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A new form of ML knowledge representation with high generalization power is devel-
oped and implemented numerically] Initial /N attributes and OUT class label are
transformed into the corresponding Hilbert spaces by considering localized wavefunc-
tions. A partially unitary operator optimally converting a state from IN Hilbert space
into OUT Hilbert space is then built from an optimization problem of transferring
maximal possible probability from IN to OUT, this leads to the formulation of a new

algebraic problem. Constructed Knowledge Generalizing Operator U can be considered

as a IN to OUT [quantum channel} it is a partially unitary rectangular matrix of the

dimension dim(QUT) x dim(IN) transforming operators as A°UT = Y A™NY/T. Whereas

only operator U projections squared are observable (OUT|U | IN)? (probabilities), the

[fundamental equation|is formulated for the operator U itself. This is the reason of high

generalizing power of the approach; the situation is the same as for the Schrodinger

equation: we can only measure 12, but the equation is written for 1) itself.
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I. INTRODUCTION

There are four key elements in any ML approach[I]:

e Attributes selection.

e Knowledge representation.

e Quality criteria (norm).

e Search algorithm to find the solution in knowledge representation space.

Knowledge representation is the most important element as it determines generalization power
of a ML system. The progress in knowledge representation from linear regression coefficients,
perceptron weights|2], statistical learning|3], 4], and logical approaches[5] to support vector
machines[6], rules and decision trees|7], fuzzy logic[8, @], and deep learning[10] has been the
direction of ML development within the last two decades.

These approaches, however, share one common feature that limits their applicability. All of
them typically construct a norm, loss function, penalty function, metric, distance function, etc.
on class label (attributes to predict) difference from the target and perform it’s optimization
on training data. Selection of the norm is a complex task, moreover, the concept of “norm”
is of statistical type and cannot be applied in every situation. In our earlier works|IT, 12]
we introduced a ‘norm-free” approach where the norm was replaced by projection operators.
The idea takes inspiration in quantum mechanics where the outcomes of an observable f
(obtained as an operator’s spectrum ‘ f |wm> =)\ !1/1[i]>) and the probabilities of outcomes are
separated; for a given state |¢)) the probabilities of A outcomes are obtained as projections
to ‘¢[ﬂ> eigenvectors <¢ ‘ 1/J[i]>2. This approach comes in two “flavors”[13]: interpolatory type
(where the outcome is obtained as regular Radon-Nikodym derivative) and classification
type (where the outcome is obtained as prior weight adjusted Radon—-Nikodym derivative, a
“Bayesian” style).

While these results are of great interest as they overcome one of the most difficult problem
in ML (norm selection) and produce gauge-invariant solutions, they, as the other approaches
to ML, still have a limitation in generalization power. The problem with this our approach[13]
is that it is still of “joint distribution generalization” type. Effectively it constructs a joint

distribution of (attributes, class label) pairs and then is trying to generalize from it. Some



ML approaches, such as statistical learning, support vector machines, rules and decision trees,
Bayesian learning, etc. do this “joint distribution generalization” explicitly; the others, such
as neural networks, hidden Markov model, almost all logic models, etc. in fact also do a “joint
distribution generalization”, but do it implicitly.

The problem with “joint distribution generalization” approaches is that they can only
predict the outcomes that already have corresponding (attributes, class label) observations
in training data. For example if we apply such an approach to periodic planetary motion —
we obtain an accurate prediction, but applying it to a hyperbolic comet would be a failure as
the comet only travel through the Solar system once. However, both (planet and hyperbolic
comet) are governed by the same Newtonian laws and their motion is the phenomena of
the same kind. Newtonian mechanics has a more powerful generalization than the “joint
distribution generalization”.

This work is the first work where we go beyond the “joint distribution generalization” in

ML knowledge representation.

II. INPUT DATA AND SIMPLE MODELS

Whereas the developed approach can be applied to input data of various forms, for the
purpose of comparison with well known models we will be considering only the data of

supervised learning fornm[}
(20,21, oo 20) O = (fou freee s fioee o fraa)© weight w® (1)
xO s £

where an attributes vector x of the dimension n is mapped to a class label vector f of the
dimension m for all [ = 1... M observations. An average (-) is defined as the sum over all M

observations sample:

(1= w (2)

(h(f)g(x)) =Y h(fD)g(x")w (3)

I The data can be possibly “producted” to some order D. For example take n initial z; and construct
n—1

T = xhoaht ..xi":ll with multi-index k = (ko,k1,...,kn—1) subject to D = Zo k;. From initial n
Jj=

attributes zj, we now obtained NV (n,D) = CP, ;,_, attributes zx producted to the order D, see [13].
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Here h(f) and g(x) are some functions on f and x, for example a polynomial or Christoffel
function K (z) from ([L0). In this paper we will be considering the models built on “moments”
— some average of a polynomial function on z; and f;; an example of such an average is
(xrxw fify). As a constant has always to be present in x and f bases the tensor (zyzi f;fj/)
includes all lower order averages such as (ryzy) and (f;f;). Introduce Gram matrices Gy

and ng, for x— and f— spaces respectively:

G = (TrTrr) (4)
Gl = {fifr) (5)

We will assume that Gram matrices are non-degenerated, otherwise a regularization to be
applied to x and f bases, see “Appendix A: Regularization Example” of [13].
A few familiar examples. Least squares solution of f on x requires Gram matrix G, and

(f;4x) moments as input to obtain f;(x) = 71—, Bxxx as linear system solution:

< [fj - iﬁkxk > — min (6)

n—1

fi(x) = Y G (few) (7)

k,k'=0

Here G;;,;,_l is Gram matrix inverse. The is m different predictors each one is applied
to it’s own class label component f;, j = 0...m — 1. Least squares knowledge representation
model has limited predictive power and low outlier stability but it is very easy to implement
numerically and obtained solution is gauge-invariant relatively an arbitrary non—degenerated

linear transform of x and f:

n—1

Ty = Z T wrr (8a)
k'=0
m—1

£=Y Tyt (8b)
3'=0

This often makes the least squares model the first choice to start data analysis despite all
the drawbacks. The model has the properties similar to “joint distribution generalization”
on the support of (-) and typically diverges for x outside of the support interval; it has low

generalization power.



Radon-Nikodym model consists in constructing a weight density 1#32, (x) localized at x =y
and then averaging f with it:

n—1 n—
G e S ullyii
Uy(x) = VEK(y) Z yiGE Ty = ——= == (9)

n—1 n—1

e ,;O yiGl ;0 [ (y)]?

K(X) = 1 ! =3 L (10)

Y w6y e Y Wi(x))

i,k=0 i=0

n—1 n—
2 > %G, g fy) G5y, Zl P () (P | £ | 1) plH] (x)

f(X) ~ <1/}fo> _ 4,4,8,k=0 k=0
J ~ 2\ n—1 - n—1

(11)
In Eq. the Radon—Nikodym approximation is presented in two bases: original xy, for
which (z;7;) = G%, and in some orthogonalized basis [} such that (I | = &,
Whereas in least squares approximation @ the f;(x) is a linear combination of basis function

xk, in the Radon—Nikodym approximation it is a ratio of two quadratic forms on basis

n—1
q,s=0

function z; with the matrices >0 1 G ' (x4, f;) G~ ' and G5~ By construction it is
an averaging with positive Weigh (Y2 f;) / (¥?*) thus the bounds of f; are preserved and
the approximation tends to a constant when some z; — oo The calculation requires
Gram matrix G¥, and (zz f;) moments as input (compare with G3,, and (xf;) required
for least squares f(x) =~ (x| f) ¥x(x) = Z?;;:lo 2;G% " (). f) approximation); the result is
gauge—invariant relatively . The is the solution of “interpolatory” type as it does not
take into account “prior probabilities”, see [13] for “classification” type solution with prior
probabilities taken into account, a “Bayesian style”.

A simple demonstration of localized states is presented in Fig. [I} For a simple chart a

multi-dimensional vector x is constructed from 1D variable x € [—1 : 1] as x;, = 2*. The

measure (-) is taken as (g) = f_ll g(x)dz. Then 12(x) can be considered as a function of

2 For a given 1) the normalizing condition is 1 = <1/J2>, this is required to properly average an observable < fz/J2>.
In applications, however, the number of “covered” observations is often also required, for example to estimate
possible data overfitting; the total coverage is (1) (2). To estimate the number of observations covered by a
given 1 one can use the Christoffel function K (x) to estimate the coverage as: Coverage,, ~ <K w2>.
With an expansion of K (x) in spectrum|I3] |K |’(/J[i]> = Al |¢[i]> one can obtain an expansion “by coverage”;
this removes the major limitation of the principal components method: it’s dependence on the scale of x

attributes.
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FIG. 1. A simple demonstration of @) localized states 12 (x) for the measure (g) = f_ll g(x)dx and
the basis x constructed from 1D variable z € [~1 : 1] as @3, = 2*. The results for the states localized
at y = {—0.6,0,0.4} are presented as olive, blue, and green lines respectively. Basis dimension n is

chosen as {7,25,50} for thick, middle, and thin lines respectively.

scalar x and y as x and y vectors are calculated from the powers of x and y. In Fig. (1| we
present 12 ¢(z), ¥5(x), and ¢ ,(z). As expected the 2(x) density is localized near x = y;
the localization becomes stronger with n increase. This chart demonstrates the main concept
behind Radon—Nikodym type of interpolation which is a two—step process: on the first step a
localized state ¢32, (x) is built and on the second step the value of an observable f is evaluated
at y by averaging it with the weight obtained on the first step: f(y) ~ (¢2f) /(¥2). A
trivial example of a square wave interpolation using least squares and Radon-Nikodym is
presented in Fig. 2] We see that Radon—Nikodym preserves the bounds of f and has near
interval edge oscillations very much suppressed because an interpolation of f at y is obtained

by averaging f with always positive weight du = v} (x)dx.
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FIG. 2. A demonstration of a square wave interpolation (red) by least squares (blue, Eq. (7))
and Radon-Nikodym (green, Eq. ) with the measure (g) = f_ll g(x)dxz with € [-1 : 1] for

n = {7,25,50} in the pictures: left, middle, and right respectively.
A. Pure Joint Distribution Model

In the section above we considered a simple problem of recovering f from x given sampled
data . The least squares and Radon—Nikodym estimators and were obtained.
They are using individual components of vector f as separate class labels; vector class label
makes the study much more difficult than a scalar one. For further development we need, for
attributes x and class label f of vector type, to have estimators of joint distribution P(x,f)
probability and corresponding to it coverage.

There are several possible approaches to unify x and f. In [14] the authors introduced a

new vector z of the dimension n + m

Z = (I()axl?'"7'Ik7"'7xn—17f07f17‘"7fj7"‘7fm—1) (12>

and constructed Christoffel function from it (this requires all (zpxy), (f;f;), and (zgf;)
moments). Maximizing Christoffel function on f given x exhibits very promising results.
However, a difficulty with cross-terms arise[I3] both in data initial regularization and in
interpretation of the final result.

To deal with vector class label f and, for further generalization of Section [[I]] below, we
will use f-localized states. For sampled f data, possibly to some order, construct
Gram matrix in f-space and, the same as in @D, build a localized state 1)g(f):

m—1 m—1
Y aiGy X gl
va(f) = 2= == (13)




For each observation [ = 1... M consider projection of x()-localized state @ to £

localized state then sum it over the entire [ = 1... M sample to obtain the number of

JDG (

covered observations F note: there is a “projective” factor (f;xy) in the expression)

2
1

n—1 m—
f;—1 x; —1
> Zogj'Gj’j (fimw) G yw

k,k'=07,j'=
<¢g | ¢y>2 = m—1 P n—1 4 (14)
> GGy X Gy yw
4,4'=0 k,k/=0
M
(1) > FIPC =3 (o [)* (15)

=1

If x and f form the same vector space then F/P¢ = (1). Otherwise, for example when x
contains the entire f plus one more completely random attribute, F/P¢ < (1). Since (14)) has
normalizing terms containing Gj.;,_ "and G757 matrices in the denominator, to calculate
the secondary sampling technique[I5] is required. The Gram matrices G, ‘) and ng, 1}
are calculated first then the projection is calculated for every observation [ =1... M
and used in as it were plain observed at observation [. Technically this means we need

to calculate the moments of x- and f- Christoffel functions product: (zyf; | K& K@) ‘ T fir)
(33)-

The (g | ¥y)* can be viewed as joint distribution of f and x. For a given x the probabilities

of various f can be estimated as

P(f,x) ~ (v | )’ (16)

The estimates the probability of possible outcome f given some fixed value of x; the
estimation is based on (attributes, class label) pairs observed in the training sample. A
typical step from here is to find a subspace of x providing the best prediction of f, optimal
clustering [I3] is a typical approach in this direction. However, we want to go beyond “joint
distribution generalization”, beyond finding a subspace of x providing the best prediction of
f in terms of the probability P(f,x) estimated on training sample. We need a more powerful

generalization method, possibly applicable to not yet observed values of x and f.



III. ON KNOWLEDGE GENERALIZING OPERATOR

In Section above we transformed original x) — £ data sample (1) to a sequence of
x(- and £fO- localized states according to @ and :

V) = Vs weight w? (17)

As 1y / ¢¢ are defined by n / m coefficients before z;, / f; the is nothing more than
a transform of the original data . This is not a regular linear transform of x / f bases,
this is a linear transform with G:}c,_l / G?j,_ " matrices followed by normalization to 1 with
Christoffel function as in () / (L3).

The purpose of this transform is to obtain the states we can project to each other or
to some other basis; for example: [yw) = b, [ (Wl | ) with |¢*) being an
orthogonal full basis in x-space, 1 = ({0 |¢x(z)>2, 1 = (Yew \1/Jf(z>>2, 1> (Y0 |1pf<z))2, etc.
The main result of Section was to obtain joint (x, f) distribution (16)) and then trying to
generalize from it.

Consider a different form of generalization. Let |1, )), before being used in calculation of

joint distribution, is transformed by a unitary operator ||U||:

M
F=3" (o Uty (18)

1=1
Contrary to this expression is transforming ¢, (x) to some other function in x-space
|¥(x)) = [U|yw (x)) and only then projecting the result to actual realization ¢ (f) in
f-space. In some sense the ||U|| can be viewed as a Scattering Amplitude Matrix, as it relates
the IN state |¢0)) with the OUT state |1¢w ). All the information about what combinations
of attributes x, to be used for prediction now contains in operator ||/||. It is called Knowledge

Generalizing Operator. The operator is unitary (to preserve normalizing) 1 = <w |L{Jr !Z/{ ‘ w>.
Uu =1 (19)

In our model the knowledge is represented in the form of a unitary operator. This is
a very common form in physics: the dynamics in classical mechanics, electrodynamics,
quantum mechanics can be represented as a sequence of infinitesimal unitary transformations
determined by Hamiltonian (or Lagrangian) of the system. The is an inverse problem:
given (1)) data find unitary operator ||//|| maximizing coverage subject to constraints.
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Whereas the is of fourth order in [¢), it is of second order in ||/||. The constraints
is also of second order in [|i||. Thus the problem of finding the Knowledge Generalizing
Operator is a variant of quadratically constrained quadratic program|I6] (QCQP).

Before we go further, let us consider a simplified version of to obtain F upper limit
for “projective” interpretation of operator ||U||. Consider the problem of finding (in x-space)

orthogonal basis ¢!, a subset of full basis D < n, that maximizes F7°7:

n—1
o =>" oy i=0...D—-1; D<n  (20)
”/ = <¢[l i > Z O{k z]Gkk/ak/ (21)
o,k =
M D-1
FIOT =35 (W | o)’ (22)
=1 =0
Substituting (20]) to obtain:
1
K(f)(g) — — (23)
f;—1
jj’ziongjj/ 9
M (l)f(l)
(fo| KO oy =) ——= w (24)

— () ~F; =1 (1)
= 5 Gy 1y

J,5'=0
m—1
Kz(l:HX) = Z <xsz’ k’t’ <ft’ ’ fs >Gf 71 xkfj’> i, k=0...n—1 (25)
k't 5" j'=0
The is f—Christoffel function momentsﬂ The allows to present in the form:
D—-1 n—1
FIOT=3 > el et (26)
i=0 kb=

From which we can spectrally expand the F7°T by solving a jgeneralized eigenvalue problem

(f—x)

with the matrices K, and G7,, in left- and right- hand sides:

(f—x i A\l 7
ZKkk?) il _ [1ZGkk,af,” (27)

FroT — Z Al (28)

3 One can also consider <£§> with R(f) =1//K
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The is a spectral decomposition of , it has at most m non—zero eigenvalues (the
rank of is m or lower, we also assume m < n). If f belongs to a subspace of x then the
sum of these m eigenvalues in is equal to (1). The takes all possible vectors from
x-space and project them to all |¢p)) summing the coverage, this operation does not make
any inference, it estimates the coverage upper limit for any norm—preserving projective
transform[17], such as |U|¢) or, more generally, (54). The estimation can be obtained
from K ,SC/_}X) and G7,, matrices even without solving the eigenvalue problem :

o= § oy )
k,k'=0

For calculation see com/polytechnik/kgo/KGOSolutionVectorXVectorF. java:FTOT which

is used in unit tests.

A simpler approach to construct contributing to coverage subspace |¢[i}> is to notice
that in there are scalar products (f;x)) of the vectors from x and f spaces. Thus we
can project the f-space to x-space; to split x into two subspaces: ’qbp §U]> “projected” (of
the dimension D < m) and }¢O9[k]> “orthogonal” to f (of the dimension n — D), all vectors
from the second one have zero scalar product with a state in f-space <¢O;[k] ‘ @Z)f> = 0, thus
the ‘¢O?[k]> does not contribute to coverage . For this reason it is sufficient to consider
operator ||| to have the dimension D x n converting a vector from x-space to |¢Fll), i.e.
to use |¢l1) = [¢"!) as contributing subspace, see com/polytechnik/kgo/TestKGO. java:
orthogonalizeU for an implementation.

Let us define operator ||U|| to be a matrix (in this paper g is considered to be a real

matrix, a generalization to a complex matrix is straightforward) of D x n, D < m, such that:

D—-1
Ulak) =D o) g, (30)
s=0

Then (note: there is a “projective” factor (f;zy) in the expression, from (f;¢l*l))

2
n—1 m-—1 D-1

Z Z Z g]lG] '3 <f] S}> u’skG;:];cl_lyk:’

k,k'=0 7,7'=0 s=0

(Vg U | 1y)* = (31)
Z g] ]j’ gJ Z yk’Gkk’ Yr
J.j'=
¢[S] WM> = Z Ugk (ke | Thr) Ugnr s,q=0...D—1 (32)

k,k'=0
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The is actually but |¢y) is replaced by |U|iy). This is the central concept of
knowledge generalizing operator: the state the inference is based on |iy) is transformed
by the operator ||U/|| before coupling with the state |¢)¢) we are looking an inference to.
Partial unitarity constraint corresponds to the fact that only subspace of the dimension
D < m can possibly contribute to the coverage . When only a subspace of x contributes
to the problem to find a unitary matrix u;, becomes highly degenerative. While the
algorithm described in the Appendix [A] below works well with such a degenerative problem,
it is beneficial for both: computational complexity and simplicity of result’s interpretation to
make the problem less degenerative. Consider a |gb[i]> 1t =0...D—1 subspace of the dimension
D < m. Let us split considered above unitary operator ||| into ||| = |[UT]| + ||U°]| such
that [|247]| transforms any x-vector to |¢!) subspace, and ||| transforms any x-vector to a
subspace orthogonal to }¢[i]> (this split is most easy to perform if to convert original |zy) space
into direct sum of [¢l) and orthogonal to ¢!} subspaces). Then, because 0 = (¢ | U | )
for any f and x, optimization result of F does not depend on ||4°||, thus it is sufficient to

find an operator ||U”|| of the dimension D x n subject to (32)) constraint.

To calculate it is convenient to introduce the moments of Christoffel functions product:

M O FOFO
(ol | KK gy = 3 ) e &
1) x; — l l — l
1=0 3 xq)qu, 1xé,) D fs() f; 1f()
q,q'=0 s,8'=0

to write F in the form (note: there is a “projective” factor (f;zy) in the expression, from

(fil))

KO afy) G5 (1300) G5 GE M (1,0)) G

sk s'k! —
J:3',4,4'=0t,t'=
(34)
F = Z Z Usk Sshssky Us' kot = Z (Ve [U | ¢x<l>> w! —> max (35)
s,8'=0 k,k'= =1

The F is a quadratic function on w; the expression for S, can be greatly simplified if x-
and f- bases are initially regularized (see [13], “ Appendiz A: Regularization Example”). In an

orthogonal basis Gram matrix is a unit matrix, thus the G*~! and G¥~! get removed in

(34)-
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A. On Knowledge Generalizing Operator With Different IN and OUT Spaces

In the section above we considered operator ||| as x — x transform. In the
(g |U | 1) was understood as x — x transform |U|1)y) followed by projection of the result
to |¢¢)-space (31)); similar “projective” interpretation was used in (14). This interpretation of
¢[s]> (which is a subspace of x), equation 1}
for (e |U |1hy)? (it has (f;x)) projective factors) and constraints with the meaning of

||| lead us to “contributing subspace”

scalar product invariance. Optimization problem for u;, matrix of the dimension D x n
allows to determine partially unitary operator |[{/||. This operator has both IN and OUT
subspaces being a subspace of x.

A natural generalization is to consider an operator || || with different subspaces for IN and
OUT, this way we can avoid any kind of “projection” what would greatly increase generalizing
power of the approach. Let us consider x — f transform directly. Now u;;, is a m X n matrix

transforming a vector from x-space to f-space

fj:Zujkxk j=0...m—1 (36)
k=0

In a common “projective” paradigm the is multiplied by z/, then after taking the average

— least squares are obtained. Now it is different — we cannot take scalar products (f;xy)
as f and x belong to different Hilbert spaces. We multiply by itself and take the average
— obtain constraint. Substituting to localized state obtain

2
n—1 m—1
Z > 9 ]’S_ Usk Yk
=0 7,5=0
(g [U | thy)* = (37)
Zogj j]’ g] Z ykak/ Yy
7.7/_
k,k'=0

thus the optimization problem does not contain any “projective” factors (f;xy)

m—1
Sskz;s/k’ = Z <fj.fEk | K( ’ f]/$k/> Gf _le 1 (39>

M

F= Z Z Ut St /k/—wawuw Pl max(40)

s,8'=0 k,k'= =
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This is the equation. The (¢ |U | 1«) is interpreted as operator ||| relating the states from
two different Hilbert space, a type of memoryless quantum channel, a map between two
spaces of operators. Every admissible transformation u;; must satisfy Gram matrix invariance
condition (38)). This condition can be satisfied only for m < n since (f; | f;) has the rank m
and the matrix in the right hand side has the rank not greater than n; in case m > n one

can consider and obtain (43))

m—1
T = Z Ukjfj (41)
=0
m—1
(g |2y = Z g (f5 | fir) wpoye kk'=0...n—1 (42)
J,j'=0
m—1 n—1 < —1 2
ZO kZOyka; Ug;9;
2 J= q=
(Vg [U|thy)” = — R 1 (43)
> G g 2 unGhae Y
j,§'=0 e k' =0

Thus it is sufficient just to swap x and f in numerical calculations. When working in orthogonal
bases Opr = (| x)) and 6;; = (f; | f;) the matrix elements of Sy s are . Also see
Appendix [B| below for possible adjustment of probability normalizing.

Mapping an operator A between x- and f- spaces is the same transformation A§j, =

Z;«l:o wjk Afpr iy as for Gram matrix 1} The optimization problem has the meaning
of finding a quantum channel conveying the highest possible probability from x—space to
f-space. A remarkable feature of this problem is that it does not contain any (f;z;) averages!
All the x — f inference (communication between two ends of quantum channel) now contains
only in operator ||| — a matrix u;; of the dimension m x n to find from optimization
problem (40). This is an important new result. In [I3] coverage optimization problem was
always formulated with some kind of x — f projection; if a model has (f;zy) terms — it is of
“projective” type such as , or above. The and probabilities do not
have (f;xy) terms; operator ||| directly relates x- and f- spaces subject to scalar
product invariance; it is the only link between IN and OUT spaces. Familiar least squares
expansion satisfies the required constraints (38))

n—1

il Y= (fimw) Gt (e fir) (44)

k,k'=0
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only when f is a subspace of x; Proof: select some orthogonal bases such as g = (x| 24)
and d;; = (f;| f;7), obtain 1 = Z;é (fjxk>2, i.e. only when x — f least squares mapping is
exact. Note that one can always apply Appendix ({A 5) method of singular values adjustment
to obtain a partially unitary transform from the least squares or any other mapping that
initially does not satisfy the partial unitarity constraints .

The optimization considered above has the objective function quadratic on partially
unitary operator u;;. There are other objective functions that are quadratic on partially
unitary operator u;; hence all the optimization above can be applied to them as well. With
definition one can consider it not as probability amplitude mapping 1, — ¢, but as plain
value mapping x — f. This is essentially without a denominator. Consider reproducing
kernel Z;Z:io ijZ.,_ ! gj, it has a maximum at f = g, assume g is taken from , and sum

it squared; obtain

F= Z Z uskssk: ;57 k! Usl k! = Z Z f Z)Gf _lzujlklxk’ w(l) 7 max (45)

=0 k,k'= =1 \jj'=
m—1
f;— f; —
Ssk;s’k’ = Z <fja:kfj/xk/> st lGj/Sll (46>
7,3'=0

This creates a different version of S, a fourth order moments-type instead of
previously used Christoffel functions product tensor Sy, from ; an important feature of
is that an application of secondary sampling technique is not required for it’s calculation.

In this setup the conditions on (f;f;) and (zyzy) are put into the constraints and
the (fjxifyxr) is put into the objective functionlﬂ. The mapping with this new S maps
the values, not the probabilities, but the values are considered to belong to some vector space.
The squared term in (45)) is just a scalar product of two vectors. With normalizing both
vectors be of unit length and the maximal value of the objective function is (1). In the
vectors do not have this normalizing. One can also consider a “partially normalized” tensor,

the one with only K®) term in (33)) assuming “average™ type normalizing for z; is due to

(38)-

m—1

Ssk,;slk/ = Z <f]$k ‘ K } f_]’xk:’> Gf _1G§ S_/l (47)

’.7 _0

4In the scalar product of f; and ZZ;S ;T is squared and then averaged over the sample. In finding
the contributing subspace it is averaged over the sample and then squared. This means the contributing
subspace model assumes the factoring (f;zx fjrzw) = (fjzk) (fj@r ). It is similar to Lebesgue quadratures

[18], where interchanging of averaging and taking square produces new result.
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B. Optimization Problem

The problem of finding the Knowledge Generalizing Operator is now reduced to maximizing
(40) coverage F (defined by the tensor Sy.s s of diverse possible forms) subject to (38))
constraints; the meaning of the constraints is to preserve scalar product (Gram matrix). The
result is u;, matrix, j =0...m — 1;k = 0...n — 1. This operator, given some input state
(such as localized state |1)x)), uniquely (within a phase) finds the function in f-space | |¢x)
(coefficients a;) that predicts the probability of outcome |[i)¢):

o

Jj=0

P()| = (e U] ) (15)

m—1

Z f f—l

7.] -
the f is equal to the value of the outcome we are 1nterested to determine the probability of.

Given x the probability of some outcome f is a squared linear function on f; multiplied by
Christoffel function.

If, however, not the probability but the value of the outcome is required — the easiest
method to obtain it is to consider all possible f to find the maximumﬂ of :

lmzl ajfj]

j=0
= max (49)
x foomal

Z f]Gf —1

7.]7

f: max P(f)

For 1D class label, where f; = f7, the problem is reduced to finding the roots of a polynomial.
In general case the problem can be considered as generalized eigenvalue problem with the
matrices a;a; (a|dyadic product of two vectors) and G;;f ' in the left- and right- hand sides.
It has a single non-zero eigenvalue (equals to the maximal probability), corresponding
eigenvector gives the most probable outcome f. The maximal probability of the outcome

corresponds to the value

e Z GEajp (50)

5 The probability is invariant with respect to f; — const - f; for an arbitrary non-zero const. Actual
values of f; are determined using the requirement that the constant has always to be present in x- and f-
bases. Since the value of f; corresponding to this specific index j : f; = const is always known (a constant),
the actual values of all f; are obtained as f;/C where C' = fj.f,—const; see com/polytechnik/kgo/KGOSol

utionVectorXVectorF. java:evaluateAt(double[]lxorig).
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m—1

= Z ajG;‘j/aj/ (51)

x Y
J,3'=0

P(fmax P)

The P(f™*>F)| is a certainty of the outcome, the maximal possible value of , a[0:1]
bounded funct;(on. A difficulty with this approach is that if f is constructed from a scalar
function, such as f; = f7, this relation may not hold exactly in the result.

Obtained probability formula is of very general form: a linear function on f; squared
divided by a quadratic form on f;. It can be obtained from many different considerations,
the difference between models is in coefficients a;. The simplest solution of this type is a
“direct projection” solution of [I3], where we take least squares expansion of |f;) in |zx) (7)
and substitute obtained f;s(x) as the localization point in to obtain ‘waS(x)>. This is
an example to obtain the probability of form without quantum channel used. It should
be also noted that squared linear function in numerator arises only for pure states. When
working with states in the form of density matrix — the probability takes the form of two
quadratic forms ratio.

The problem has remarkable invariance features. Consider ((17)) mappings .oy — Vs,
[l =1...M of n-dimensional vector 1, to m-dimensional vector |i¢w ). The vectors are
projected to each other with operator |[U||, projection absolute value is then squared and all
summed over the entire sample. The major difference from any observable value-mapping
technique is that if we multiply all 1, and ¢ by random phases exp(i¢®) the result will
be identical! This is the same as in quantum mechanics: a wavefunction is defined within a
phase, wavefunction absolute value squared defines the probability, but Schrodinger equation
is written for the wavefunction. Similarly, the knowledge generalizing operator ||U/|| is defined
(for complex matrix) within a phase, for real matrix — within a £1 factor, but the probability
(48) and coverage are equal to operator ||| projections squared; individual 1, and
Yey may have arbitrary phases.

Optimization problem subject to (38]) constraints is a variant of QCQP, problem. It
has the form: to find an operator ||| optimally transforming an IN state |1y) into an OUT
state |i¢) on data, i.e. the ideology is similar to the one of S-Matrix. Currently we can
solve this optimization problem only numerically. The problem is similar to an eigenvalue

problem, see ((A7). This is a new algebraic problem:

SU =\ (52)


https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
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where S is a Hermitian tensor, “eigenvector” ||| is a partially unitary m x n matrix, and
“eigenvalues” A is a Hermitian m X m matrix; functional extremal value is equal to A
spur (the sum of diagonal elements (A9)). The mathematical structure of this eigenvalue-like
problem, an “eigenoperator” problem, requires a separate study and we hope to obtain
important new results soon. Currently — we have a fast, stable to degeneracy iteration
algorithm to find a solution numerically, see Appendix [A] below.

Considered model assumes the dynamics is determined by a single unitary operator,
possibly partially unitary. For a x-localized pure state ||px|| = |1)x) (¢)x| & unitary operator

||| transforms the density matrix to
1Pxll = N1t ] pxltd | (53)

Whereas in quantum mechanics evolution operator ||| corresponds to the Hamiltonian
of the system: U = exp [—iLH], in data analysis knowledge generalizing operator ||| is
obtained from optimization problem subject to constraint. Quantum evolution of
form always transforms a pure state ||p|| = |¢) (¢| to the pure state ||p]| = [U|¢) (WU

b

and a mixed state [|p|| to the mixed state ||p]|. In data analysis there is a common situation
when a pure state is transformed into a mixed state, Markov chain is an example. In this

case a more general form of quantum evolution is required|[19]:

p=> BBl (54)
with Kraus operators B, satisfying|

S BBl =1 (55)

The data we use in this paper is of pure state to pure state mapping . For other
type of input data unitary evolution should be replaced by a more general form ;
one may think about it as a quantum system evolving with several Hamiltonians at once
B, = exp [—i%HS}, not as about a system evolving with the Hamiltonian H = ) H,. The
approach is directly generalizable to e.g. probability distribution to probability disstribution

6 Similarly to Kraus operators B, can also be considered in a “partially unitary”style with b, ;5 matrices
n—1
of the dimension m x n satisfying (f; | fi) =32 > bsjk (xr | 24) b5, jps- The optimization problem
s k,k'=0

M
then becomes 37 5 (e | By | ) w® — max.
s I=1 s
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mapping: in this case the observations are not localized states mapping ¥, a0 — ¥¢a), but
corresponding density matrices mapping || p,(f)|| = || pgl)||.

Initial x® — fO input data was converted to pure state to pure state mapping
Uty = Ve to formulate optimization problem subject to (38]) constraints. It is
essential from methodical point of view to discuss what input moments are required for
this problem (to obtain the tensor Sjj. (39)) and compare with other models. This is

summarized in the table:

Model Tensors Required to Calculate

Least Squares ('ZI)
Radon-Nikodym (L1)
x — f Christoffel function

(wpaw), (if;)

(e ), (Tezn f3)

(meawr), (fifi)s (@ f5)

(weaw), (fifi), (@efi)s (wefi | KOKO | fir)
(Tpaw),

(

Pure Joint Distribution
Partial Unitarity (KGO) (37) ), (fifi) <xkf] VK () |a:k/ />
Partial Unitarity (KGO) K®) 1) ant), (fifi), (wnfi | KO |z fir)
Partial Unitarity (KGO) adj. (B1) |Beyond moments, no (xyf;) used.

The major difference — Knowledge Generalizing Operator (KGO) is the only model that
does not require “projective” moments (zyf;); it requires Gram matrices and of IN
and OUT bases and the moments of the Christoffel functions product . These moments
can be obtained with an application of secondary sampling technique[15]: Gram matrices
are built first; then, for every observation [ = 1... M, Christoffel function is calculated and
used as it were plain observed at observation [. These moment{] of two Christoffel functions
product are the input used to formulate the problem . For a Christoffel function in
some multi-dimensional vector space r (e.g. x (L0 or f (23)) with (-) inner product and

non-degenerated Gram matrix G,;; = (r; | r;/) there is a 1/r* asymptotic:
1 1

K = pu—
(r) (r|G=tr) X erj’j}rj/
53

(56)

K(r) ~1/r? for r— o0 (57)

The same 1/r? long-range interaction presents in Coulomb’s law| or Newton’s law of gravitation.

With asymptotic the Christoffel function can be viewed as a form of “long-range 1/r2

" The (B1)) KGO model goes “beyond moments”. Even with secondary sampling it is impossible to build
from moments the target functional with the probability (B1f). Moreover, this problem is not a QCQP

problem.
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interaction”, an anisotropic gravity—like law of data analysis. These non-local features, along
with eigenproblem of the dimension Dn and SVD (A10) (or Gram matrix eigenproblem
(A26])) that are required on every iteration, substantially slow down the algorithm when
implemented without optimization. At this point, however, the goal is not to build a fast
algorithm, but to understand all the benefits and drawbacks of ML knowledge representation

in the form of partially unitary operator. Let us do a demonstration.

IV. A DEMONSTRATION OF KNOWLEDGE GENERALIZING OPERATOR
APPLICATION

In this section we are going to present several demonstrations of f(x) calculation using
. The f and x are treated as linear spaces, a basis for wavefunction, with partially unitary

operator u;, mapping . The result is invariant relatively f — C - f. To obtain actual

value of f — it should be normalized to const, The constant has always to be present in both

f— and x— bases. Thus

factual — f
fj:fj:const

(58)

In this equation the numerator is a linear function on x and the denominator, the
const—component of f, possibly also is a linear function on x. Thus the value obtained from
partially unitary operator mapping is a ratio of two linear functions on x. The least squares
always maps a constant to a constant, thus when u;; is a least squares mapping the
denominator in (58) is always a constant. In Radon-Nikodym mapping the numerator is
a quadratic form on x and the denominator is a positive quadratic form on x; the denominator
is never zero. In the numerator and the denominator are both linear functions on x of
most general form. The divergences coming from denominator’s zeroes are important new
features of the approach. In least squares — these zeroes are on the infinity. Denominator’s
zeroes may come either from deep internal properties of the model or from sub-optimal
solution of the optimization problem (or badly chosen objective function).

The objective function is determined by the tensor Sjj. ;. Whereas properly normalized
probability lead to a non-QCQP problem, the original Christoffel , the adjusted
number of degrees of freedom Christoffel , f—Christoffel , and plain (f;xy fyxe) (46)

have Sy ;i tensor readily available and the optimization problem (A1) with the constraints



21
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FIG. 3. For a data with known exact f = x solution, when numerical method does not find it — it

is possible to have zeroes in and corresponding poles in the behavior.

(A2) can be formulated and solved numerically.

Among available S, versions the f-Christoffel has the most “usual” properties.
For example the or (B7), when run with a data of exact x — f homomorphism/ can
possibly give a higher F on non—exact mapping due to unusual localized states normalizing.

For this reason all the demonstrations below will be performed with f-Christoffel Sy (47).

Consider a trivial mapping with the measure (g) = fjl g(x)dz and the basis x constructed
from 1D variable z € [-1: 1] aszy =2, k=0...6;n="7,and f; =x; for j =0...4;m = 5.
The solution is trivial: take first m components of x; and regularize; then use them for
both: x and f. However, when the numerical algorithm cannot find this exact solution we
can observe a deviation from exact match. In Fig. [3| the exact solution along with two
approximate solutions of different quality are presented. A not very accurate approximate

numerical solution may give poles corresponding to the zeroes in denominator (clearly
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FIG. 4. A square wave step function (the same as in Fig. , with least squares (blue), least squares

with (A11l) SVD adjustment (light blue), and maximal eigenvalue with (A11l)) SVD adjustment

(green).

observed for f2PPr*2 pear interval edge).

In Fig. 4| a square wave step function (the same as in Fig. is presented with the
same measure and basis; n = 7. The f takes only two values since the only available m is
m = 2. The exact solution was difficult to obtain numerically as the problem is substantially
degenerated. We present three approximate solutions. The blue line is regular least squares
. Light blue is the same least squares mapping adjusted with to partial unitarity.
Green — maximal eigenvalue solution adjusted to partial unitarity with . One
can see that partial unitarity adjustment makes little changes to least squares solution. For
adjusted maximal eigenvalue solution the denominator poles are close to the support of

x, this creates two artifacts in f. Note almost exact f = 1 matching in the center.

Consider a 2D example. Let us take an image and consider it as a two—dimensional basis
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mapping a pixel coordinate (z,y) to gray intensity f.

(z,)V — fO weight w®) =1 (59)
k= (k) (60)
T = zheyh 0<k,<n,—1; 0<k,<n,—1 (61)
fi=F j=0...m~—1 (62)

This forms a basisﬂ of n = ngyn, and m dimensions. Let us construct an operator u;y
mapping x — f. A simple example is least squares , it creates a familiar image expansion
similar to Fourier series. However, we are interested in operators u;;, satisfying all partial
unitarity constraints . A simple variant of constraint—satisfying operator can be obtained
from any wu,;, operator applying Appendix algorithm. In Fig. |5 (top row) we present
original image, least squares expansion and constraint-adjusted least squares for n, = n, = 25,
m = 5. The constraint—adjusted least squares is very similar to the original least squares.
The least squares operator maps pixel coordinates to gray intensity, not the localized states
wavefunction. When an operator is optimized to map the wavefunctions this may cause
poles in values, the zeroes of denominator. It is trivially to construct a partially unitary
operator u;j, preserving the constant: construct a partially unitary operator mapping x-space
without const to f-space without const x\C — f\C, then do a direct sum with C' — C
mapping. We do not perform such a transform specifically to observe the poles in (58)).
We present three pictures, corresponding to u;, operators differently optimizing with
f—Christoffel tensor (7). In Fig. [f| (middle row) we present the results corresponding to
these three wuj;: optimizing with simplified constraints , the same one adjusted
with to partial unitarity, and optimization result with Section algorithm (overall
the best optimization algorithm we have so far). Left two pictures in the middle row — a
simple solutions (based on trivial approach of maximal eigenvalue state), they have noticeable
1/ngs,) scale artifacts. The last one is very close to the global maximum of and “mixes”
the modes much stronger . The poles of separate the regions and the structure of these
“separators” can be a subject of our future research.

The developed approach works with probabilities, not with the values. For this reason it

is of interest to present the probability at given known outcome f = f). The result is

8 For numerical stability it is better to use argument-scaled Chebyshev polynomials rather than monomials

powers zF=yFv and f7.
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FIG. 5. A demonstration of image interpolation with n, = n, = 25, m = 5. Top row: original image,
least squares @ interpolated, and the same least squares adjusted with to partial unitarity
constraints. Middle row: optimization with simplified constraints (the state of maximal
eigenvalue), the same one adjusted with to partial unitarity constraints, and optimization
result with Section algorithm. Bottom row: The probability is calculated at actual f, white
P =1, black P = 0. It is calculated for: least squares @) (“direct projection” model of [13]), the
state of maximal eigenvalue (unadjusted), and Section algorithm.

presented in Fig. 5], the bottom row. The probability is scaled as white P = 1, black P = 0.
It is presented in the bottom row for three algorithms: least squares , the state of maximal

eigenvalue (unadjusted), and Section [A 4] algorithm.

The method to overcome noticeable 1/ny, ,y artifacts in Fig. [5|is to use properly normalized
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states (B1]). In most general form it can be considered as an unconstrained optimization
problem. Given sampled data find a linear transform w;y , a general form matrix of
the dimension m X n, maximizing

i
L

[i=) ujxy j=0...m—1 (63)
0

=
Il

NE

F= <¢f<1) ‘¢u(x<z>)>2 w? T> max (64)

l
Here the |1)g) is the state 1} localized at f = g, and ‘¢u(x)> is also f-localized state with
the localization point g determined by linear mapping. When expanded <wg ‘ ¢u(y)>2
is (B1]). The objective function (64]) is the total probability transferred from x-space to

1

f—space; this is an unconstrained problem. In this most general form the problem is not
a QCQP problem and it is difficult to solve numerically; the difficulty is that with ’¢u(x)>
state the operator u;), enters (through localization point g) both the numerator and the
denominator of , what makes the optimization problem not a QCQP problem.
The problem can be substantially simplified when the w;; mapping is considered to be a
partially unitary transform to obtain a QCQP problem. The problem can be further
approximated by splitting the solution into two steps: selecting the contributing subspace
¢y of the dimension m, then constructing a unitary (not partially unitary) mapping from
the contributing subspace to f;. A simple projective approach is presented above in Eq.
or, more generally, in the Appendix [C] below. A simple solution of this type is the “direct
projection” model of [I3] where the localization point is determined from plain least squares
to obtain the state me(x)>- The probability <wf<z) ‘ vy, S(x(z))>2 of the “direct projection”
model is presented in Fig. [5| (leftmost in the bottom row).

These demonstrations make us to conclude that partial unitary mapping is a rich form of

knowledge representation with a high generalizing power, however a more study is required.

V. CONCLUSION

The developed knowledge generalizing operator concept is similar to the S-Matrix approach
since it is an operator optimally transforming an IN state |i)x) into an OUT state |i)¢). As
any wavefunction in ML is known within an arbitrary phase the equation for the operator

must include only observable values. The problem we consider is to recover ||| from all it’s
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projections squared, from the probabilities . The condition of operator’s optimality is
coverage maximization on data; it is a new kind of algebraic problem (52)) — the
equation to determine the ||I/||. The situation is the same as with the Schrédinger equation:
the equation is written for ¢, but only 1?2 is observable. This is the difference between
our and all other ML knowledge representation techniques where knowledge representation
characteristics are observable values. If a model relates an initial observable and the final
observable then it is a “joint distribution model”; it cannot predict something that has not
been already observed in the training data. Knowledge generalizing operator relates the
amplitude of the initial state to the amplitude of the final state. This is the very feature that
creates generalization. The same is in quantum mechanics: ¥ vs v; whereas a mapping of
? is meaningless, the mapping of 1 determines the dynamics of a system.

Considered maximization problem is a simple example of knowledge generaliz-
ing operator technique: for observations [ = 1...M convert x) — f to ¢ 0 — Yen),
then reconstruct |[if|| from it’s projections squared (¢ |U | Yyw)’. The problem can be
generalized by considering, instead of [, x, f, and (-), the structures generalizing the con-
cepts of set, vector, and measure. In the most general form it can be formulated as: for
¢ € S, and ¢ € Sy recover partially unitary operator ||| from it’s projections squared
> w® <90(l) |L{ ’ w(l)>2 7 max. The problem can be further generalized by considering
lrflji\fced states ||p|| € S, and ||g|| € S; and recovering Kraus operators Bj from projections
squared: > w® > Spur||o®|B,|p" | Bi|| — max.

There lies]‘énothér interesting twist to thesconsidered problem of finding a partially unitary
matrix uj; of the dimension dim(OUT) x dim(/N) mapping operators from |IN) to |OUT).
Consider the problem: for dim(OUT) < dim(IN) select dim(OUT) input attributes out of
all dim(IN) available that maximize some correctness condition which is a function of all
selected attributes. For all interesting correctness conditions this problem is typically a one of
NP—-complete type. There is a single correctness function (least squares) that can be trivially
solved. Maximization of total matched probability among all partially unitary operators
ujy also selects dim(OUT) inputs from all dim(/N) available. This is a new algebraic problem
. Found mapping u;; can be viewed as a solution to attributes selection problem with
correctness conditions somewhere “in between” least squares and NP—complete, for example
there is a simple subspace selection approach — then a problem of unitary mapping
(not partially unitary) can be directly solved.
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Appendix A: A Numerical Solution to Find the Knowledge Generalizing Operator

The problem we consider is a QCQP)| problem to maximize (A1) subject to (A2) constraint.

M D—1 —1
F=) (o |Ulteo) =3 > upSignum T max (AD)
1=1 5,7'=0 kk'=0
n—1
(filfir) = Z U (T | Tpr) Ujre J, i =0...D—-1
k' =0
(A2)

Without loss of generality we put dxy = (2 | 24) and 6;; = (f; | fj) as we can always choose
an orthogonal basis by applying, for example, an orthogonalization of Gram—Schmidt type.
Contrary to other methods (e.g. regular principal components) the result obtained with
knowledge generalizing operator is invariant with respect to transform of input data, thus

it does not depend on initial regularization. The problem becomes:

D—-1 n-1
F = Z Z Uijjk;j/k/u]'/k/ T> max (AB)
3,3'=0k,k'=0
n—1
Sjyr = Y Ujntijin j.j=0...D—1 (A4)
k=0
Consider the squared Frobenius norm of matrix u;;, to be a “simplified constraint™
D—1n—1
j=0 k=0

This is a “partial” constraint (it is the sum of all diagonal elements). For this “partial”
constraint optimization problem can be readily converted to an eigenvalue problem that
can be directly solved. The main idea is to adjust this “preliminary” solution to satisfy the
full set of constraints and then calculate new values of Lagrange multipliers. Performing
several iterations the process possibly converge to (A3|) maximum with all the required
constraints satisfied. In [I3] a similar technique has been tried for a unitary operator
(119). The corresponds to partially orthogonal operator (partially unitary real matrix):
D <n.

Consider Lagrange multipliers );;/, a matrix of D x D dimension, to approach optimization

problem (A3]) with the constraints (A4))

D—-1

-1 D-1 n—1
Z Z uijjk;j’k’U;/k/ + Z )\jj/ 5jj/ — Zujk/u;,k/ —)u max (A6>

j:jIZO k,k/:() jvj/:O k=0
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Despite the matrix wu;; being real we write it in a “complex” form to variate separately over
ujr and uj,. The tensor Sjy,jk = S5y, 18 Hermitian. The variations

D—1n—1

Z Z uj/k/S ki T Z )\] 15Uk (A7a)

3'=0k'=0
D—1n-—1

0= Z Z Sk b Ut Z Ajir Wy (A7b)

=0 k'=

are consistent only when A;; is a Hermitian matrix
Ajjr = Ny, (A8)

From (A7) it follows that the functional (A3]) extremal value is equal to the spur of Lagrange
multipliers matrix Aj;j::

D—-1

max]: = Z )\jj (A9>

=0

An iterative algorithm finding the maximum of (A3)) subject to (A4]) constraints is:

1. Take initial A;; and solve optimization problem (A6|) with respect to u;; subject to
partial constraint (A5]). Solution method — an eigenvalue problem of Dn dimension in
a vector space formed by writing all u;, matrix elements in a vector, row by row. The

[p]

result: p=0...Dn — 1 eigenvalues F*! and corresponding matrices u ;i reconstructed

back from the eigenvectors, row by row.

2. To select the u;, among all Dn eigenstates one need to try a number of them, selecting
the ones providing a large value of the original functional. Taking only the state of
the maximal eigenvalue typically gives a local maximum. Chosen w; is not partially

unitary as the constraint (A5)) is a subset of the full ones (A4)). Expand u;;, in SVD:

D—1n-1

up =Y > U Sy Vil (A10)

5'=0 k'=0
and adjust all SVD numbers to 1. The X, = d,; is typically the best option as this
is the minimal change (initial ¥;; are positive). Obtained

min(D,n)—1

Ujk = Z UjsVih (A11)
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is a partially unitary matrix satisfying all the constraints . This u;;, becomes the
next iteration u;, of the solution. Because of u;, — u;; adjustment the value of F
becomes less optimal. There are other methods to adjust the wj; to satisfy the full set
of constraints, for example an eigenvector expansion of the matrix ZZ;(I) UjkUjrk
followed by eigenvalues adjustment[I7], Gram—Schmidt orthogonalization, etc. However,

the SVD expansion (A10)) is special, see (A52]) below.

3. Put this new wj; to (A7a), then multiply it by «}, and sum over k =0...n — 1. As the
uji, is partially unitary 1} obtain new values for Lagrange multipliers Xij and take
it’s Hermitian parlﬂ:

D—-1 n—1

Ni =YD Wi Syt (A12)
=0 k,k'=0
1~ ~, -

)\Z]:§|:)\Z]+>\]Z:| i,j=0...D—1 (Alg)

This );; is the next iteration of Lagrange multipliers. As iterations proceed — the Xij
is expected to converge to a Hermitian matrix by itself, without required. For
original (not yet full-constraint adjusted) w,j, which is an eigenvector of Sji.;i, the
Xij is Hermitian. The anti-Hermitian part of Xij cancels in the quadratic form .
One can possibly obtain a Hermitian \;; right away with multiplication of by
itself (instead of w;), for (A12))); the Hermitian \;; is then obtained from )\?j as all the
eigenvalues of \;; are all positive; the result is very similar to , a drawback for
this new \;; — the now holds only approximately for current iteration of u;, see

com/polytechnik/kgo/KGOIterationallLambda2. java.
4. Put this new \;; to (A6) and repeat iteration process until converged. On the first
iteration take initial values of Lagrange multipliers \;; = 0.

For a simpler scalar QCQP optimization problem of [15], “ Appendiz F: Directional Information:

I T max Subject To the Constraint (1 | C'| ) = 0", where we considered a single quadratic

9 The equation for Lagrange multipliers produces an arbitrary matrix Xij; a variation of the constraints
produces Hermitian matrix A;;. Lagrange multipliers in should be set to make the first variation
at given uj;, as close to zero as possible; least squares expansion of the first variation (D x n matrix) in
Lagrange multipliers (D x D matrix) gives (A12). For an arbitrary matrix A it’s best approximation by
a Hermitian matrix B is the Hermitian part B = Ay = (A + A"). This follows immediately from the
Frobenius norm triangle inequality by splitting the matrix into [Hermitian Ag|and anti-Hermitian A4 g

parts: |B— Allp =|B—Ag — Aanllr < ||B— Aullr + | AanlrF.


https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Skew-Hermitian_matrix
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constraint, similar iterative algorithm converges fast but may fail when optimization and
constraint matrices have a number of eigenvectors in common. The optimization problem
(A3)) subject to ({A4)) constraints is a problem of type, it has a more complex internal
structure than the problem considered in [15].

The described Lagrange multipliers algorithm is based on eigenvalue problem solution:
(A6) with partial constraint as normalizing: D = (¢?). It is much less sensitive to
degeneracy than Newtonian type iterations, where even a single degenerate degree of freedom
makes linear system (with Hessian matrix) iteration to fail. A question arise when the
described above iterative algorithm fails. Currently — we do not have the exact answer;
the condition of iterative algorithm convergence requires a separate study. The algorithm
does not converge well for partially unitary operators with D < n, but given large enough
iterations number it produces a good enough solution. The reason for a slow convergence
is that with Aij the Hessian matrix is degenerated at the adjusted wjj — at
this u;; not only first but also second variation of the objective function is zero; this is a
constraint qualification| problem. The algorithm does not diverge, it provides a sequence of
close to optimal solutions. See com/polytechnik/kgo/KGOIterationalSimpleOptimizati
onU. java for a numerical implementation. We also tried to find an algorithm of |contraction
mapping type, but this requires more study. The convergence can be greatly improved using
linear constraints, see Appendix below where the constraints were replaces by the
closeness of u;;, to current iteration value . In many situation, however, an approximate

solution is sufficient.

1. On Constrained Optimization In The Singular Values Basis

Before we go further let us discuss the roles of singular values and their relation to
the calculation of Lagrange multipliers. If we write optimization problem in SVD basis
the u;;, is represented as a product of three matrices. The constraints require
all singular values ¥;; = £1. We denote this diagonal matrix as vector X;. The objective
function is then F = ZS;,LO EsgsszEsl. Obtain constrained optimization problem with
D Lagrange multipliers Xs

D—-1 N D—1~
> 8,8wTy + ) A [1- 2] — max (A14)

s,8'=0 s=0


https://en.wikipedia.org/wiki/Newton%27s_method#k_variables,_k_functions
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Lagrange_multiplier#Multiple_constraints
https://en.wikipedia.org/wiki/Contraction_mapping
https://en.wikipedia.org/wiki/Contraction_mapping
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D—1 —1
Ssw =D D UisViSiwywUps Viy (A15)
0

4.5'=0 kK’ =

from which we immediately obtain the values

- 1 2=t
Ao = 5 Z% S Xy (A16)
for all adjusted ¥ =1
A=) S (A17)
=0

Comparing (A14) with (A6) obtain );; in original basis

D-1

A= AUilUss (A18)
i,j=0
D-1 "

)‘ij = UisUjs)‘s (Alg)

=0

Whereas the original functional (A6) has D? Lagrange multipliers \;;, the (A14)) has only

»

D — a constraint for every singular value of the matrix wu;; it is clear why: since the partial
constraint (AB|) is always satisfies from the eigenproblem it is sufficient to set D — 1 diagonal
elements of (A4]) to 1, then all off-diagonal elements are immediately zero.

2. On Iteration Step Without Using The SVD

In the algorithm above we extensively used SVD expansion for iterations. Let us
consider how to avoid using the SVD by replacing it with an eigenvalue problem of the
dimension D x D for the purpose of both: computational complexity and better understanding
of the algorithm. Obtained partial constraint solution matrix w;; is non-orthogonal,

the Gram matrix is:
n—1
G}Lj/ = Z UjkUsjk (AQO)
k=0

We need to “adjust” w;j to satistfy the full set of (A4)) constraints. Consider the eigenstates of

the Gram matrix

|Gty = A |ul®) (A21)
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The eigenvalues of this problem are equal to the singular values squared A = 2.
Setting all A} =1 (eigenvalues adjustment technique [I7]) produces a new basis in which
constraints are satisfied in full. The result is identical to the transform of setting
all ¥;; = 1 but it is obtained without solving a SVD problem, the eigenvalue D x D problem
is used instead, see com/polytechnik/kgo/KGOEVSelection. java:getEVAdjustedT
01() for an implementation.

Optimization problem is question is invariant relatively a unitary transform (the Ay; is a

unitary matrix)

Usk = Z Asjujk <A22)

The tensor Sji. ;s transforms with Ag; as (A23), Gram matrix (A20]) corresponds to the

tensor Sy = G50k

D-1
Ssk;s’k’ = E ASijk‘;j/k/AS/j/ <A23)
33'=0
D—-1 n-—1 D—-1 n-—1
F = E E uijjk;j’k’uj/k’ = g E UskSsk;s’k’Us’k’ <A24)
7,4'=0 k,k'=0 s,8'=0 k,k'=0

The constraints for new variables vy have the same form (A4))

35/ = Z Vsk Vs I S, S, =0...D—-1 (A25>

k,k'=

Let us transform the input to the basis of Gram matrix eigenvectors Solve generalized

eigenproblem (|A21)) to find the eigenvalues )\G and the eigenvectors v I of the Gram matrix

u
G]]/

Z Gl = A (A26)

Were it all )\[GS] = 1 — the eigenstates of the Gram matrix would form the sought partially

unitary operator, but this is typically not. Take Gram matrix eigenvectors as a new basis,
[ ]

the unitary transform matrix is Ag;

basis v (A22) with the tensor Ssg.q transformed from the S}/ according to (A23)). If all

, and write optimization problem (A24)) in this new

scaling coefficients ps = 1 — this would be exactly the original problem since it is invariant
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relatively unitary transforms of the basis, but if we put the factors s (A27)) — this makes
the solution to satisfy (A25)); non—unitary scaling factors p adjust the solution to satisfy the

full set of the constraints.

P (A27)
D-1 n-1
Z Z /vbsvsks’sk;s’k:’vs’k’/ls’ 7 max <A28>
8,8'=0 k,k'=0

This scaling adjustment performed in Gram matrix basis is an alternative to SVD adjustment
. One need to convert the problem from original basis to the basis of Gram matrix
eigenvectors, then scale them by the factors. The psvg satisfies partial orthogonality
constraints. We can write optimization problem in this new basis, and perform the iterative
algorithm of Appendix [A]above, then “chaining” unitary transforms as iterations proceed, the
result will be identical as the problem is invariant relatively these transforms, but the idea
of solution adjustment in the from of pure scaling opens a number of new ways to improve
the algorithm, see com/polytechnik/kgo/KGOIterationalMultipleTransforms. java for

a numerical implementation.

3. On Operator—Dependent Solution Adjustment

In the previous section we considered solution adjustment procedure applied to some
initial “partial” solution. This adjustment is a non—unitary basis transform. A question arise
about a generalization: applying some other non—unitary transform before the adjustment.

Optimization problem in question is to maximize (A29) subject to (A30) constraints:

D—-1 n—1
F j,j’z;() k%jzo U Sk
D DIl -, max (A29)
n—1
8 = Zujkuj,k 4,77 =0...D—1 (A30)
k=0

Consider a Hermitian operator J with matrix elements Jj;/, this can be e.g. Lagrange

multipliers matrix (A13), unit matrix, etc. A generalized eigenvalue problem with 7,;; and
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G (A20) matrices is formulated as

Zjﬂ,vw 3 ZG”,vj[f] (A31)

Because of the Gram matrix G?j, in the right hand side obtained solution

5]

Vel = vj[ }u]k (A32)

<
Il
o

satisfies (|A30)) constraints .y = ZZ;:}:O VerVsi- The transform ’UJ[-S]

is non—unitary

D—-1
Oss = Z ][S]G;L],vj, (A33a)
3:3'=0
D-1
Gt =Wl (A33b)
s=0

Condition (A33al) creates the basis (A32)) satisfying partial orthogonality constraints. Let us
write the optimization problem (A29) in this new basis vg. Using

Ujp = Z ij,v] Vg (A34)

j’,s=0

obtain the original problem (A29) with the tensor Sg.sx instead of Sjg.jix
D—1
Ssk;s’k’ = Z UZ[S]GZS kjlk/G /U/ <A35>
3,3"51,4'=0
This is a generalization of (A23) to non—unitary transforms. This is exactly the original

problem (without an adjustment), but written in the vy, basis.

It can be noticed that adjustment procedure of previous section is actually a non—unitary

transform with the inverse square root of the Gram matrix G%,—l/ % (A27); there are 21

distinct combinations of signs but we take all equal to 1. The adjustment is equivalent to

multiplying (A34) by G;.L;,_l/ ? to obtain the “adjusted” tensor

D-1
Sslg;js’k’ = Z UZ[S]G;L]‘;l/QSJk j’k’Gu /2 Z[/s] <A36)
73,3",4,4'=0

This way the adjustment is “transferred” from the state u;; to operator Ssi.s 1. Equivalent

ujx adjustment corresponds to u;, = Z?;io G?J}/ 2vj[~f]vsk. The (A36) is an important option

to transfer an adjustment from a state to tensor, this allows to combine the adjustment with
optimization algorithm. Considered in Section [A 2] above adjustment procedure corresponds

to Jj; being a unit matrix.
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4. On Optimization Algorithm With Linear Constraint Iteration

In previous sections we considered optimization algorithm with quadratic constraints of
form. In numerical implementation these constraints lead to a poor convergence
since at the point the constraints are applied the Hessian matrix is degenerated. Consider a
linear type of constraints.

Extend u;, with one more degree of freedom x to form a “vector” of the dimension

D xn+1.
e [ (A37)
X
Then the quadratic from
D—1n-1
T X280 +2x 22 3 bjpugy + Z Z Uij]kj’k’u]’k’
fizSzi §=0 k=0 §,7/=0k,k'= A38
T STy D—1n—1 ) ( )
X D Do ugy
j=0 k=0

has the matrix S

(A39)

The idea is to consider the b;;, and Sy as some kind of “Lagrange Multipliers” to set the
variation of (| ) to zero at the “adjusted” u;;, denote it as iteration value u . Consider

the constraints
Ujp — uﬁkT =0 (A40)

this is the closeness of ujk to current iteration value u I'" (adjusted value satisfying all the
required constraints ) A one more degree of freedom x was introduced to preserve the
form of the Rayleigh quotient for the optimization problem (A3} . ). Variating it over u,;, and
X obtain and respectively; in these formulas uj;, = ]Ig, F{* is a known constant,

and By and Sy are unknown constants.

IT _ E §
F U]kSka/k/U]/k/ (A41)

7,4'=0k,k'=

D—-1n-1

=D D buug (A42)

=0 k=0


https://en.wikipedia.org/wiki/Rayleigh_quotient
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D-1n-1 ¥2S IT
+ 2x By + F
E E Jk]/k/uj/k/+xb]k 0 Df—XOQ 0 Uk (A43)
2 1T
X“So + 2xBo +
0= xS0+ By — A44
X0 + Do D+’ (Ad4)
D

0=Fy" 4+ xBy— (x*So+2xBo + 3 ") (A45)

D+ x?
Multiply (A43) by w;, and sum it over j and k, obtain (A45)). For a given x the (A44]) and
(A45)) can be considered as a linear system for By and Sy. Obtained 2 x 2 linear system is

degenerated and has multiple solutions:
(D = X*)Bo + (Dx)So = Fy " x (A46)

The specific set (x, So, By) should be selected for best convergence. The selection

x=1 (A47a)
So = FJT (A47Db)
BO = _SO (A47C)

is the first one to try.

1. Take the values of b;;, and Sy to construct (A39).

2. Solve (A38) and [select| the most appropriate vector z. The result of this step — the

“adjusted” u I satisfying all the required constraints 1}

3. Take this new ujl,?, and select some value of y, for example , calculate “Lagrange
Multipliers” bjy, and Sy (A46) to construct (A39) matrix. If one uses x value
from maximization problem — iterations typically stick to some local maximum.
If one uses a fixed value for y, such as — a convergence is observed; not very
fast, but better than in the Appendix [A] above. Repeat iteration process. On the first

iteration take b;, = Sp = 0.

This “Linear constraints” algorithm is implemented in the com/polytechnik/kgo/KGOItera
tionalLinearConstraintsE. java. An attempt to use D extra degrees of freedom instead
of a single one was much less successful com/polytechnik/kgo/KGOIterationalLinearCon

straintsExtraDegreesOfFreedom. java.
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5. An Algorithm to Find an Approximate Solution to the Knowledge Generalizing

Operator

Consider the same problem subject to (A4]) constraint. The bases are considered
already orthogonalized: ¢;; = (f;| f;) and dgr = (2 | 2x). Assume we found optimization
problem solution with “partial” constraints , this is with A;; = 0. Put it to
and expand u;;, in SVD:

D—1n—-1
ujk- - Z Z U]]/E /k/ k?’k (A48>
=0 k'=
n—1
il fry = e (e | zw) W 4,5’ =0...D—1 (A49)
k,k'=0

Write (A49) for orthogonal bases r; and f;

n—1
= Viay (A50)
k'=0
D—-1
ZZ@ﬂw (A51)
(F; 1 557) 2: Sk (e | 2r) Syrae j.j'=0...D—1 (A52)
k,k'=

The (A52)) is (A49) written in r; and f; orthogonal bases. Since 0,5 = (f; | ;) and dpp =
(rr | tw) the (A52)) is satisfied only when all singular values of u;;, are +1. Actually we made a
single iteration of the algorithm above, this Y,;-adjusted solution is an approximate solution

one should try first. Since ¥, is diagonal, in the (f;, 1) basis we have a one-to-one relation
fi = 5% (A53)

This is not a least squares type of relation, for example the result is invariant relatively the
transform X, — —X ;5. If (f;, 1)) basis satisfies (A52)) then all singular values are £1 (the
condition of partial unitarity) and (f;,rx) relation is plain f; = +r;. The probability in

this basis is

?] Ji

(MWWQ—ﬁT———

n—1

R HDIR
j=0 " k=0

(A54)
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Partial unitarity “adjusted” case corresponds to »;; = £1.
Consider the meaning of a state with an arbitrary ;.. The (A52) is actually the constraint

. ) but with the positive diagonal matrix 2., not ;. What does it mean if we put this

Ji"
uji, “partial constraint ( .” solution to probability without any adjustment? This

breaks the preservation of probability, the probability (A54]) is no longer [0 : 1] bounded,

it is now 0 < P(f)| < max22 ;

Jjo
b

the range [0 : 1] holds only “on average”, for the entire
sample. However, this does not change the calculation of outcome value . One can also

modify (A54]) to have the probability [0 : 1] bounded, the maximal value is 1, it corresponds

to f; = ;2.

D—1
Z: fixi25;

(A55)

PO ~ 555
ZFZ@N

But this is only for evaluation, this is not the function used in optimization problem,
optimization problem with the probability is much more difficult. There is a trivial
option to use the probability for optimization and ) for evaluation. The Z?J,
j=0...D —1, factor (whether the singular values are adjusted or not) in the denominator
prevents a decrease of probability when polluting the x—space with a large number of

completely random components ; the value of | does not depend on this r—depended

factor, maximal value of probability corresponds to §; = r;3;;; the probability is invariant

with respect to f; — Cf;, normalize it to const|to obtain actual values. This partial constraint

solution of (A3]) subject to (A5)) is an approximate solution one may try. Whereas a quantum
channel that preserves probability “on average” does not have a physical meaning, in data
analysis it is an approximation with a clear meaning: it emphasizes (A52)) internal relations

with high probability, the ¥;; factor in ( - Mathematlcally this means that in (52) we

allow operators U that preserve Gram matrix spur: D = Z E]J, not the Gram matrix itself
as previously considered; the solution can be found Jf;gm eigenproblem in original
basis with \;; = 0.

Conceptually, this technique consists in taking any approximate w;j, such as least squares
or any other matrix, not necessary solution, Gram matrix spur preservation is not

required, expanding u;; in SVD (A48)), then set ¥;; to 1 or —1. There are 2™ ! distinct

combinations, typically the minimal change adjustment — all ;; = 1 gives the best result as
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the initial ¥;; are positive. Obtained new w,, matrix with singular values equal to £1 satisfies
all the required constraints . Alternatively one can solve the eigenproblem and
adjust all the eigenvectors by the factors £1/ VA to obtain the same solution without
using the SVD (it is equivalent to multiplication (A36|) of unadjusted w; by inverse square

root of corresponding Gram matrix).

Appendix B: On Adjusted Normalizing Of Probability

The probability has a normalizing factor as a product of two Christoffel functions: on
x and on f ; these two Christoffel functions have n and m degrees of freedom respectively.
In some situations it is convenient to construct a normalizing factor where both x- and f-
factors have the same number of degrees of freedom: m.

One can consider the probability adjusted to only “important” x—components, this is

<¢g ’ ¢u(y)>2 from expanded:

2

n—1 m—1
DY ng?siluskyk
2 k=0 j,s=0
<77Z)g IZ/[|¢y> - m—1 m—1 n-—1 (Bl)
-Z:ongzl_lgj/ »Zolc;oykujkGZ"_luj'k/yk’
1) = 1) =Y R RT=

Whereas this formula for <77/Jg | ¢u(y)>2 has a more suitable normalizing than , it has
ujx in the denominator and the problem can no longeIH be reduced to the one of form
that requires only the moments of Christoffel functions product . For probability
evaluation, not for optimization, this can be done straightforward . A quantum channel
uj; optimizing with the probability is an interesting direction of future research,
this new problem is no longer a QCQP problem — it is a problem to maximize the sum of
M ratios of two quadratic forms on w;, subject to (38| constraint or, more generally, an
unconstrained optimization of . The one in the numerator is a dyadic product squared,
the one in the denominator is non—negative, it cancels with the numerator when it’s value is
close to zero.

To adjust the number of degrees of freedom one can use a much simpler alternative

approach. All we need is to calculate a Christoffel function in x—space to normalize the

10 This difficulty does not arise with x- and f- being the same space. For example for a unitary I the

denominator does not depend on .
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probability. A trivial approach is to use the contributing subspace |gb[i]>, e.g. from .
Despite the moments (f;x)) have been used to build the contributing subspace ’¢[i]>, this
does not create any difficulty as we use these projections only to construct a Christoffel
function with matched number of degrees of freedom. The (B5]) is invariant with respect to
(fjzr) = — (fjzr) and tends to a constant when any (f;z;) — oo (factors in the denominator

and inverse G;f,a matrix).

2
n—1 m—1
Z > 9 ];_ UskYk
2 =0 7,5=0
(Vg U Yy)" = (B2)
Z g] ]]’ g] ZQS[Z ( )
J3,3'=0
n—1
Gl = 3" () G awe ) (B3)
k,k'=0
n—1 m-—1
o= D D G ) G fyaa) G (B4)
s,8'=0 7,7'=0
; 1 1
JCadi (X) = — = — (B5)
S ¢l (x) > 1,GS gy
=0 7,4'=0

The value of K%%(x) is never zero on training sample since contributing subspace always
has a constant among the components. The probability uses Christoffel function with
adjusted number of degrees of freedom K% (x) (B5|) instead of the original K (x . for
the probability . The difference between two these Christoffel functions is in extra terms
in the denominator sum. Since the entire x—space can be represented as the direct sum of

|¢1) and |¢@1), a subspace of x orthogonal to |¢[1), the K (x) is:

1 1
K(X) ~ w1 9 n—1 9 ~ a1 (B6)
> o (x) + 30 ¢0T(x) 3 G
=0 i=m k,k'=0

Thus we always have K% (x) > K(x). The moments of two Christoffel functions product are

‘ M OO fl)f
(i | KYOKO |z £y = 0l k= (B7)
=S xq)Gqu,xé) z FOGE

q,q'=0 s,8'=0

This tensor has the same dimensions as lj the difference only in normalizing — it uses ng’
from 1' instead of G;‘j],_l in . Despite it now depends on (f;zy) moments — they are
used only to construct Christoffel function for normalizing, this does not change the essence

of the solution due to the invariance properties of the Christoffel function.
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Appendix C: On Contributing Subspace Selection

Considered above optimization problem finds partially unitary operator uj; that does both:
selects the contributing subspace (m vectors of the dimension n) and optimizes the objective
function. Besides computational difficulties this also creates a problem with normalizing since
properly normalized objective function has operator u;; both in the numerator and in

the denominator (B1)), thus some surrogate normalizing , (IB7)), , or was used

instead. It is a very attractive option to split the problem into two:

e Find the contributing subspace ¢V! of the dimension m.

e Find a unitary (not partially unitary!) operator & mapping from ¢U! space to f; space.

A simple “projective” example with contributing subspace was considered in Eq. above.
The matrix K ,Sj") from has the rank at most m and the best what can be obtained in
the projective paradigm is a solution[13] of “direct projection” type where the least squares
expansion frg(x) of |f;) in |zx) (7)) is used as the localization point in to obtain the
state ’wa S(x)> to be used in calculation of probabilities.

Properly normalized objective function maximizes the probability transferred from x
to f. Consider a much simpler problem: find a subspace of x contributing to the coverage of
f. The f-coverage is determined by f-Christoffel function K®(g) from . Consider it’s

values in a 1 (x) state

(f)
Coverage,, = W (C1)

Previously we considered a similar problem where the Christoffel function K and v both
were functions on x, see [I8|, Appendiz B: On The Christoffel Function Spectrum. Now the
Christoffel function is a function on f, and % is a function on x. The (C1]) can be similarly

expanded in spectrum of f—Christoffel function matrix

(t) 3 z)y) 0
k prmy
(i | KO |2y = — w (C2)

— O ~F; -1 p(D)
= Zofj Gy fy

JJ'=

It is different from with z—moments instead of f-moments. Consider generalized eigen-

value problem

n—1

o =>" oy, i=0..n—1  (C3)

k=0
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n—1
Sie — <¢[i] ¢[i/]> = Z ozz;[i] (TRwRr) Oéz,;m (C4)
k,k'=0
g, = <¢[i] f) ’ ¢[i/]> Z ad’ i1 <x |K(f) | T >a¢> '] (C5)
n—1 )
<£L‘k ‘ K(f) ‘ il?k/> Ozi,’m Z $k$k/ Olk/ (CG)
k'=0 =0

Because x- and f- bases are different the condition[I8] (1) = 37~} Al no longer holds, it
is typically (1) < Z?;(} M since m < n; moreover the sum of m maximal eigenvalues can
possibly exceed the total weight (1) § S AL From Christoffel function invariance it
immediately follows that the sum of m maximal eigenvalues is equal to (1) if f and x belong
to the same space.

The m eigenstates of corresponding to m maximal eigenvalues A\, i =0...n — 1
form the m states contributing most to the coverage. This is an alternative option for the
contributing subspace. The problem is now reduced to finding a unitary (not partially unitary)

operator U of the dimension m x m mapping from ¢, to f;, where |¢) = ZZL;OI oy |¢[k]>,

m—1
fi=> o (C7)
k=0

In this form the optimization problem is greatly simplified and the x-normalizing in (B1))

becomes uj;, independent:

m—1 m—1 £ 1
> > 9iG uskdy
k=0 7,5=0

(Vg |U | 1g)° = (C8)

m—1

> G gy Z &G oy

7]_

This probability is exactly the same as the one we considered above, but with the ¢y used as

the input instead of the xy; we also have n = m thus the operator u;; is unitary!

Appendix D: Software description

e Install java 19 or later.

e Download the latest version of the source code |code_polynomials_quadratures.zip

from [20] or from an alternative location.


https://www.oracle.com/java/technologies/javase/jdk19-archive-downloads.html
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://disk.yandex.ru/d/AtPJ4a8copmZJ?locale=en
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e Decompress and recompile the program. Run a selftest.

unzip code_polynomials_quadratures.zip
javac -g com/polytechnik/*/*java

java com/polytechnik/kgo/TestKGO

e Run the program with bundled deterministic data file, test trivial mapping.

java com/polytechnik/kgo/KGO --data_cols=9:0,6:0,4:8:1 \
--SKtype=FXFX_F_CHRISTOFFEL \
--approximation=MAXEV_EVADJ \
--data_file_to_build_model_from=dataexamples/runge_function.csv \

--output_files_prefix=/tmp/out_

e There are a number of --approximation= available options. There is no perfect imple-

mentation yet available.

An effective algorithm to the problem will be found later in [21], 22], see com/polytechnik/kgo/KGO
IterationalSubspacelinearConstraints. java for an implementation. This algorithm, instead of
usual iteration internal state in the form of a pair: approximation, Lagrange multipliers: (u;x, Aij),
uses iteration internal state in the form of a triple: approximation, Lagrange multipliers, homogeneous
linear constraints (u;x, Aij, Ca;jk), it is the linear constraints that provide a good convergence. The
dimension of eigenvalue problem to solve on each iteration is Dn — (D — 1)(D + 2)/2 instead of Dn
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