to fabricate
- ✓ High quality
- ✓ Tunability

Few-minutes chemical synthesis

Pushkarev et al. ACS Appl. Mater. Interfaces, 11 (1), 1040–1048 (2019)

Lasing properties

Laser printing of perovskite lasers

Large-scale fabrication

MAPbl₃

Perovskite is a defect-tolerant material!

Zhizhchenko et al. ACS Nano doi:10.1021/acsnano.8b08948 (2019)

Lasing properties: single mode & room T

metalab.ifmo.ru

ITMO UNIVERSITY

ns-threshold: ~ 200 μ J/cm² fs-threshold: < 10 μ J/cm²

Zhizhchenko et al. ACS Nano doi:10.1021/acsnano.8b08948 (2019)

ITMO UNIVERSITY metalab.ifmo.ru

Modeling

Roughness selects the WGM modes

Zhizhchenko et al. ACS Nano doi:10.1021/acsnano.8b08948 (2019)

Reversibly tunable perovskite nanoantennas

Tiguntseva et al. Nano Lett. 18 (2), 1185-1190 (2018) Tiguntseva et al. Nano Lett. 18 (9), 5522-5529 (2018)

Extremely fast method of nanowire lasers synthesis

Pushkarev et al. ACS Appl. Mater. Interfaces, 11 (1), 1040–1048 (2019)

Large-scale laser printing of perovskite microlasers Zhizhchenko et al. ACS Nano doi:10.1021/acsnano.8b08948 (2019)

✓ All-dielectric nanolasers... Tiguntseva et al. (in progress)

> Review: Makarov et al, "Halide-Perovskite Resonant Nanophotonics" Advanced Optical Materials, 7 (1), 1800784 (2019)

ITMO UNIVERSITY

Gets et al. Applied Surface Science 476, 486-492 (2019)

Optical modes in surface gratings

Nanoimprint lithography

SEM image of film structure

Scheme of nanoimprint lithography process

MAPbl₃

Tiguntseva et al. Applied Surface Science 473, 419-424 (2019)

ITMO UNIVERSITY metalab.ifmo.ru

Thresholdless narrow lines

Tiguntseva et al. Applied Surface Science 473, 419-424 (2019)

photonics

LETTERS https://doi.org/10.1038/s41566-017-0047-6

Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor

Yufei Jia¹, Ross A. Kerner², Alex J. Grede¹, Barry P. Rand² and Noel C. Giebink¹

Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far¹⁻³. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of ~17 kW cm⁻² for over an hour in methylammonium lead iodide (MAPbI₃) distributed feedback lasers that are maintained below the MAPbI₃ tetragonalto-orthorhombic phase transition temperature of $T \approx 160$ K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI₃ at T > 160 K (ref. ⁴), we find that continuous-wave gain becomes possible at $T \approx 100$ K from tetragonal-phase inclusions that are photogenerated by the nump within the normally existing larger bandgan tetragonal phase inclusions may act as charge carrier sinks within the larger-bandgap orthorhombic phase host matrix, enhancing population inversion in a fashion analogous to host-guest organicsemiconductor gain media and inorganic quantum wells^{13,14}. These results suggest a general strategy to design perovskite gain media for c.w. lasing and represent a key step towards the ultimate goal of a perovskite laser diode.

Figure 1 explores the amplified spontaneous emission (ASE) gain dynamics of a 120-nm-thick MAPbI₃ film deposited on a sapphire substrate using an InGaN pump diode (λ_p =445 nm, intensity I_p =37.5 kW cm⁻², 920-ns-long pulses at 100 Hz repetition rate) and a streak camera. In Fig. 1a, at a substrate temperature of T=169 K, tetragonal-phase ASE is observed immediately following number turn on but causes within 100 ns giving user to incoher

Perovskite solar cells with Si nanoparticles

Plasmonics for improved photovoltaic devices

scattering near-filed waveguiding enhancement

Atwater and Polman, «Plasmonics for improved photovoltaic devices» Nature Materials volume 9, pages 205–213 (2010)

Silicon NPs vs Plasmonics for MAPI-PV

Resonant nanoparticles, shape (diameter)	Efficiency (%)/Fill factor (%)
Si, nanospheres, (100-200 nm)	18.8/79
Au@TiO ₂ , nanospheres (80nm)	18.2/75.5
Au@SiO ₂ , nanospheres (14 nm)	17.6/78.2
Au@SiO ₂ , nanorods (15×37 nm)	17.6/77.3
Au@TiO ₂ , nanorods (5×40) nm	16.8/74.7
Au, nanospheres (40 nm)	16.2/76
Au, nanospheres (40 nm)	16.1/68
Au@TiO ₂ , nanospheres (60 nm)	14.9/70
Au@SiO ₂ , nanospheres (45 nm) / nanorods (8×55 nm)	13.7/68
Ag@TiO ₂ , nanospheres (40 nm)	13.7/67
Au, nanostars (30 nm)	13.7/72.1 (regular) 8.7/71.2 (invert)
Au@SiO ₂ , nanospheres (100 nm)	11.4/64

TTMO UNIVERSITY metalab.ifmo.ru

Silicon NPs for pero-PV

ITMO UNIVERSITY metalab.ifmo.ru

Furasova et al. Advanced Optical Materials, 1800576 (2018)

Furasova et al. Advanced Optical Materials, 1800576 (2018)

Silicon NPs for pero-PV

ITMO UNIVERSITY metalab.ifmo.ru