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A new approach to obtaining market–directional information, based on a non–

stationary solution to the dynamic equation “future price tends to the value that

maximizes the number of shares traded per unit time” [1] is presented. In our previ-

ous work[2], we established that it is the share execution flow (I = dV/dt) and not

the share trading volume (V ) that is the driving force of the market, and that asset

prices are much more sensitive to the execution flow I (the dynamic impact) than to

the traded volume V (the regular impact). In this paper, an important advancement

is achieved: we define the “scalp–price” P as the sum of only those price moves that

are relevant to market dynamics; the criterion of relevance is a high I. Thus, only

“follow the market” (and not “little bounce”) events are included in P. Changes in

the scalp–price defined this way indicate a market trend change — not a bear market

rally or a bull market sell–off; the approach can be further extended to non–local

price change. The software calculating the scalp–price given market observations

triples (time, execution price, shares traded) is available from the authors.
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I. INTRODUCTION

Introduced in [3], the ultimate market dynamics problem — finding evidence of existence

(or proof of non–existence) of an automated trading machine consistently making positive

P&L as a result of trading on a free market as an autonomous agent — can be formulated

in its weak and strong forms:

• Weak form: Whether such an automated trading machine can exist at all using only

legally available data. (It can definitely exist in an illegal form – e.g. when a brokerage

uses client order flow information to frontrun their own clients. This type of strategies

typically rely on using proprietary information about clients’ Supply–Demand future

disbalance and on the subsequent monetization of this information.)

• Strong form: Whether such an automated trading machine can exist and be based

solely on transaction sequences – say, the historical time series of (time, execution

price, shares traded) market observations triples. This information has supply and

demand matched for every observation: at time t trader A sold v shares of some

security at price P to trader B and received v · P dollars. Such a strategy can utilize

only information about volume and execution flows.

We have shown in [1, 2] that it is share execution flow I = dV/dt, not share trading

volume V , that is the driving force of the market (see the Figs. 2 and 3 of Ref. [2]: the asset

price shows singularity at a high I, but there is no price singularity at the maximal volume

price, the median of price–volume distribution).

In [1, 4], the concept of liquidity deficit trading was introduced: open a position at

low I, then close already opened position at high I; this is the only strategy that avoids

catastrophic P&L losses. This strategy is ideologically similar to a classic volatility trading

strategy: buy a straddle at low volatility, sell it at high volatility, never go short volatility to

avoid catastrophic P&L loss, but is different from it by incorporating asset price directional

contribution: the decision is needed on whether to open a long or a short position at low

I. In [3], the first attempt at finding a non–stationary solution to the dynamic equation by

linking asset price and liquidity deficit via “impact–from–the–future” operator (adding to

execution flow a contribution from not–yet–executed trades) was presented. In this paper,

a different approach is developed.

https://en.wikipedia.org/wiki/Front_running
https://en.wikipedia.org/wiki/Straddle
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Instead of adding not–yet–executed trades (impact–from–the–future), we now consider

removing from consideration already executed trades (impact–from–the–past) corresponding

to high I → low I transitions. A liquidity deficit trading strategy assumes that only low I

→ high I transitions will be captured by the trader. The high I → low I transitions are not

to be used, as they are a major source of catastrophic risk. A typical market behavior after

a liquidity excess (high I) event is to “bounce a little,” then go in the original direction of

the market. This creates an uncertainty of strategy. What does one bet on: “little bounce”

or “follow the market”? In contrast, after a liquidity deficit (low I) event, the market can

only go in the direction of the market trend, eliminating this uncertainty. This shows the

importance of the assymetry of dynamic impact (price sensitivity to I [2]): low I → high

I and high I → low I transitions are to be considered separately, as they lead to very

different price behaviors. This asymmetry is the topic of this study. The scalp–function

(34) is introduced to comprise only those price moves relevant to market dynamics (high I),

which allows constructing scalp–price P (Fig. 2) containing only “follow the market” (and

not “little bounce”) events. A change in the scalp–price indicates a market trend change,

not a bear market rally or a bull market sell–off.

II. BASIC MATHEMATICS

The key concept of the dynamic equation “future price tends to the value that maximizes

the number of shares traded per unit time” [1, 3] is to find an averaging weight from the

behavior of a market dynamics operator f (e.g. dV/dt, V/t, or dI/dt), then to estimate

some directional indicator (e.g. price change, signed volume, etc.) using the obtained

weight. Mathematically, the weight is considered in the form of an average depending

on wavefunction ψ(x) =
∑n−1

k=0 αkQk(x): ψ2(x(t))ω(t)dt, an important generalization of

commonly–used parameter–independent fixed time scale averaging such as the exponential

moving average : ω(t)dt. The bases Qm(x(t))ω(t)dt we use in this paper are listed in Section

II of Ref. [3]). Here ω(t) is decaying exponent and x(t) is either linear or exponential function

on time:

ω(t) = exp (−(tnow − t)/τ) (1)

https://en.wikipedia.org/wiki/Wave_function
https://en.wikipedia.org/wiki/Moving_average
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x(t) =

(t− tnow)/τ Laguerre basis

exp (−(tnow − t)/τ) shifted Legendre basis
(2)

The problem is then reduced to a generalized eigenvalue problem of operator ∥f∥:∣∣∣f ∣∣∣ψ[i]
f

〉
= λ

[i]
f

∣∣∣ψ[i]
f

〉
(3)

n−1∑
k=0

⟨Qj | f |Qk⟩α[i]
k = λ

[i]
f

n−1∑
k=0

⟨Qj |Qk⟩α[i]
k (4)

ψ
[i]
f (x) =

n−1∑
k=0

α
[i]
k Qk(x) (5)

The most general form of the averaging weight is a density matrix:

∥ρ∥ =
n−1∑
i=0

∣∣ψ[i]
ρ

〉
λ[i]ρ

〈
ψ[i]
ρ

∣∣ (6)

fρ = Spur ∥f |ρ∥ =
n−1∑
i=0

〈
ψ[i]
ρ

∣∣ f ∣∣ψ[i]
ρ

〉
λ[i]ρ =

n−1∑
i=0

〈
ψ

[i]
f

∣∣∣ ρ ∣∣∣ψ[i]
f

〉
λ
[i]
f (7)

The most promising result of Refs. [1, 3] is averaging with the weight in the state
∣∣∣ψ[IH]

I

〉
of the maximum execution rate I = dV/dt on the past sample. This corresponds to the

following density matrix and asset price:

∥ρ[IH]∥ =
∣∣∣ψ[IH]

I

〉〈
ψ

[IH]
I

∣∣∣ (8)

p[IH] =
〈
ψ

[IH]
I

∣∣∣ pI ∣∣∣ψ[IH]
I

〉/
λ
[IH]
I (9)

Given a state |ψ⟩, a number of values in this state can be calculated. Just a few examples.

Let’s define

Vs(t) =

tnow∫
t

ps(t′)dV ′ (10a)

Ts(t) =

tnow∫
t

ps(t′)dt′ (10b)

Here, V0(t) = V (tnow)−V (t) is traded volume, V1(t) is traded capital, V1(t)/V0(t) is volume–

weighted average price, T0(t) = tnow − t, and T1(t)/T0(t) is time–weighted average price;

these are the values for the time interval: between t and tnow. Then p{v,t} is {volume,time}–

averaged price in the |ψ⟩ state, p{V,T} is {volume,time} averaged aggregated price in the

http://www.netlib.org/lapack/lug/node54.html
https://en.wikipedia.org/wiki/Density_matrix
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|ψ⟩ state, calculated using the aggregated moments (10). If |ψ⟩ is localized at some given

t, then, approximately, p{v,t} is the price at t and p{V,T} are {volume,time}–weighted price

moving average calculated for the time interval between t and tnow:

pv =
⟨ψ | pI |ψ⟩
⟨ψ | I |ψ⟩

(11a)

pt =
⟨ψ | p |ψ⟩
⟨ψ |ψ⟩

(11b)

pV =
⟨ψ |V1 |ψ⟩
⟨ψ |V0 |ψ⟩

(11c)

pT =
⟨ψ |T1 |ψ⟩
⟨ψ |T0ψ⟩

(11d)

Moments ⟨QmVs⟩ and ⟨QmTs⟩ can be calculated from moments ⟨Qm p
sI⟩ and ⟨Qm p

s⟩ and,

more generally, moments
〈
Qm

dF
dt

〉
can be calculated from moments ⟨QmF ⟩ using integration

by parts (see the Appendices D and E below). In some cases, it is more convenient to

directly integrate the wavefunction rather the individual basis functions as in (D1):

wψ(t) =

t∫
−∞

ψ2(x(t′))ω(t′)dt′ = ω(t)J(ψ2(x(t))) (12)

tnow∫
−∞

F (t)ψ2(x(t))ω(t)dt = −
tnow∫

−∞

dF

dt
wψ(t)dt (13)

F (tnow) = 0 : Boundary condition (14)

For the bases we use ω(t) = exp (−(tnow − t)/τ) is monotonic, x(t) is a simple function

(linear or exponential), and J(·) in (12) is analytically–known polynomial–to–polynomial

mapping function1:

J(P ) =



1

exp(x)

x∫
−∞

P (x′) exp(x′)dx′ Laguerre basis

1

x

x∫
0

P (x′)dx′ shifted Legendre basis

(15)

Averaging with ψ2(x(t))ω(t)dt weight gives the value in a pure state |ψ⟩, averaging with

J(ψ2(x(t)))ω(t)dt weight gives the value in a mixed state: starting since |ψ⟩ till “now”.

1 See the classes com/polytechnik/freemoney/{WIntegratorLegendreShifted,WIntegratorLaguerre,

WIntegratorMonomials}.getPsi2WIntegratedDt() for numerical implementations)
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This allows simultaneously calculate the values of operator pairs: (∥V0∥, ∥I∥), (∥V1∥, ∥pI∥),

etc. in the state of a given ψ(x). These operators are known explicitely and all their

moments ⟨FQs⟩, s = 0 . . . 2n−2 can be obtained directly from sample, then matrix elements

⟨Qj |F |Qk⟩, j, k = 0 . . . n − 1 are obtained using basis functions multiplication operator

(17). However, the situation is different when operator’s moments ⟨FQs⟩, s = 0 . . . 2n − 2

are not explicitly known, often available only through matrix elements ⟨Qj |F |Qk⟩ that are

obtained from some algebra (e.g. an operator as a product and sum of other operators,

or an operator with it’s eigenvalues adjusted for some reasons, such as the technique of [5]

where the eigenvalues (not the eigenvectors!) are adjusted for an effective identification of

weak hydroacoustic signals). In this case the average
∫ tnow

−∞ F (t)J(ψ2(x(t)))ω(t)dt cannot be

calculated directly. However, Theorem 3 of [6] establishes a mapping between a polynomial

(such as J(ψ2(x))) and a measure, this allows to obtain the moments of a measure that

produces a density matrix providing the same average. This way operator’s average in a

mixed state can be obtained in a regular way as a Spur of the operator with the obtained

density matrix even without explicit knowledge of the operator’s moments ⟨FQs⟩, s =

0 . . . 2n− 2, see e.g. com/polytechnik/trading/trading/DM_DI.java that uses com/poly

technik/utils/BasisFunctionsMultipliable.java:getMomentsOfMeasureProducingP

olynomialInKK_MQQM to obtain the density matrix2.

What input data is required to obtain all the results of this paper? The n× n matrices

⟨Qj | f |Qk⟩ (j, k = [0 . . . n−1]): are calculated from generalized moments (m = [0 . . . 2n−2]):

⟨Qm⟩ (16a)

⟨Qm I⟩ (16b)

⟨Qm pI⟩ (16c)〈
Qm

dp

dt

〉
(16d)

by applying basis functions multiplication operator (Eq. (G1) of Ref. [3]):

QjQk =

j+k∑
m=0

cjkmQm (17)

2 Note that while integration density J(ψ2(x(t)))ω(t) from (12) is always positive monotonically in-

creasing with t on measure support (the J(ψ2(x)) is a positive polynomial on x interval matching to

t ∈ (−∞ . . . tnow] interval), the eigenvalues of the density matrix corresponding to this positive polyno-

mial is not necessary all positive. This means that J(ψ2(x)) is not always a sum of squares.

https://en.wikipedia.org/wiki/Polynomial_SOS
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All the (16) are calculated from (Time, Price, Shares traded) transaction sequence.

III. P&L AND OPTIMAL POSITION CHANGE

Given a directional density matrix ∥ρ∥, how we do apply it? A näıve answer is to average

a directional attribute with it, for example:

• Use price change operator ∥f∥ = ∥dp
dt
∥ (or ∥f∥ = ∥d2p

dt2
∥ with some boundary condition

from the Appendix E), calculate Spur ∥f |ρ∥; in a pure state ∥ρ∥ = |ψ⟩ ⟨ψ|, hereof

Spur ∥f |ρ∥ = ⟨ψ | f |ψ⟩. Other directional attributes (signed volume, spread multi-

plied by signed volume, time difference spent in the order book, etc.) can be also

considered[4].

• The state determining the dynamics often corresponds to a large dI/dt. Because

dI ≈ I(t+dt)−I(t) > 0, I = dV/dt is larger at the end of the interval. The asset price

difference pv− pt, with volume dV and time dt averaged in a state with such an asym-

metry, is proportional to the directional component, where pv = ⟨ψ | pI |ψ⟩ / ⟨ψ | I |ψ⟩,

and pt = ⟨ψ | p |ψ⟩ / ⟨ψ |ψ⟩. Note that such a difference between volume– and time–

averaged attribute pv−pt carries directional information only in a state of large dI/dt,

which makes an asymmetry of price averaging with dV and dt correspond to δp. This

is not the case in other states, e.g. trying to use the difference between volume– and

time–averaged price in the
∣∣∣ψ[IH]

I

〉
state was fruitless in [3], see Appendix A for a

demonstration. It is now clear why: only the states with large dI/dt provide weight

asymmetry required to obtain directional information using dV vs. dt averaging.

In [1] a P&L operator has been introduced in the Section II.E “P&L operator and trading

strategy”. Given a position change dS, the amount of shares bought (dS > 0) or sold

(dS < 0) during time interval dt, the P&L is3:

P&L = −
∫
pdS (18)

0 =

∫
dS (19)

3 While the P&L is −
∫
pdS, Eq. (18), the

∫
IdS, can be tried as a directional indicator.
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The constraint (19) means: total asset position should be zero in the beginning and in the

end of a trading period. Formally,

dS =
d

dt

(
w(t)

dp

dt

)
dt (20)

where w(t) is an arbitrary positive function, provides positive P&L in (18) (integrate by

parts and assume dp
dt

= 0 at the boundary to satisfy (19)). Position increment dS of optimal

P&L trading has a symmetry of the second derivative of price. Note that in (20) other

than dp/dt attributes can be used, designate it as F , for example: weighted price change

F = δV dp
dt

(price change multiplied by the volume traded at this price), signed volume,

signed volume multiplied by spread, etc.

There is a dS answer of integral type:

dS = ω(t)

t∫
dt′

∫ t′

dt′′ω(t′′)p(t′′) (21)

but it’s non–local nature and the difficulty to choose integration limits to satisfy the con-

straint (19) make such an approach more difficult to implement. In the simplest form this

approach is equivalent to buying below the median and selling above the median strategy

considered in the Appendix E of Ref. [3].

A very promising idea is a “local trading strategy” for dS : in
∣∣∣ψ[IH]

I

〉
state buy at prices

below the p[IH] from (9), sell above the p[IH]. Corresponding ∥dS/dt∥ operator is then:

dS = −
(
p− p[IH]

)
dV (22)∥∥∥∥dSdt

∥∥∥∥ = −
∥∥(p− p[IH]

)
I
∥∥ (23)

P&L = −
〈
ψ

[IH]
I

∣∣∣∣ pdSdt
∣∣∣∣ψ[IH]

I

〉
=

〈
ψ

[IH]
I

∣∣∣ (p− p[IH]
)2
I
∣∣∣ψ[IH]

I

〉
(24)

For this dS, in the
∣∣∣ψ[IH]

I

〉
state, the (19) condition is satisfied, and the P&L has a meaning

of price standard deviation (24).

IV. DIRECTIONAL INFORMATION: BEYOND THE WAVEFUNCTION

As we have discussed in [1, 2] the most interesting market behavior is observed at large

I, optimization problem I = ⟨ψ | I |ψ⟩
⟨ψ |ψ⟩ −→

ψ
max can be reduced to a generalized eigenvalue

problem (4) for ∥I∥ operator: ∣∣∣I∣∣∣ψ[i]
I

〉
= λ

[i]
I

∣∣∣ψ[i]
I

〉
(25)
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While the enter/exit conditions can be easily obtained from (25) as in (B1), the directional

information is a much trickier problem[3]. In [4], the importance of P&L dynamics was

emphasized. In Section III above, several trading strategies (dS), retrospectively providing

positive P&L are presented. The goal, however, is to build a strategy providing future

positive P&L. Consider pt (11b) in the
∣∣∣ψ[IH]

I

〉
state:

p
[IH]
t =

〈
ψ

[IH]
I

∣∣∣ p ∣∣∣ψ[IH]
I

〉
〈
ψ

[IH]
I

∣∣∣ψ[IH]
I

〉 (26)

P last − p
[IH]
t =

∫
dt
dp

dt
w
ψ
[IH]
I

(t) (27)

The (27) is just dp/dt integration with the weigh (12) for
∣∣∣ψ[IH]

I

〉
: the sum of the derivative

values with the proper weights give the last price minus the average. The (27) can be

expressed via the
〈
Qm

dp
dt

〉
moments using an integration by parts of the Appendix D. The

problem is reduced to calculation of the moments (m = [0 . . . 2n − 2]) from observations4

sample l = [1 . . .M ]: 〈
Qm

dp

dt

〉
=

M∑
l=1

[p(tl)− p(tl−1)]Qm(x(tl))ω(tl) (28)

Then (28) can be substituted for (27) and the best directional answer of Ref. [1]: the last

price minus the price in the
∣∣∣ψ[IH]

I

〉
state is obtained (the (11a) and (11b) are almost identical

in the
∣∣∣ψ[IH]

I

〉
state). These answers are the most general form that can be obtained using

the “pure wavefunction approach”: all the answers are two quadratic forms ratio, possibly

incoherently superposed to a density matrix (7). However, as we have discussed above, “not

all observations are equal”: only the events with a high I are important for market dynamics.

Consider the expression (27) for a general attribute F :

DIR_scalped =

∫
dtF(t)w

ψ
[IH]
I

(t) (29a)

⟨QmF⟩ =
M∑
l=1

(tl − tl−1)FlQm(x(tl))ω(tl) (29b)

For

Fl =
dp

dt
=
p(tl)− p(tl−1)

tl − tl−1

(30)

4 Here the “right” sum is selected to simplify the recurrence by preserving the invariance of the time–grid.

One can possibly use the “middle” sum with the (tl − tl−1)/2 in the weight ω(t) and the basis Qm(x(t))

functions argument.
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the (29 is exactly the (27) and (28). Consider

F(t) =
dp

dt
S(t) (31)

(tl − tl−1)Fl = (p(tl)− p(tl−1))Sl = (tl − tl−1)
dp

dt
Sl (32)

S(t) : [0 . . . 1] bounded function (33)

Sl =
〈
ψ

[IH]
I

∣∣∣ψ0

〉2

: For t ∈ [−∞ . . . tl] interval (34)

Now price change is multiplied by a [0 . . . 1] bounded scalp–function S(t) to select “the

relevance to market dynamics” of any single observation moment tl. This way, we can

remove from consideration all “irrelevant” observations, as discussed in the introduction; the

relevance is determined by estimating whether the current execution flow I0 is extremely

large. The answer obtained in [1, 7] is: for every tl observation solve the (25) problem for

the interval [−∞ . . . tl] and consider the projection (34) for time–shifted (tnow = tl) problem

(25). The calculations are straightforward. At time “now,” look back at all [1 . . .M ] market

observations, calculate the sum (29b); for every term at tl also “look back” to construct a

separate set of matrices ⟨Qj |Qk⟩ and ⟨Qj | I |Qk⟩ for the interval l′ = [1 . . . l] and calculate

the scalp–function S from (34). This is a problem of O(M2) complexity when approached

directly, but it can be optimized using recurrence relation for the moments calculated for

different observation intervals l′ = [0 . . . l], l = [0 . . .M ]. The major difference with the

(27) is that the averaging (29a) can no longer be written in the density–matrix form (7)

with the original
〈
Qm

dp
dt

〉
moments. The integration weight in (27) is obtained from the

integration of (12). Using Theorem 3 from the Appendix A of Ref. [6], any polynomial P (x)

of 2n−2 degree can be isomorphly mapped to a linear operator of the dimension n, thus the

density matrix, corresponding to the w
ψ
[IH]
I

averaging (27), can be readily obtained. This

is no longer the case for (29a) averaging. The scalp–function S, while is easy to calculate

numerically, does not allow to reduce (29a) averaging to a density matrix averaging (7)

of the original moments (28); we now need the scalp–moments (32) to average them with

the w
ψ
[IH]
I

. This is similar to Bloch wavefunction in quantum mechanics, where the “true”

wavefunction is considered as a product of slow and fast oscillating terms. Now we have a

product of slow wψ(t) and fast S(t) changing weights in (29a). The greatest advantage of

such a transition from regular to scalp–moments, is that the averaging weight can be very

sharp. Compare the I0 in Fig. 1 with, calculated from the (16) input at fixed tnow, the

https://en.wikipedia.org/wiki/Bloch_wave
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“interpolated” I(y(−∞ ≤ t ≤ tnow)) in Fig. 6 of the Appendix A: even for the dimension

n = 12 obtained wavefunction states are not sufficiently localized to select the sharp spikes

in price changes at high I. In the same time the dimension n = 12 is perfectly OK for the

execution flow I. The scalp–function (33) is a practical way to unify price and execution–flow

dynamics within a single framework.

In the Fig. 1 the
〈
ψ

[IH]
I

∣∣∣ψ0

〉2

projection (34) along with I0 and λ[IH]
I are presented. One

can clearly see that the (34) is a very good indicator of market activity, the effect we have

noticed back in [1, 7]. Now, however, we know how to apply this knowledge: the criterion of

current execution flow being extremely high (such as
〈
ψ

[IH]
I

∣∣∣ψ0

〉2

) can be used as a scalp–

function S when calculating the dp/dt moments in (29b): multiply each p(tl) − p(tl−1) by

the scalp–function. This way only the relevant (high I) market moves will be accounted in

the scalp–moments ⟨QmF⟩ =
〈
QmS dp

dt

〉
. Typical scalping is price spikes (relatively some

“average”–like level) identification technique along with a set of rules to enter a trade and

to take a profit/stoploss. As we have shown[2] the spikes in the execution flow, not in the

price, are responsible for market dynamics.

The (29b) main idea is to accumulate, with the Qm(x(t))ω(t)dt weight, a directional

attribute, such as p(tl) − p(tl−1), (Ref. [1] result) multiplied by a scalp–function, such

as (34) (this paper result); in practice this is just a directional attribute transform (53).

Algorithmically, we need to listen for all trading events, and, for each coming event in

sequence, obtain a directional attribute Fl from the regular moments, then calculate (29b)

scalp–moments (recurrent optimization make it very efficient computationally) to obtain the

directional information (29a). Important, that the value of Fl is calculated from already

sampled moments and recent observations. This calculated value is now used to calculate

it’s moments “as it were directly observed from sample” (e.g. as it were a regular price

change). This sampling technique, using calculated value as it were a new observable, can

be called the “secondary sampling”. It can be implemented in several ways:

• Tick trading. As a transaction sequence consider every tick (execution or limit order

book event). For every tick l calculate5

Fl =
p(tl)− p(tl−1)

tl − tl−1

〈
ψ

[IH]
I

∣∣∣ψ0

〉2

(35)

5 Most of Dl = p(tl) − p(tl−1) = 0 as most trading occur at the same price. Also note that pM − pm−1 =∑M
l=m Dl. For a different weight in the sum obtain (27).

https://en.wikipedia.org/wiki/Scalping_(trading)
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FIG. 1. The AAPL stock price on September, 20, 2012. The calculations in Shifted Legendre

basis with n = 12 and τ=128sec. The I0, λ
[IL]
I , λ[IH]

I , and
〈
ψ
[IH]
I

∣∣∣ψ0

〉2
projection (34) are

presented. The execution flow I is scaled and shifted to 693, the projection is shifted to 695 to fit

the chart. In between [9.92 . . . 9.94] the execution flow I0 is small and the
〈
ψ
[IH]
I

∣∣∣ψ0

〉2
is close to

zero, thus make this interval non–contributing to scalp–moments. What will happen to them, when

the I0 = ⟨ψ0 | I |ψ0⟩ is used as a scalp–function instead of the
〈
ψ
[IH]
I

∣∣∣ψ0

〉2
? In the [9.92 . . . 9.94]

interval the I0, while being small, is not particularly zero and the contributions from this interval

will propagate to (29b); moreover the I → I + const transform makes these contributions even

larger. In the same time the (34) is almost zero in irrelevant to market dynamics intervals and is

invariant with respect to I → I + const transform. Effectively the
〈
ψ
[IH]
I

∣∣∣ψ0

〉2
is the definition of

scalp: the condition of I0 being high[7].

to obtain the “filtered by relevance” moments in (29b).

• Assuming we have all the ticks data6 , instead of the price difference some average

6 In practice, for US equity market, a sub–millisecond data can be obtained at reasonable cost. For other

markets, such as fixed income, every tick data cannot be practically obtained. Even for currency trading
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multiplied by the scalp–function can be used:

Fl =

〈
ψ0

∣∣∣∣ dpdt
∣∣∣∣ψ0

〉〈
ψ

[IH]
I

∣∣∣ψ0

〉2

(36)

The (36) uses the |ψ0⟩ for the interval t ∈ [−∞ . . . tl] with tnow = tl. The ψ0 from

(A1) has an internal time scale 1/ψ2
0(x0) (which is determined by the basis dimension

n and scale τ), thus in (36) the dp/dt is averaged over the time 1/ψ2
0(x0). The result

is very similar to price tick (35) approach, see the Fig. 7 below. A quite similar result

can also be obtained with

Fl = ψ2
0(x0)

[
⟨ψ0 | pI |ψ0⟩
⟨ψ0 | I |ψ0⟩

− ⟨ψ0 | p |ψ0⟩
⟨ψ0 |ψ0⟩

]〈
ψ

[IH]
I

∣∣∣ψ0

〉2

(37)

this corresponds to described above approach of the difference between volume and

time averaged price.

• The (35) and (36) are calculated in the |ψ0⟩ state. One can consider other states, the∣∣∣ψ[IH]
I

〉
is of special interest

Fl =

〈
ψ

[IH]
I

∣∣∣∣ dpdt
∣∣∣∣ψ[IH]

I

〉〈
ψ

[IH]
I

∣∣∣ψ0

〉2

(38a)

Fl = 2
[〈
ψ

[IH]
I

∣∣∣ pI ∣∣∣ED(ψ[IH]
I )

〉
−
〈
ψ

[IH]
I

∣∣∣ pI ∣∣∣ψ[IH]
I

〉〈
ψ

[IH]
I

∣∣∣ED(ψ[IH]
I )

〉]
(38b)

Fl =

〈
ψ

[IH]
I

∣∣∣∣ ddtpI
∣∣∣∣ 〈ψ[IH]

I

〉〉
= 2

[
P lastλ

[IH]
I

〈
ψ

[IH]
I

∣∣∣ED(ψ[IH]
I )

〉
−
〈
ψ

[IH]
I

∣∣∣ pI ∣∣∣ED(ψ[IH]
I )

〉]
(38c)

An important feature of (38) is that some of these Fl expressions (38b) and (38c) are

calculated from ∥pI∥ operator variation and have: 1. the dimension of capital 2. the〈
ψ

[IH]
I

∣∣∣ψ0

〉2

factor entering due to the identity(
ψ

[IH]
I (x0)

)2

= 2
〈
ψ

[IH]
I

∣∣∣ED(ψ[IH]
I )

〉
=

〈
ψ

[IH]
I

∣∣∣ψ0

〉2

ψ2
0(x0) (39)

• An ability to use an expression, calculated from the regular moments ⟨·⟩, such as (38) is

a very important generalization of price change directional attribute (30). The minimal

the fragmentation of the markets along with prohibitively high prices on sub–millisecond data, make any

tick–trading approach practically unfeasible. However, as we have discussed in Ref. [3], the time scale

of market opportunities (along with liquidity available!) expand well beyond sub–millisecond time scale,

maximal scale is determined by the availability of high enough fluctuations in the execution flow I, at

least an order of magnitude in λ[IH]
I /λ

[IL]
I .
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time–scale of such an attribute is 1/ψ2
0(x0), and the experiment shows that (35) and

(36) produce very similar results. This makes promising to consider a directional

attributes of more general form in the |ψ0⟩ state: calculate the Fl, and use it as it

were a regular price change. All the previously considered Fl were some kind a price

change analogue. In Ref. [3] two new directional attributes have been introduced:

skewness and probability correlation. Consider the skewness (Eq. (66) of Ref. [3])

calculated out of four input moments:

πs = ⟨ψ0 | psI |ψ0⟩ (40)

s = 0, 1, 2, 3

Γ̃ =
2p− pmin − pmax

pmin − pmax

(41)

The idea is to build two–point Gauss quadrature (the pmin, pmax are min/max nodes

of the quadrature, Eq. (64) of Ref. [3], and p = π1/π0) then to consider it’s weight

asymmetry as the asymmetry of the distribution. The weigh asymmetry (41) is actu-

ally proportional to the difference between the median estimator (pmin + pmax)/2 and

the average p. One can use the skewness

Fl = [pmax − pmin] Γ̃
〈
ψ

[IH]
I

∣∣∣ψ0

〉2

(42)

as a directional attribute instead of price change. The (42) is calculated from the

regular moments ⟨Qk⟩, ⟨IQk⟩, ⟨pIQk⟩, ⟨p2IQk⟩, and ⟨p3IQk⟩, then the Fl is used as

it were observed at t = tl. This way we substitute price change by the skewness

calculated at 1/ψ2
0(x0) scale. The scalp–function

〈
ψ

[IH]
I

∣∣∣ψ0

〉2

makes only relevant to

market dynamics observations to contribute.

• Variate the ∥pI∥ in the
∣∣∣ψ[IH]

I

〉
state7 with |ψ0⟩:

Fl = 2
[〈
ψ

[IH]
I

∣∣∣ pI ∣∣∣ψ0

〉
−

〈
ψ

[IH]
I

∣∣∣ pI ∣∣∣ψ[IH]
I

〉〈
ψ

[IH]
I

∣∣∣ψ0

〉]〈
ψ

[IH]
I

∣∣∣ψ0

〉
(43)

If |ψ0⟩ is the
∣∣∣ψ[IH]

I

〉
then (43) is zero and no directional information is available.

The factor
〈
ψ

[IH]
I

∣∣∣ψ0

〉
, which does not enter the (H3), is included in (43) as a scalp–

function; this factor also provides proper sign invariance for ψ → −ψ transform:

7 The expression has the meaning of capital change due to (39) identity. For single asset consideration it is

convenient to divide (43) by λ[IH]
I .
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〈
ψ

[IH]
I

∣∣∣ψ0

〉
is not squared as it is in (34). One can also use a higher degree of〈

ψ
[IH]
I

∣∣∣ψ0

〉
factor in (43) to make the peaks sharper.

• Similar to (37), but with
∣∣∣ψ[IH]

I

〉
and |ψ0⟩

Fl = ψ2
0(x0)

⟨ψ0 | pI |ψ0⟩
⟨ψ0 | I |ψ0⟩

−

〈
ψ

[IH]
I

∣∣∣ pI ∣∣∣ψ[IH]
I

〉
〈
ψ

[IH]
I

∣∣∣ I ∣∣∣ψ[IH]
I

〉
〈

ψ
[IH]
I

∣∣∣ψ0

〉2

(44)

can be considered. This is price difference in |ψ0⟩ and
∣∣∣ψ[IH]

I

〉
states. Were it not for

the scalp–function
〈
ψ

[IH]
I

∣∣∣ψ0

〉2

this would be almost Ref. [1] answer: the difference

between the last price and p[IH] (9). The scalp–function makes this difference to be

accumulated only for the events of extremeny high I0. The (43) and (44) are zero for∣∣∣ψ[IH]
I

〉
being equal to |ψ0⟩, thus satisfy Ref. [3] Eq. (48) condition of “no directional

information about the future available”.

• All the Fl considered above are some kind of price change. Tick trading (35) is last

price minus previous price, the other (e.g. (36), (37), etc.) are calculated from the

regular moments. It is a promising path to combine tick and moments approaches.

Fl = [pl − p∗l ]
〈
ψ

[IH]
I

∣∣∣ψ0

〉2

(45)

p∗l : calculated from ⟨IQk⟩ and ⟨pIQk⟩ moments (46)

Estimating the p∗l as (9), or (11) in the state |ψ0⟩ or
∣∣∣ψ[IH]

I

〉
will not provide a good

answer, the (38) is a demonstration. A promising approach is to consider skweness like

answer (41). Take (42) but consider it in a different basis of dimension two, replace

the basis 1, p(t) by |ψ0⟩,
∣∣∣ψ[IH]

I

〉
, as these are the states that are localized and relevant

to market dynamics: ⟨ψ0 | pI |ψ0⟩
〈
ψ0

∣∣∣ pI ∣∣∣ψ[IH]
I

〉
〈
ψ

[IH]
I

∣∣∣ pI ∣∣∣ψ0

〉 〈
ψ

[IH]
I

∣∣∣ pI ∣∣∣ψ[IH]
I

〉
 α

[0,1]
0

α
[0,1]
1

 =

= λ
[0,1]
p∗

 ⟨ψ0 | I |ψ0⟩
〈
ψ0

∣∣∣ I ∣∣∣ψ[IH]
I

〉
〈
ψ

[IH]
I

∣∣∣ I ∣∣∣ψ0

〉 〈
ψ

[IH]
I

∣∣∣ I ∣∣∣ψ[IH]
I

〉
 α

[0,1]
0

α
[0,1]
1

 (47)

The λ[0]p∗ and λ
[1]
p∗ eigenvalues give the min/max price estimates, that can be obtained

in a state of |ψ0⟩ and
∣∣∣ψ[IH]

I

〉
superposition. An answer similar to the skewness (42)
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can be used as an estimator of pl being low/high:

Fl = −zDp

〈
ψ

[IH]
I

∣∣∣ψ0

〉2

(48)

Dp =
2pl − λ

[0]
p∗ + λ

[1]
p∗

λ
[0]
p∗ − λ

[1]
p∗

(49)

z =



|p(tl)−p(tl−1)|
tl−tl−1

V (tl)−V (tl−1)

tl−tl−1

λ
[1]
p∗ − λ

[0]
p∗

. . .

The Fl is proportional to the difference between pl and 1
2

[
λ
[0]
p∗ + λ

[1]
p∗

]
is similar to

Eq. (95) of Ref. [3]. This is an approach generalizing tick and moments approaches.

However, now the (49) is no longer [−1 : 1] bounded (it would be if one replaces pl

by ⟨ψ0 | pI |ψ0⟩
/
⟨ψ0 | I |ψ0⟩). A moments–only answer (without the last price used

explicitly) can be also obtained:

Fl = zDp

〈
ψ

[IH]
I

∣∣∣ψ0

〉2

(50)

Dp =

[
ϕ[1](x0)

]2 − [
ϕ[0](x0)

]2
[ϕ[1](x0)]

2
+ [ϕ[0](x0)]

2 (51)

ϕ[0,1](x) = α
[0,1]
0 ψ0(x) + α

[0,1]
1 ψ

[IH]
I (x) (52)

z =



|p(tl)−p(tl−1)|
tl−tl−1

V (tl)−V (tl−1)

tl−tl−1

λ
[1]
p∗ − λ

[0]
p∗

. . .

The sign of (50) is determined by which one of (47) eigenfunctions ϕ[0,1](x) is greater

at x0, (A6) distance from Ref. [3]. The directional factor [ϕ[1](x0)]
2
−[ϕ[0](x0)]

2

[ϕ[1](x0)]
2
+[ϕ[0](x0)]

2 can be

considered as probability correlation (Appendix C of Ref. [3]) between price and

“distance to now”. In (48) and (50) the scale factor
[
λ
[1]
p∗ − λ

[0]
p∗

]
by Dp is replaced by

more general form z, what makes the scalp–price to preserve the singularities for a

variety of Dp used.

As we have discussed in [1, 4], price and price changes are secondary to execution flow and

cannot be used to determine market direction for the reason of insufficient information. The
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main idea behind the scalp–moments is to replace in the sum (28)

p(tl)− p(tl−1) → (tl − tl−1)Fl (53)

P(tM) =
M∑
l=1

(tl − tl−1)Fl (54)

DIR_scalped = P last −
〈
ψ

[IH]
I

∣∣∣P ∣∣∣ψ[IH]
I

〉
=

∫
dtF(t)w

ψ
[IH]
I

(t) (55)

where Fl contains not only price changes, but also execution flow information. A good Fl

selection allows us to accumulate much more directional information in the scalp–moments

⟨QmF⟩ compared to the information in the regular moments
〈
Qm

dp
dt

〉
. If one sum all the Fl

terms, the P , a generalized price can be obtained (54). The P is defined within a constant

(it is convenient to take the last “price” P last equals to zero). The transition from price p

to the scalp–price P makes all directional singularities expressed much more clearly. The

directional information (29a) now take the (55) form, that is identical to (27), but instead

of price p the scalp–price P is used. If a trader wants to watch the prices — he should

be watching the scalp–price P , a much more informative characteristic in terms or market

trend, than the regular price p.

A. A Demonstration of Scalp–Price P Behavior

Before we go any further, let us demonstrate scalp–price (54) P(t) for a given Fl. The

results with Fl from (35), (36), and (38a) are very similar to each other, so we present only

the scalp–price calculated from (36) terms; .dp_to_use=F_dpdt0_SCALP in ScalpedMaxIPr

ojection.java. The regular price is a sum of all price changes (30), the scalp–price is a sum

of relevant to market dynamics (high I) price changes (54). In Fig. 2 regular and scalp–price

are presented. One can clearly see, that while the regular price has an erratic behavior due

to whatever market moves, the scalp–price P has a more regular type of behavior. If scalp–

price changes it’s trend — the trend actually changes. The scalp–price P (54) is defined

within a constant, and it is typically not a good idea to compare regular and scalp–price.

However, if one takes an event in the past, where the price is equal to the last price, the

change in the scalp–price gives marker direction, i.e. instead of comparing price and scalp–

price, one needs to identify a situation of zero price change, then scalp–price change gives

market directional information. From a market practitioner’s perspective, plain observation



18

<ψ
[IH]

|ψ0>
2

P

P

 693

 693.5

 694

 694.5

 695

 695.5

 696

 696.5

 697

 697.5

 698

 698.5

 699

 9.7  9.75  9.8  9.85  9.9  9.95  10  10.05  10.1  10.15  10.2  10.25  10.3

FIG. 2. Price and scalp–price P for Fl from (36) are presented. The
〈
ψ
[IH]
I

∣∣∣ψ0

〉2
is used as a

scalp–function S(t) (33). Scalp–price is shifted to fit the chart. See Appendix B 3 for data fields

T, p_last, shares, p_IH, I.wH_squared, and getSumFdt() corresponding to: time, price, shares

traded, p[IH] (9), scalp–function (34), and scalp–price P (54).

of the scalp–price is a good source of directional information. As we have discussed above, a

typical price behavior after liquidity excess (high I) event is to bounce a little, then go in the

original direction of the market. This gives a risk of on what to bet: “little bounce” or “follow

the market”. The P , obtained from (36) Fl, has no “little bounce” contributions; watching

the P is actually watching pure market trend. If the price moves, and the scalp–price stays

— this typically indicates a bear market rally or a bull market sell–off. The P is an integral

attribute. The F = dP/dt is a local attribute. One can try the〈
ψ

[IH]
I

∣∣∣F ∣∣∣ψ[IH]
I

〉
=

〈
ψ

[IH]
I

∣∣∣∣ dPdt
∣∣∣∣ψ[IH]

I

〉
(56)

attribute (not show in Fig. 2, see .F_IH field of ScalpedMaxIProjection.java output), but

the result is worse compared to the P result, no clear bear/bull market switch is observed.

The situation is similar to the one in Fig. 2 of Ref. [3]: dp/dt chart in the
∣∣∣ψ[IH]

I

〉
state.
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B. A Demonstration of the Directional Information

The directional information should be accumulated over an interval of a substantial du-

ration for the reason of low information available in a single price change. However, the

strategies as the last price minus the average will never work for the reasons of fixed time

scale of price averaging. In [1], the time–scale of the state of maximal past I, the
∣∣∣ψ[IH]

I

〉
, was

introduced and the (27) answer was obtained. In this paper, the next critically–important

step is made: instead of regular price p, the scalp–price P (it includes only high I events:

only relevant to market dynamics price moves) is introduced and the (55) answer is obtained.

In the Fig. 3 (bottom) two directional answers are presented. In the top chart moving aver-

age ⟨p⟩
⟨1⟩ and p[IH]

t are presented. In the bottom chart the (27) (.dp_to_use=F_SAMPLE_DP_N

OSCALP), and (55) (.dp_to_use=F_dpdt0_SCALP), they are normalized to the same integral

taken with all Fl positive in (27) and (55). One can clearly see that:

• When divided by the absolute variation, the non—scalped answer (27) is pretty small,

and the scalped one (55) is much larger. This means that the price can be moved due

to a variety of reasons, and only scalped price changes (31) are relevant to the market

dynamics. Moreover, high I market moves are much more consistent.

• Look at t ∈ [9.9 . . . 9.95]h interval. The price bounce around p
[IH]
t , what make it

difficult to trade the direction as P last − p
[IH]
t . In the same time the scalp–price (55)

stays in the same sign, the scalp function S(t) (34) is about zero in this interval, see

Fig. 2

• Look around t = 10h. The scalped answers captured all the relevant price changes and

switched from bear to bull market. The execution flow I defines market sentiment.

C. On the Selection of Fl

The selection of Fl to be summed to the scalp price P (54) is the most important question

for directional attribute selection. Consider two choices. In Fig. 4 top Fl = ⟨ψ0 | dp/dt |ψ0⟩

from (36) is presented. One can see that dp/dt (green) has rather erratic behavior, that

is caused by a variety of market moves, the sum of these moves gives the regular price p.

But when each price move is multiplied by the scalp–function S =
〈
ψ

[IH]
I

∣∣∣ψ0

〉2

from (34),
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FIG. 3. Top: ⟨p⟩
⟨1⟩ (moving average), and p[IH]

t (11b). Bottom:The DIR = P last−
〈
ψ
[IH]
I

∣∣∣ p ∣∣∣ψ[IH]
I

〉
(27) and DIR_scalped = P last−

〈
ψ
[IH]
I

∣∣∣P ∣∣∣ψ[IH]
I

〉
(55); both DIRs are normalized to all Fl taken

positive (normalized to total variation).
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FIG. 4. Top: the scalp–function S (34), ⟨ψ0 | dp/dt |ψ0⟩, and Fl from (36), Bottom: same S

(34), Fl from (50) for z = λ
[1]
p∗ − λ

[0]
p∗ with (pink) and without (green) scalp function multiplied; the

p− p[IH] (yellow) is also presented. The values are shifted to 694, 695, and 696 levels and scaled to

fit the chart.
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this selects only high I market moves, what makes the directional behavior much more clear

(pink), the sum now gives the scalp price P from the Fig. 2. But even in this simplistic case

the scalp–price selects only “relevant” market moves.

A much more interesting behavior can be observed with Fl from (50). Selecting |ψ0⟩,∣∣∣ψ[IH]
I

〉
basis, solving (47), then obtaining (50) — this accumulates much more directional

information in Fl. When
∣∣∣ψ[IH]

I

〉
and |ψ0⟩ are not close to each other, the (50) for z =

λ
[1]
p∗ − λ

[0]
p∗ is approximately equals to last price and p[IH] difference multiplied by the scalp–

function (that is close to zero). When
∣∣∣ψ[IH]

I

〉
and |ψ0⟩ are close to each other the (50) does

not vanish8, i.e. the (50) does not vanish (like p− p[IH], yellow) when I0 is extremely high.

However, the Fl enters into the integral (55), and the selection of the z is a non–trivial task.

The most important feature of the charts in Fig. 4 is that once we got a spike in the
∣∣∣ψ[IH]

I

〉
state — the trend is going to continue. These spikes are much greater in values (because

of non–local price difference) compared to local price difference p(tl) − p(tl−1) of Eq. (35).

This allows to collect much more directional information, than can can be typically obtained

from price changes.

We can generalize this non–local price change approach. Consider p[IH]
t in Fig. 3 (p[IH] is

very close to it). A typical behavior for p[IH] is to jump from some past value to last price

when the execution flow I0 becomes large, (34) is the criteria of I0 largeness. How often

these jumps occur is the criteria to determine market direction, see Fig. 4. These non–local

structural changes in
∣∣∣ψ[IH]

I

〉
can be included to scalp–price, for every tick l calculate:

p[IH](tl) (57a)

λ
[IH]
I (tl) (57b)

S(tl) =
〈
ψ

[IH]
I

∣∣∣ψ0

〉2

(57c)

All (57) values are calculated from the sequence: (tm, p(tm), V (tm));m = 1 . . . l

These are just Eq. (25) solution performed for every observation tick l using m = 1 . . . l

previous ticks as input data. This is the result we had obtained back in Ref. [1]. The new

idea is to consider the p[IH](tl) as if it were the last price p(tl). This way one tick price

change becomes non–local:

p(tl)− p(tl−1) → p[IH](tl)− p[IH](tl−1) (58)

8 In this case Fl from (44) is almost zero, but Fl from (37) does not vanish, while providing a much smaller

response than (50)
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Depending on the execution flow, the
∣∣∣ψ[IH]

I

〉
may (or may not) change drastically at every

tick. One tick non–local difference p[IH](tl)− p[IH](tl−1) can be much greater than one tick

local price difference p(tl)− p(tl−1), see Fig. 3. As we discussed in the introduction only low

I → high I to be considered:

θI+(tl) =

1 if λ[IH]
I (tl) ≥ λ

[IH]
I (tl−1)

0 otherwise
(59)

(tl − tl−1)Fl = z
[
p[IH](tl)− p[IH](tl−1)

]
θI+(tl) (60)

With a number of possible options for z:

z = 1 (61a)

z = S(tl) [V (tl)− V (tl−1)] (61b)

z = dtS(tl)
[
λ
[IH]
I (tl)− λ

[IH]
I (tl−1)

]
(61c)

. . .

This is the Fl to be used in (55). The (60) considers every low I → high I jump in p[IH](tl)

(not in p(tl)) as the source of the directional information.

In Fig. 5 a demonstration of non–local price change (58) is presented. Only p[IH](tl) −

p[IH](tl−1) with positive λ[IH]
I (tl) − λ

[IH]
I (tl−1) are presented (the Eq. (60) with z = 1 and

dt = 1). On can clearly see that the non–local directional information is:

• Much greater than the local price change p(tl)− p(tl−1).

• The bull/bear market trend switch can be much better identified. The p[IH](tl) −

p[IH](tl−1) with (59) constaint preserves the sign during extended intervals.

• The “bounce back” interval t ∈ [9.9 . . . 9.95]h is clearly identified: it has no I spikes,

the
∣∣∣ψ[IH]

I

〉
does not change, and the p[IH](tl)−p[IH](tl−1) is close to zero even without

S multiplied!

This makes us to conclude, that non–local price change (58) taken with the constraint (59)

provides a very promising possible directional indicator. Fig. 5 presents a non–local price

answer (58) obtained from one tick p[IH] price change p[IH](tl)−p[IH](tl−1) as it were one tick

regular price change p(tl) − p(tl−1). This answer is similar (but much better) than Fig. 4
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FIG. 5. The price, scalp–function
〈
ψ
[IH]
I

∣∣∣ψ0

〉2
, p[IH] (9) (pink), and Fl from (60) without z term

(blue). Fl is presented as one tick p[IH] change p[IH](tl) − p[IH](tl−1) multiplied by θI+(tl) factor

(59).

(bottom) answer, that is obtained from the regular moments by solving (47) d = 2 eigenvalue

problem. The (60) is the directional indicator. However, because it enters the integral (54),

the selection of proper integration weight z is required. This to be a subject of a separate

study. In the simplest form a non–local answer can be obtained from (57) solution of (25)

problem, then consider:

• Only λ[IH]
I (tl) ≥ λ

[IH]
I (tl−1) events: θI+(tl) > 0, Eq. (59), field (B2t).

• For such events consider p[IH](tl)− p[IH](tl−1) as it were one tick price change p(tl)−

p(tl−1), Eq. (58), field (B2u). In Fig. 5 an example of such a non–local price changes

is presented.
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V. ON THE DIRECTIONAL INFORMATION CALCULATION

Given very interesting results of the previous section, let us formulate all the components,

required to obtain directional information from (time, execution price, shares traded) market

observations triples, and how these components can be improved.

• The state important for market dynamics. The answer we have is (8). Other states

(such as considered in the Appendix C) can be also tried. In any case such a state

is obtained from regular moments (16a) and (16b), solving some kind of I −→
ψ

max

problem. The solution gives us open/close position signals and the scale for directional

calculations.

• The problem to obtain the direction is way more complex, it requires scalp–moments

(55). For the scalp–function S the best[7] answer is (34). For Fl several answers (35),

(36), (37), and (38a) produce good results, that are very similar to each other, the

non–local answer (60) is of special interest. The “varied” answers (38b), and (38c) are

worse with and without scalp–function multiplied. The simplest practical abswer is

the scalp–moments directional answer (55), as a scale one can use absolute variation:

take all Fl positive in (55). However, a number of non–local answers of (60) type can

be obtained utilizing (57) and (58).

VI. SPECULATIONS

The scalp–moments are price change moments filtered by high I events: I is the driving

force of the market. The question arises whether a directional information can be obtained

from the regular moments (16)? We are inclined to say no. A number of constrained

(see Appendices F and G below) and unconstrained optimization problems have been tried

(among many others) without any success at obtaining market directional information:

max
ψ

〈
ψ
∣∣ (p− p[IH])2I

∣∣ψ〉
⟨ψ |ψ⟩

DynHPnL.java (62a)

max
ψ

〈
ψ
∣∣ (p− P last)2I

∣∣ψ〉
⟨ψ |ψ⟩

DynPnL.java, PnLSensitivity.java (62b)

max
ψ

min
px

⟨ψ | (p− px)
2I |ψ⟩

⟨ψ |ψ⟩
DynYp.java, DIminP2maxI.java (62c)
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max
ψ

max
px

⟨ψ | I |ψ⟩
⟨ψ | (p− px)2 |ψ⟩

DynYp.java, DIminP2tmaxI.java (62d)

max
ψ

min
p1,p2

⟨ψ | (p− p1)
2(p− p2)

2I |ψ⟩
⟨ψ |ψ⟩

Ref. [3] Section IXF, PnLdIV4.java (62e)

max
ψ

〈
ψ
∣∣ (p− pt)

2 I
∣∣ψ〉

⟨ψ |ψ⟩
MaxPtPv2I.java, MinMaxPnLratioNorm.java (62f)

max
ψ

〈
ψ
∣∣ (p− pv)

2 I
∣∣ψ〉〈

ψ
∣∣ (p− pt)

2
∣∣ψ〉 MaxPnLratio.java ; flag_swap_PtPv=false (62g)

max
ψ

〈
ψ
∣∣ (p− pt)

2 I
∣∣ψ〉〈

ψ
∣∣ (p− pv)

2
∣∣ψ〉 MaxPnLratio.java ; flag_swap_PtPv=true (62h)

max
ψ

⟨ψ | I | I |ψ⟩
⟨ψ | (p− P last)2I |ψ⟩

MaxPPl2I.java, MaxPPl2Iinbasis.java (62i)

The regular moments answers are: 1. not “sufficiently sharp”, see Appendix A, and 2. price

changes sum is small relatively total variation, see Fig. 3. In the same time, when we go to

the scalp–moments (32) these problems get solved.

When, in September 1997, I joined Columbus Advisors LLC (Greenwich CT), the fund

had been doing Emerging Market sovereign fixed income convergence–divergence relative

value spread trades. The following year, I studied a classic technical analysis book with

the goal to program some of the rules algorithmically. However, I was not able to program

even a single rule from the book. The reason was simple: any rule required a time scale

to apply. Time scale selection is the main criterion separating good traders from bad, and

the criterion which defines a trader’s talent. The state (8) is an algorithmic criterion, that

automatically determines the time scale. This criterion is actually very simple ideologically:

look back to find an event of trading with maximal I. The time between this event and

“now” is the time scale. The typical market practitioner’s activity is to watch the difference

between the last price and moving average calculated on the time scale obtained his feel.

With a proper time scale, any strategy (like return to the moving average) would work, and

Ref. [1] answer of last price minus p[IH] (9) was my first successful attempt.

Besides the time scale, the most important result of this paper is that “not all price moves

are equal”. We need to select only the high I price moves9. High execution rate requirement

is the condition creating an asymmetry to separate the “bounce a little, then to go in the

original direction of the market” and “go in the original direction of the market straight

away” scenarios, such as to identify a bear market rally on steroids. The answer we obtained
9 I think that the market impact concept is a dead end.

https://en.wikipedia.org/wiki/Dead_cat_bounce
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is the scalp–price (54). It does not have any “internal averaging”, but in the same time it has

all low I price changes removed! This way, the scalp–price has no “bounce a little” behavior.

Only hardcore. Only directional. See the Fig. 2. The software is available[8] under the

GPLv3 license.
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Appendix A: A demonstration of the difference between time and volume weighted

price.

To demonstrate the difference consider localized at x = y the wavefunction ψy(x) (A1),

producing Radon–Nikodym interpolating answer, Eq. (7) of Ref. [9], Different attributes

(price, execution flow, etc.) are interpolated using the ψ2
y(x)ω(x)dx weight:

ψy(x) =

n−1∑
j,k=0

Qj(x)G
−1
jk Qk(y)√

n−1∑
j,k=0

Qj(y)G
−1
jk Qk(y)

(A1)

1 = ⟨ψy |ψy⟩ (A2)

I(y) = ⟨ψy | I |ψy⟩
/
⟨ψy |ψy⟩ (A3)

pt(y) = ⟨ψy | p |ψy⟩
/
⟨ψy |ψy⟩ (A4)

pv(y) = ⟨ψy | pI |ψy⟩
/
⟨ψy | I |ψy⟩ (A5)

One can see that:

• For a large n (we use n = 12) the pt and pv are very similar.

http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.researchgate.net/profile/Alexander_Bobyl2
http://www.ioffe.ru/
https://www.nytimes.com/1994/06/12/style/weddings-cathleen-ess-and-emilio-lamar.html
http://www.ioffe.ru/LNEPS/research/theory.html
http://www.ioffe.ru/
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FIG. 6. The AAPL stock price on September, 20, 2012. Interpolation answers are calculated

in Shifted Legendre basis with n = 12 and τ=128sec, for 0 ≤ t ≤ tnow = 9.98045 hrs, y =

exp ((t− tnow)/τ), y = [0 . . . 1]. Execution flow (A3), time (A4), and volume (A5) weighted prices

are presented. One can clearly see the pv(y) − pt(y) changes the sight at y, corresponding to a

high I. The maximal eigenstate IH, (#11=n − 1),
〈
ψy(x)

∣∣∣ψ[IH]
I

〉2
, pink, is typically a localized

state. The projections
〈
ψy(x)

∣∣∣ψ[i]
I

〉2
on four other eigenstates (#0, #8, #9, and #10), yellow, are

presented as an example of delocalized states. The execution flow I and the projection are shifted

to 693 to fit the chart.

• The projection
〈
ψy(x)

∣∣∣ψ[IH]
I

〉2

is close to 1 for large I, i.e. the ψ[IH]
I (x) is typically

a localized function, this is not the case for other states. See four other eigenstates

projections (yellow).

• The pv − pt changes the sign at large I. Only the states with a large dI/dt pro-

vide weight asymmetry required to obtain directional information using dV vs. dt

averaging.
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Appendix B: Computer Implementation

The codebase architecture is described in the Appendix G3 of Ref. [3]. Relevant to this

paper functionality consists of:

• Conversion of the transaction sequence of an observable f to a vector of moments

⟨fQm⟩, m = [0 . . . 2n − 2], several bases Qk(x) are implemented (x = t, x =

exp (−(tnow − t)/τ), and x = p(t), see the Section II of Ref. [3]), the integration

measure is always exponential decay: dµ = exp (−(tnow − t)/τ) dt. See the classes co

m/polytechnik/trading/{QVMDataL,QVMDataP,QVMData}.java

• Using basis functions multiplication operator (Eq. (G1) of Ref. [3]), obtain the

⟨Qj | f |Qk⟩, j, k = [0 . . . n− 1] matrix from the moments ⟨fQm⟩, m = [0 . . . 2n− 2].

• There are a number of observables f possibly to consider (price, price change, execution

flow, etc.). Depending on the approach used, a different set of observables is required.

All the ⟨Qj | f |Qk⟩ matrices we possibly use in this paper are stored in the class com

/polytechnik/trading/SMomentsData.java.

• If/When, in addition to a ⟨Qj | f |Qk⟩ matrix, the matrix corresponding to the deriva-

tive df/dt (or to the integral
∫ t
f(t′)dt′), is required, then, for a basis with infinitesimal

time–shift operator ED(Q(x)) (E3), the result can be obtained using integration by

parts, see Appendices D and E.

As a result of these preliminary steps the n×nmatrices are obtained: ⟨Qj |Qk⟩,
〈
Qj

∣∣ dp
dt

∣∣Qk

〉
,

⟨Qj | p |Qk⟩, ⟨Qj | p2 |Qk⟩, ⟨Qj | p3 |Qk⟩, ⟨Qj | I |Qk⟩, ⟨Qj | pI |Qk⟩, ⟨Qj | p2I |Qk⟩, and ⟨Qj | p3I |Qk⟩.

These are plain exponential moving–average of: an observable f multiplied by two basis

functions product Qj(x)Qk(x); for example if f = p, then ⟨Q0 | p |Q0⟩ is exponential moving

average of price.

1. The EVXData.java implementation

The class com/polytechnik/utils/EVXData.java takes two matrices ⟨Qj | f |Qk⟩,

⟨Qj |Qk⟩ and basis functions operations class (extending the com/polytechnik/utils/Or

thogonalPolynomialsBasisFunctionsCalculatable.java), solves generalized eigenvalue

https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average


30

problem, such as (25) for ∥f∥ = ∥I∥, and stores the result. The fields are:

.sL = λ
[IL]
I (B1a)

.sH = λ
[IH]
I (B1b)

.s0 = ⟨ψ0 | I |ψ0⟩ (B1c)

.wL =
〈
ψ

[IL]
I

∣∣∣ψ0

〉
(B1d)

.wH =
〈
ψ

[IH]
I

∣∣∣ψ0

〉
(B1e)

The squares .wL2 and .wH2 are bounded to [0 : 1], and are very good indicators of whether

the I “now”, the I0 = ⟨ψ0 | I |ψ0⟩, is large or small. Alternative estimator as the number

of the eigenvalues above the I0 can also be used[7]. The key concept of liquidity deficit

trading[1, 4] is to open a position at low I0, large
〈
ψ

[IL]
I

∣∣∣ψ0

〉2

, then to close already opened

position at high I0, large
〈
ψ

[IH]
I

∣∣∣ψ0

〉2

, the .wL2 and .wH2 are the indicators of these actions.

The question is: whether to open a long or a short position at high .wL2?

2. The ScalpedMaxIProjection.java implementation

The class com/polytechnik/trading/ScalpedMaxIProjection.java converts a trans-

action sequences to a set of ⟨fQm⟩ vectors, then to a set of ⟨Qj | f |Qk⟩ matrices, stored in

the object of com/polytechnik/trading/SMomentsData.java type. Then it calls the c

om/polytechnik/utils/EVXData.java class that solves (25) eigenvalue problem. Having

the
∣∣∣ψ[IH]

I

〉
and |ψ0⟩ states the scalp–function (34) and the Fl are obtained. Which one Fl

to be used depends on the parameter .dp_to_use. The values F_SAMPLE_DP_NOSCALP,F

_SAMPLE_DP_SCALP,F_dpdt0_SCALP,F_varpIH_0_divI_SCALP,F_SKEWNESS_at_Pl_SCALP

,F_PROBABILITYCORRELATION_SCALP correspond to (30), (35), (36), (43), (48), and (50)

respectively; there are several other options for .dp_to_use. The class ScalpedMaxIPro

jection is assumed to be called on every tick, and the internal state is preserved in the

object of com/polytechnik/trading/StateWIScalpMomentsSaver.java class. The in-

ternal state contains an object of com/polytechnik/freemoney/WIntegrator.java type,

that calculates the moments of the observable Fl (recurrent shift of the basis offset (tnow)

for previously calculated moments allows the calculations to be performed extremely fast).

The WIntegrator is called on every tick with the .Fdt = (tl − tl−1)Fl (the choice of the
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Fl depends on the .dp_to_use value) to accumulate scalped data. The scalp–moments are

obtained by taking the .Fdt instead of the p(tl) − p(tl−1) when calculating the (29b) sum.

The directional information is then obtained as (29a). The fields are:

.p_offset Price offset. All prices are relatively this offset (B2a)

.pi_average Volume–weighted price exponential moving average
⟨pI⟩
⟨I⟩

(B2b)

.pt_average Time–weighted price exponential moving average
⟨p⟩
⟨1⟩

(B2c)

.I An object of EVXData.java type, (25) solution (B2d)

.p_0 The ⟨ψ0 | pI |ψ0⟩
/
⟨ψ0 | I |ψ0⟩ (B2e)

.pt_0 The ⟨ψ0 | p |ψ0⟩
/
⟨ψ0 |ψ0⟩ (B2f)

.dpdt_0 The
〈
ψ0

∣∣∣∣ dpdt
∣∣∣∣ψ0

〉
(B2g)

.p_IH The (11a) in the
∣∣∣ψ[IH]

I

〉
state (8) (B2h)

.pt_IH The (11b) in the
∣∣∣ψ[IH]

I

〉
state (8) (B2i)

.pV_IH The (11c) in the
∣∣∣ψ[IH]

I

〉
state (8) (B2j)

.pT_IH The (11d) in the
∣∣∣ψ[IH]

I

〉
state (8) (B2k)

.var1pI_IH The (38b) (B2l)

.var1pI_IH_00 The (43) (B2m)

pmin_0_IH, pmax_0_IH The eigenvalues λ[0,1]p∗ of (47) (B2n)

Skewness_0_IH The “skewness” (49) (B2o)

ProbabilityCorrelation_0_IH Directional factor
[
ϕ[1](x0)

]2 − [
ϕ[0](x0)

]2
[ϕ[1](x0)]

2
+ [ϕ[0](x0)]

2 (51) (B2p)

.I.wH When squared .I.wH2 gives the scalp function (34)

(B2q)

.getFlFromRegularMoments() Fl when it is from the moments, NaN otherwise (B2r)

.sst.getSumFdt() The scalp–price (54) with an arbitrary offset (B2s)

.dIH The λ[IH]
I (tl)− λ

[IH]
I (tl−1) difference (B2t)
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.dp_IH The p[IH](tl)− p[IH](tl−1) difference (B2u)

.DIR The (29a) (B2v)

.aDIR The (29a) with all Fl taken positive (B2w)

The liquidity deficit indicator (B2d) defines whether to open or to close a position. The

directional indicator (B2v) from (29a) defines, when opening a position, whether to open a

long or a short.

3. The CallAMuseOfCashFlowAndLiquidityDeficitWithScalp.java implementation

The class com/polytechnik/algorithms/CallAMuseOfCashFlowAndLiquidityDefici

tWithScalp.java is “an interface” between transactions sequence input (a tab–separated

file), liquidity deficit trading of the class com/polytechnik/trading/ScalpedMaxIProject

ion.java, and data output, saved as a tab–separated file. The parameters are read by the

class com/polytechnik/algorithms/MuseConfig.java. This is an example of how to run

the code:

java com/polytechnik/algorithms/CallAMuseOfCashFlowAndLiquidityDeficitWithScalp \

--musein_file=aapl.csv \

--musein_cols=15:1:4:5 \

--museout_file=museout.dat \

--n=12 \

--tau=128 \

--measure=ScalpedMaxIProjectionLegendreShifted

The parameters are:

• --musein_file=aapl.csv : Specify input tab–separated file with (time, execution

price, shares traded) triples time series. If the file is gzip–ed and has the .gz extension,

then internal decompression is performed.

• --musein_cols=15:1:4:5 : Out of total 15 columns in the specified --musein_f

ile=aapl.csv file, take the column #1 as time (nanoseconds since midnight), #4

(execution price), and #5 (shares traded), column index is base 0.

https://www.gzip.org/
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• --museout_file=museout.dat : Output file name.

• --n=12 : Basis dimension. Typical values are: n ∈ [4 . . . 16]. The m ∈ [0 . . . 2n − 2]

moments (in Qm(x) basis) are calculated to obtain n× n matrices.

• --tau=128 : Exponent time (in seconds) for the measure used.

• --measure=ScalpedMaxIProjectionLegendreShifted : The measure. Possible val-

ues are: {ScalpedMaxIProjectionLegendreShifted,ScalpedMaxIProjectionLagu

erre,ScalpedMaxIProjectionMonomials}, they correspond to the measures (11) and

(4) of Ref. [3]. The ScalpedMaxIProjectionLaguerre and ScalpedMaxIProjectio

nMonomials use the same measure, but different basis Qk(x) = Lk(x), x = −t/τ and

Qk(x) = xk, x = t/τ respectively. These two results should be identical, as the mea-

sure is the same, and all the calculations are Qk(x)–basis invariant (but the numerical

stability can be drastically different).

Output file is a tab–separated file with the columns (35 columns total), corresponding to

the results of this paper. Field names are printed in the first line of the output file. The

data can be processed by any common plotting software (such as gnuplot or matlab). Below

is the description of the most noticeable fields:

• T : Time in nanoseconds since midnight (copied from input).

• shares : Shares traded (copied from input).

• P_last : Last execution price (copied from input).

• {pi_average,pt_average} : Regular exponential moving average of price with the

given --tau=128, using volume/time as the weight.

• I.{s0,sL,wL_squared,sH,wH_squared,Gamma0} : Correspond to (B1) fields of

|I|ψ⟩ = λ |ψ⟩ eigenvalue problem (25), the solution with the given --n=12; the I.wL

and I.wH are squared in the output, Gamma0 =
(
2I0 − λ

[IL]
I − λ

[IH]
I

)/(
λ
[IL]
I − λ

[IH]
I

)
is the Γ̃0 skewness of I, Eq. (95) of Ref. [3]. The I.wH_squared is the scalp–function

S(t) (34).

• {p_IH,pt_IH,pV_IH,pT_IH} Correspond to (11) prices, calculated in the state
∣∣∣ψ[IH]

I

〉
(8), the (B2) fields.
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FIG. 7. The comparison of scalp–price P obtained from Fl: from (36)

(green: .dp_to_use=F_dpdt0_SCALP) from (35) (blue: .dp_to_use=F_SAMPLE_DP_SCALP). The〈
ψ
[IH]
I

∣∣∣ψ0

〉2
is used as a scalp–function S(t) (33). The scalp–prices are shifted to fit the chart;

they are defined (54) within a constant. If one use .dp_to_use=F_SAMPLE_DP_NOSCALP (30) the

result will be exactly the price P , shifted by some initial level.

• getFlFromRegularMoments() The Fl when it is calculated from regular moments, N

aN otherwise, the field (B2r).

• getSumFdt() The scalp–price P (54), corresponding to given dp_to_use, the field

(B2s). See the Fig. 7 to compare the results for .dp_to_use=F_dpdt0_SCALP (36)

and .dp_to_use=F_SAMPLE_DP_SCALP (35).

• dIH,dp_IH The λ[IH]
I and p[IH] change per tick, the fields (B2t) and (B2u). This is the

starting point of non–local price change (58) study, Fig. 5.

• {DIR,DIRa} and etc. Correspond to (B2) fields of an object of ScalpedMaxIProject

ion.java type.
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4. Installation and usage example

• Install java 1.8 or later.

• Download from [8] the archive AMuseOfCashFlowAndLiquidityDeficit.zip with the

source code.

• Decompress and recompile the program:

unzip AMuseOfCashFlowAndLiquidityDeficit.zip

javac -g com/polytechnik/*/*java

• Run the test with the bundled file dataexamples/aapl_old.csv.gz data of Ref.

[2]. The file contains only execution events, the (time, execution price, shares traded)

market observations triples are in the 1:2:3 columns, column index is base 0; 28492

lines, 9 columns total.

java com/polytechnik/algorithms/CallAMuseOfCashFlowAndLiquidityDeficitWithScalp \

--musein_file=dataexamples/aapl_old.csv.gz \

--musein_cols=9:1:2:3 \

--museout_file=museout.dat \

--n=12 \

--tau=128 \

--measure=ScalpedMaxIProjectionLegendreShifted

The code is run under 16 seconds, the output fields of the museout.dat are described in

the Appendix B 3. The I.wH_squared, getSumFdt(), and p_IH are the scalp–function

(34), scalp–price (54) (has an arbitrary offset), and p[IH] from (9). The default .dp_t

o_use=F_PROBABILITYCORRELATION_SCALP corresponds to (50).

• Download NASDAQ ITCH data file S092012-v41.txt.gz from [8], extract triples

(time, execution price, shares traded) from NASDAQ ITCH data file:

java com/polytechnik/itch/DumpData2Trader \

S092012-v41.txt.gz AAPL >aapl.csv

http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
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Execution data and limit order book edges are now saved to tab–separated file

aapl.csv of 15 columns. The (time, execution price, shares traded) market ob-

servations triples are in the 1:4:5 columns, column index is base 0; 634205 lines, 15

columns total.

• Run the java command of the Appendix B 3 to obtain the museout.dat file of 634206

lines with: scalp–function (34), scalp–price (54) and p[IH] from (9) and com/polytech

nik/trading/ScalpedMaxIProjection.java fields is created. The code is run under

5 minutes, much longer than that of previous run. The --musein_file=aapl.csv

input file now contains much more events than the file --musein_file=dataexample

s/aapl_old.csv.gz.

Appendix C: The state of maximal aggregated execution flow V/t

In our previous work[1, 3] the extremal state of I = dV/dt operator have been considered.

This answer has two critically important features:

• Uses execution flow I, as it is the driving force of the market.

• Has automatic time–scale selection (eigenvalue problem), huge advantage compared

to any fixed time scale approach[1].

While this result is very promising, it has an issue of zero first variation of I. Consider the

same approach, but with the operator V/t. Here V and t are measured since tnow, they are

volume/time between t and tnow. The V/t is aggregated execution flow, the dV/dt is local

execution flow. Put f = V/t into (4) and obtain generalized eigenvalue problem to find the

state
∣∣∣ψ[max]

V/t

〉
of maximal λ[max]

V/t : ∣∣∣V ∣∣∣ψ[i]
V/t

〉
= λ

[i]
V/t

∣∣∣t∣∣∣ψ[i]
V/t

〉
(C1)

n−1∑
k=0

⟨Qj |V |Qk⟩α[i]
k = λ

[i]
V/t

n−1∑
k=0

⟨Qj | t |Qk⟩α[i]
k (C2)

ψ
[i]
V/t(x) =

n−1∑
k=0

α
[i]
k Qk(x) (C3)

The calculation of ⟨Qj |V |Qk⟩ and ⟨Qj | t |Qk⟩ matrix elements is described in the Appendix

D. In (C2) the V and t have the sign changed to have positively definite right–hand–side
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matrix ⟨Qj | t |Qk⟩, V = V0 (10a), t = T0 (10b). The multiplication by V and t create, for t ≤

tnow, two Radau–like measures: (V (tnow)− V (t))ω(t)dt and (tnow − t)ω(t)dt. The problem

(C2) finds the state ψ[max]
V/t (x), corresponding to the maximal Radon–Nikodym derivative

relatively two these measures, the maximal aggregated execution flow V/t. Previously [1]

we have been considering the state ψ[IH]
I (x), corresponding to the maximal Radon–Nikodym

derivative relatively the measures ω(t)dV and ω(t)dt, the maximal local execution flow

dV/dt. The eigenvectors
∣∣∣ψ[i]

V/t

〉
of ∥V/t∥ operator have the following remarkable features:

Normalized to Radau–like measure (tnow − t)ω(t)dt:

1 =
〈
ψ

[i]
V/t

∣∣∣ t ∣∣∣ψ[i]
V/t

〉
(C4)

In the
∣∣∣ψ[i]

V/t

〉
states aggregated V/t and local dV/dt execution flows are equal:

λ
[i]
V/t =

〈
ψ

[i]
V/t

∣∣∣V ∣∣∣ψ[i]
V/t

〉
〈
ψ

[i]
V/t

∣∣∣ t ∣∣∣ψ[i]
V/t

〉 =

〈
ψ

[i]
V/t

∣∣∣ I ∣∣∣ψ[i]
V/t

〉
〈
ψ

[i]
V/t

∣∣∣ψ[i]
V/t

〉 (C5)

For infinitesimal time–shift δψ = ED(ψ
[i]
V/t) the second variation (H4) of V/t is equal to the

first variation (H3) of dV/dt:

⟨δψ |V | δψ⟩ − λ
[i]
V/t ⟨δψ | t | δψ⟩ =

〈
δψ

∣∣∣ I ∣∣∣ψ[i]
V/t

〉
− λ

[i]
V/t

〈
δψ

∣∣∣ψ[i]
V/t

〉
(C6)

Lemma. In the state of maximal aggregated execution flow the dI/dt is positive.

Proof. In the state of maximal V/t the second variation (H4) is negative. Because the first I

variation (H3) with δψ = ED(ψ
[i]
V/t) corresponds to −dI/dt, this provides positive dI/dt.

This lemma makes the state
∣∣∣ψ[max]

V/t

〉
of maximal aggregated execution flow (the eigen-

vector of (C2), corresponding to the maximal λ[max]
V/t ), a very promising one for the market

dynamics to consider. The “aggregated” attributes (10) have been originally introduced in

the Section (IXD) “Measure: The Period After Maximal Future I” of Ref. [3], but their

application to skewness study was not a very successful back then.

https://www.encyclopediaofmath.org/index.php/Radau_quadrature_formula
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Appendix D: On calculation of ⟨V Qm⟩ moments from ⟨IQm⟩ moments

The ⟨V Qm⟩ and ⟨tQm⟩, m = [0 . . . 2n − 2], moments, required to construct ∥V ∥ and

∥t∥ operators in (C1), can be calculated directly from the sample. However, in practical

application it is more convenient to calculate the ⟨IQm⟩ moments first, then to obtain the

⟨V Qm⟩ moments using an integration by parts. For Shifted Legendre and Laguerre bases

the integration by parts gives:∫ tnow

−∞
V Qm(x(t))ω(t)dt = V (tnow)Qm(x(tnow))−

∫ tnow

−∞
J(Qm(x(t)))ω(t)Idt (D1)

where J(·) is a polynomial to polynomial transforming function (12). The ⟨V Qm⟩ then

can be expressed as ⟨IQs⟩, s = [0 . . .m], linear combination. This is possible only for the

bases in question, in general case an integration by parts
∫ t
−∞Qm(x(t

′))ω(t′)dt′ cannot be

reduced to a J(Qm(x(t)))ω(t) form, and the ⟨V Qm⟩ moments cannot be expressed via a

linear combination of the ⟨IQs⟩ moments.

The boundary condition is straightforward, consider V (t) − V (tnow), that is zero at t =

tnow. Use current volume V (tnow) as the starting value, then out–of–integral term in (D1)

vanish, and past/future volume correspond to negative/positive volume values10. See the

method setFMoments of com/polytechnik/trading/{QVMDataLDirectAccess,QVMData

PDirectAccess,QVMDataDirectAccess}.java, that calculates the ⟨V Qm⟩ moments as a

linear combination of the ⟨IQs⟩, s = [0 . . .m] moments.

Appendix E: On calculation of ∥dI/dt∥ operator matrix elements from operator ∥I∥.

When we study an operators of execution rate change ∥dI/dt∥, it’s matrix elements

cannot be calculated directly from sample. In general case the
〈
dI
dt
Qm

〉
moments can be

calculated from ⟨IQm⟩ moments using integration by parts (D1) of the Appendix D, see the

method setDFMoments of com/polytechnik/trading/{QVMDataLDirectAccess,QVMData

PDirectAccess,QVMDataDirectAccess}.java, that, for zero boundary condition, obtains〈
dI
dt
Qm

〉
as a linear combination of ⟨IQs⟩, s = [0 . . .m]. However, for ∥dI/dt∥, the boundary

condition may take a variety of forms, and direct operator approach is often more convenient.

10 It is sometimes convenient to change the sign of time and volume V (t)−V (tnow) as in (10), then past time

and volume correspond to positive values and the right hand side matrix in (C1) is positively definite.
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Consider e.g. generalized eigenvalue problem (4) for ∥dI/dt∥ operator:∣∣∣∣dIdt ∣∣∣ψ[i]
dI
dt

〉
= λ

[i]
dI
dt

∣∣∣ψ[i]
dI
dt

〉
(E1)

where the
〈
Qj

∣∣dI
dt

∣∣Qk

〉
matrix cannot be calculated directly from sample. For a Qk(x) basis

with infinitesimal time–shift operator ED(Qk(x)),
d

dt
ω(x(t))ψ(x(t))φ(x(t)) = ω(x) [ED(ψ)φ+ ψED(φ)] (E2)

ED(ψ(x)) =


dψ(x)

dx
+

1

2
ψ(x) Laguerre basis

x
dψ(x)

dx
+

1

2
ψ(x) shifted Legendre basis

(E3)

providing time-derivative of a polynomial multiplied by a weight is represented by the same

weight multiplied by other polynomial, the matrix can be obtained from the ⟨Qj |I|Qk⟩

matrix using integration by parts11, Eq. (35) of Ref. [3]:〈
Qj

∣∣∣∣dIdt
∣∣∣∣Qk

〉
= IfQj(x0)Qk(x0)− ⟨ED(Qj) | I |Qk⟩ − ⟨Qj | I |ED(Qk)⟩ (E4)

This problem is an inverse one to considered in Appendix D, and requires a non–trivial

boundary condition If . There are several options for If , that can be reasonably considered:

• The zero of ∥dI/dt∥ in the
∣∣∣ψ[IH]

I

〉
state,

〈
ψ

[IH]
I

∣∣∣ dIdt ∣∣∣ψ[IH]
I

〉
= 0:

If = λ
[IH]
I (E5)

• The zero of ∥dI/dt∥ in the |ψ0⟩ state,
〈
ψ0

∣∣ dI
dt

∣∣ψ0

〉
= 0:

If = 2
⟨ψ0 | I |ED(ψ0)⟩

ψ2
0(x0)

(E6)

• The I0 value:

If = ⟨ψ0 | I |ψ0⟩ (E7)

• Zero value:

If = 0 (E8)

11 See java classes for Shifted Legendre and Laguerre Qk(x) bases implementation of infinitesimal time–shift

operator ED(Qk(x)): the method getEDPsi of com/polytechnik/freemoney/{WIntegratorLegendre

Shifted,WIntegratorLaguerre,WIntegratorMonomials}.java. Also see the com/polytechnik/tra

ding/QQdidtMatrix.java class, implementing the calculation of (E4) matrix for the (E5), (E6), (E7),

and (E8), boundary conditions. This class uses com/polytechnik/utils/VolMatrix.java to calculate

⟨ED(Qj) | I |Qk⟩+ ⟨Qj | I |ED(Qk)⟩, then adds boundary condition term IfQj(x0)Qk(x0).

http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
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Regardless the If selection, the ∥I∥ and ∥dI/dt∥ operators have no common eigenvectors

unless the |ψ0⟩ is the ∥I∥ eigenvector, this degeneracy case was considered in Ref. [3].

The most critical degeneracy arise in the situation, when the state “now” and the state of

“maximal past I” are the same:

|ψ0⟩ =
∣∣∣ψ[IH]

I

〉
(E9)

An example of such a degeneracy can be the situation of huge volume traded “now” (at

x = x0).

Appendix F: Directional Information: I −−→
ψ

max Subject To the Constraint

⟨ψ |C |ψ⟩ = 0.

Consider market dynamics split in two operators: ∥I∥ (execution flow dynamics) and

∥C∥ (price dynamics). The constrained I → max problem is:

I =
⟨ψ | I |ψ⟩
⟨ψ |ψ⟩

−→
ψ

max (F1a)

subject to: 0 = ⟨ψ |C |ψ⟩ (F1b)

The constraint (F1b) is a requirement on price in the |ψ⟩ state. There are a number of

choices for the constraint operator ∥C∥ selection:

∥C∥ = ∥
(
p− P last

)
I∥ Price (11a) in the |ψ⟩ state is equal to P last (F2a)

∥C∥ = ∥V1 − P lastV0∥ Moving average price (11c) is equal to P last (F2b)

∥C∥ =

∥∥∥∥ ddt [(p− P last
)
I
]∥∥∥∥ Price–execution flow changes match (F2c)

∥C∥ =

∥∥∥∥dpdt
∥∥∥∥ Price extremum (F2d)

∥C∥ =

∥∥∥∥d2pdt2
∥∥∥∥ dp/dt extremum (F2e)

The maximization problem (F1a) with the quadratic constraint (F1b) can no longer be

reduced to a regular eigenvalue problem such as (25). The solution exists only if ∥C∥

operator has both: positive and negative eigenvalues. Ideologically the (F1b) constraint

facilitates taking into account a typical market practitioner activity: look how the market

used to behave in the past at prices near some level. Our previous paper [3] has been mostly
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devoted to skewness and probability correlation study in the unconstrained I → max state∣∣∣ψ[IH]
I

〉
. The (F1b) constraint allows us, within the framework of a single formalism of

constrained optimization, take into account the driving force of the market I → max (F1a)

and the reaction of the market participants on it (F1b). For mathematical properties and

numerical solution of (F1) problem see Appendices F 1 and (F 2 below. Here we assume

that the solution does exist, we denote it as
∣∣∣ψ[M]

I

〉
, and name: the state of price–matching

maximal execution flow. The found state
∣∣∣ψ[M]

I

〉
(it is just a pure state averaging weight(

ψ
[M]
I (x(t))

)2

ω(t)dt, not even a density matrix (6)) is the state to obtain market directional

information.

1. The IstatesConditional.java implementation

The optimization problem (F1a) with quadratic constraint (F1b) can be solved using

Lagrange multipliers technique:

max
ψ

⟨ψ | I |ψ⟩ − λ(⟨ψ |ψ⟩ − 1) + µ ⟨ψ |C |ψ⟩ (F3a)

1 = ⟨ψ |ψ⟩ (F3b)

0 = ⟨ψ |C |ψ⟩ (F3c)

|0⟩ = |I|ψ⟩ − λ |ψ⟩+ µ |C|ψ⟩ (F3d)

Were the constraint (F3c) to be of a linear type, instead of a quadratic one, the constrained

optimization problem (F3a) can be reduced to a regular eigenvalue problem in a transformed

basis[10]. However, for the quadratic constraint (F3c), such a one–step transform is not

possible, and self–concordant procedure of iterational type is the simplest option:

• For an initial |ψ⟩ find the coefficient α, such that:

|b⟩ = |C|ψ⟩ (F4a)

0 = ⟨ψ + αb |C |ψ + αb⟩ (F4b)

The (F4b) is a quadratic equation with respect to α, if no real solution exist — itera-

tional process failed. If a success — obtain the solution, satisfying the (F3c) constraint:∣∣∣ψ̃〉 = |ψ⟩+ α |b⟩ (F5)
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From two α solutions select the one with the maximal
〈
ψ̃
∣∣∣ I ∣∣∣ ψ̃〉/〈

ψ̃
∣∣∣ ψ̃〉. There are

exist several good alternatives to (F4), see com/polytechnik/utils/FindPsiConstr

ainedSingleQuadratic0.java implementation for details.

• Put
∣∣∣ψ̃〉 to (F3d), then left–multiply it by the vector

〈
ψ̃
∣∣∣C∣∣∣, obtain the Lagrange

multiplier iteration µ:

µ = −

〈
ψ̃
∣∣∣C ∣∣∣ I ∣∣∣ ψ̃〉〈

ψ̃
∣∣∣C ∣∣∣C ∣∣∣ ψ̃〉 (F6)

• Construct an operator ∥I∥ and find all it’s eigenvectors:

∥I∥ = ∥I∥+ µ∥C∥ (F7)∣∣∣I∣∣∣ψ[i]
〉
= λ[i]

∣∣ψ[i]
〉

(F8)

• Among all the
∣∣ψ[i]

〉
found select the |ψ⟩, providing the maximal ⟨ψ | I |ψ⟩.

• Repeat the process of above for this new |ψ⟩. If a solution exists, iterational procedure

converges quickly (typically 5–7 iterations), unless ∥I∥ and ∥C∥ operators have several

eigenvectors in common12. The result of this iterational process is the state of price–

matching maximal execution flow
∣∣∣ψ[M]

I

〉
, the (F1) solution.

The class com/polytechnik/utils/IstatesConditional.java implements this pro-

cedure. It takes three matrices ⟨Qj |Qk⟩, ⟨Qj | I |Qk⟩, ⟨Qj |C |Qk⟩, and basis functions

operations class (extending the com/polytechnik/utils/OrthogonalPolynomialsBasis

FunctionsCalculatable.java), as constructor’s arguments. Then it solves generalized

eigenvalue problem (25) using the EVXData.java class to obtain an initial |ψ⟩ and to repro-

duce the [1] results. Then ten iterations of above are performed to obtain the solution of

(F1):
∣∣∣ψ[M]

I

〉
and µ. The fields are:

.I An object of EVXData.java type, (25) solution (F9a)

.flag_solution_exists Whether the (F1) solution exists for the input data (F9b)

12 Assume ∥I∥ and ∥C∥ operators have identical eigenvectors. Then the (F8) always produce the same

eigenvectors, and the maximization problem (F1) is reduced to a linear programming problem relatively

the projections squares.

https://en.wikipedia.org/wiki/Linear_programming
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.psi_M
∣∣∣ψ[M]

I

〉
the (F1) solution; equals to 0 on failure (F9c)

.LagrangeMultiplier_M Lagrange multiplier µ, Eq. (F6) (F9d)

.i_M
〈
ψ

[M]
I

∣∣∣ I ∣∣∣ψ[M]
I

〉
execution flow in the

∣∣∣ψ[M]
I

〉
state (F9e)

.wr0_M
〈
ψ

[M]
I

∣∣∣ψ0

〉2

a kind of “distance to now” (F9f)

2. The IstatesConditionalLocalized.java implementation

When the global maximum of constrained I → max problem is not required, and localized

answer with |ψ⟩ in (A1) form is considered as good enough, optimization problem (F1a) with

quadratic constraint (F1b) can be easily solved. Substitute (A1) to (F3c) and obtain:

I =
⟨ψy | I |ψy⟩
⟨ψy |ψy⟩

−→
y

max (F10a)

0 =
n−1∑

j,k,s,t=0

Qj(y)G
−1
jk ⟨Qk |C |Qs⟩G−1

st Qt(y) (F10b)

The (F10b) constraint is a polynomial of 2n− 2 degree, it has exactly 2n− 2 root, possibly

complex. The classes extending the com/polytechnik/trading/OrthogonalPolynomialsB

asisFunctionsCalculatable.java (see Appendix G3 of Ref. [3]) provide an implementa-

tion for solving P (y) = 0 equation with a P (y) in a given Qk(y) basis P (y) =
∑2m−2

m=0 Qm(y),

the (F10b) is a polynomial of this form. Among 2n−2 roots found select only the real roots,

then among them select the state
∣∣∣ψ[M]

I

〉
, that provides the maximal

〈
ψ

[M]
I

∣∣∣ I ∣∣∣ψ[M]
I

〉
. The

situation is similar to the one of Appendix G, below, with the difference that
∣∣∣ψ[M]

I

〉
is now

selected among (A1) states with y from (F10b) real roots (2n − 2 maximal number), not

among n eigenvalues of some operator ∥C∥.

The class com/polytechnik/utils/IstatesConditionalLocalized.java implements

this procedure. It takes three matrices ⟨Qj |Qk⟩, ⟨Qj | I |Qk⟩, ⟨Qj |C |Qk⟩, and basis func-

tions operations class (extending the com/polytechnik/utils/OrthogonalPolynomialsB

asisFunctionsCalculatable.java), as constructor’s arguments. Then it solves P (y) = 0

polynomial roots problem (F10b) using com/polytechnik/trading/OrthogonalPolynomi

alsBasisFunctionsCalculatable<T>:getPolynomialRootsFinderInBasis().findRoot

s(·) method to obtain a set of ym that are the roots of (F10b). Then corresponding |ψym⟩

(A1) are constructed, and the one with the maximal ⟨ψym | I |ψym⟩ is selected: this is the
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“localized”
∣∣∣ψ[M]

I

〉
solution. The fields are:

.psi_M
∣∣∣ψ[M]

I

〉
the (F1) localized solution of (A1) form; equals to 0 on failure (F11a)

.y_M The “localization” point in (A1) of maximal I (F10a), (F10b) root (F11b)

.i_M The execution flow
〈
ψ

[M]
I

∣∣∣ I ∣∣∣ψ[M]
I

〉
(F11c)

.n_roots The number of real roots of (F10b) (F11d)

Appendix G: Directional Information: I −−→
ψ

max in the States of Constraint Operator

∥C∥.

The constrained optimization of the Appendix F 1 above, while been very nice mathemat-

ically, does not provide a clear cut answer. There are two reasons: the difficulty to select an

operator ∥C∥ (F2) and the difficulty with (F8) Lagrange multiplier convergence, as ∥I∥ and

∥C∥ operators often have common eigenvectors. Consider a different, much more simplistic,

constrained optimization approach:

I =
⟨ψ | I |ψ⟩
⟨ψ |ψ⟩

−→
ψ

max (G1a)

|ψ⟩ : is subject to being an eigenvector of |C|ψ⟩ = λC |ψ⟩ (G1b)

Here we also split the market dynamics in two operators: ∥I∥ (execution flow dynamics) and

∥C∥ (price dynamics). But now we consider the ∥I∥ only in the eigenstates of the operator

∥C∥. The operator ∥C∥ is selected in a way that it’s derivative gives the constraint operator

∥C∥, thus the |ψ⟩ state of extremal ∥C∥ give zero of constraint operator ∥C∥. Mathematically

the problem (G1) is simple: find all n eigenvectors (G1b) of ∥C∥ first, then select the one,

providing the maximal ∥I∥ (G1a). The state of price–matching maximal execution flow∣∣∣ψ[M]
I

〉
is now plain (G1b) eigenvector, providing the maximal (G1a). There are a number

of choices for the operator ∥C∥, selecting the states |ψ⟩:

|pI|ψ⟩ = λC |I|ψ⟩ Price min/max (G2a)

|V1|ψ⟩ = λC |V0|ψ⟩ Moving average price (11c) is equal to the price (11a) (G2b)

The optimization with the constraint (G2a) is actually the pure dynamic impact approx-

imation of Ref. [3]: price and execution flow operators are assumed to have the same
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eigenvectors. The (G2b) states, same as for the aggregated execution flow (C5) below, se-

lects the states with the moving average price equals the price, a typical market practitioner

point of attention. The problem (G1) uses the same input data moments (16) as the problem

(F1).

Appendix H: The
∣∣∣ψ[IH]
I

〉
variation approach to positive and negative dI/dt states

separation.

The separation of the states with positive and negative dI/dt can be developed based on∣∣∣ψ[IH]
I

〉
variation. For example, in the Eq. (F3) of Ref. [3], the variation of I have been

considered13:

Iψ+δψ =
⟨ψ + δψ | I |ψ + δψ⟩
⟨ψ + δψ |ψ + δψ⟩

= D0 +D1 +D2 + . . . (H1)

D0 =
⟨ψ | I |ψ⟩
⟨ψ |ψ⟩

(H2)

D1 = 2

(
⟨ψ | I | δψ⟩
⟨ψ |ψ⟩

−D0
⟨ψ | δψ⟩
⟨ψ |ψ⟩

)
(H3)

D2 =
⟨δψ | I | δψ⟩

⟨ψ |ψ⟩
−D0

⟨δψ | δψ⟩
⟨ψ |ψ⟩

− 2
⟨ψ | δψ⟩
⟨ψ |ψ⟩

D1 (H4)

With δψ = −ED(ψ
[IH]
I (x)) variation (such a variation can be considered as a boundary

condition alternative to (E5), (E6), (E7), or (E8)) obtain ∆ψP from the Eq. (31) of Ref.

[3]. Any first variation (H3) in a
∣∣∣ψ[i]

I

〉
state is zero, any second variation (H4) in the state∣∣∣ψ[IH]

I

〉
is negative. The first variation of the

∣∣∣ψ[IH]
I

〉
state can be written as P (x) polynomial

average:

P (x) = 2ψ
[IH]
I (x)

[
ED(ψ

[IH]
I (x))−

〈
ψ

[IH]
I

∣∣∣ED(ψ[IH]
I )

〉
ψ

[IH]
I (x)

]
(H5)

D1 = ⟨I P (x)⟩ = 0 (H6)

In [6], we have have proved, that any polynomial P (x) of 2n− 2 degree can be isomorphly

mapped to a linear operator of the dimension n, the algorithm is presented in the Appendix

A of Ref. [6]:

ρ(x, y) =
n−1∑
i=0

λ[i]ψ[i](x)ψ[i](y) (H7)

13 See the class com/polytechnik/utils/RayleighQuotient.java of provided software, implementing the

calculation of 0-th, 1-st, and 2-nd variations of two quadratic forms ratio.

http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
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P (x) = ρ(x, x) (H8)

Then the D1 can be presented as a superposition of positive and negative terms:

0 = D1 =
∑

i:λ[i]>0

λ[i]
〈
ψ[i]

∣∣ I ∣∣ψ[i]
〉
+

∑
i:λ[i]<0

λ[i]
〈
ψ[i]

∣∣ I ∣∣ψ[i]
〉

(H9)

This way the P (x) average can be split in positive and negative contributions. Despite being

a
∣∣∣ψ[IH]

I

〉
projection, the eigenvalues of (H7) are typically all non–zero, and corresponding

density matrix is a mixed state:

∥ρ+∥ =
∑

i:λ[i]>0

∣∣ψ[i]
〉
λ[i]

〈
ψ[i]

∣∣ (H10a)

∥ρ−∥ =
∑

i:λ[i]<0

∣∣ψ[i]
〉
λ[i]

〈
ψ[i]

∣∣ (H10b)

For computer implementation see the class com/polytechnik/trading/DIselDM.java of

provided software.
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