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A new type of quadrature is developed. The Gaussian quadrature, for a given measure,
finds optimal values of a function’s argument (nodes) and the corresponding weights.
In contrast, the Lebesgue quadrature developed in this paper, finds optimal values
of function (value-nodes) and the corresponding weights. The Gaussian quadrature
groups sums by function argument; it can be viewed as a n—point discrete measure,
producing the Riemann integral. The Lebesgue quadrature groups sums by function
value; it can be viewed as a n—point discrete distribution, producing the Lebesgue
integral. Mathematically, the problem is reduced to a generalized eigenvalue problem:
Lebesgue quadrature value—nodes are the eigenvalues and the corresponding weights
are the square of the averaged eigenvectors. A numerical estimation of an integral
as the Lebesgue integral is especially advantageous when analyzing irregular and
stochastic processes. The approach separates the outcome (value-nodes) and the
probability of the outcome (weight). For this reason, it is especially well-suited for the
study of non—Gaussian processes. The [software implementing the theory is available

from the authors.

malyshki@ton.ioffe.ru
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I. INTRODUCTION

A Gaussian quadrature is typically considered as “an integral calculation tool”. However,
the quadrature itself can be considered as a discrete measure[I]. The major practical drawback
of Gauss-type quadratures is that they, like a Riemann integral, are finding the nodes in a
function’s argument space. A very attractive idea is to build a quadrature with the nodes in
a function’s value space, a Lebesgue-type quadrature. As with the Lebesgue integral, such a
quadrature can be applied to integration of irregular functions and interpolating sampled
measure by a discrete Lebesgue integral. When implemented numerically such an approach
can give a completely new look toward relaxation type processes analysis. This is the goal of

this paper.

II. MEASURE

Consider a measure dy, a basis Qx(z), and a function to integrate f(z). An example of the
measure can be: Chebyshev with [—1 : 1] support du = dz/+/1 — 22, Laguerre with [0 : oc]
support dy = dw exp(—x), experimental data sample (f, () of [ = 1... M points (discrete
M-point measure), etc. In this paper Q(z) basis is a polynomial of the degree k, e.g. 2"
or some orthogonal polynomials basis, the results are invariant with respect to basis choice,
Qr(7) = 2% and Q = Ty () give identical results, but numerical stability can be drastically

different|2] [3]. Introduce Paul Dirac quantum mechanic bra—ket notation [4] (| and |):

(Quf) = / dpQu(a) (1) 1)
Q1 71Qx) = / 41Q, (@) Qu(x) (1) 2)

The problem we study in this paper is to estimate a Lebesgue integral[5] by an optimal

n—point discrete measure ((15]).

() = / fdu (3)

We are going to apply the technique originally developed in Refs. 3] 6] [7], the main idea

is to consider not a traditional interpolation of an observable f as a linear superposition of


https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation

basis functions such as

(If(x) = frs(x)]*) — min (4)
frs(x Zﬁk@k (5)

but instead to introduce a wavefunction ¢ (z) as a linear superposition of basis functions,

then to average an observable f(z) with the ¢?(z)dpu weight:
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With a positively definite matrix (Q); | Qx) the generalized eigenvalue problem:

n—1 n—1
(Qi 1 F1Qi) i) = AT (Q;| Q) (8)
k=0 k=0
n—1
(@) =3 Q) 9)
k=0

has a unique solution. Found eigenfunctions to be normalized as <w[i] |w[ﬂ> = d;5. Then

(W] £ [991) = A0y 5 30 ol (1] Q) ol = 8 5 and A0 = ([w)" 1) / ([]7),

A. The Gaussian quadrature

A n-point Gaussian quadrature (z11, wll); i =0...n — 1:

[ r@n ==X st (10

on the measure dyu is integration formula that is exact if f(z) is a polynomial of a degree
2n — 1 or less, in other cases it can be considered as an approximation of the measure du by
a discrete n—point measure (:L‘M, wm). A question about an efficient numerical approach to
(21, wll) calculation is a subject of extensive work[I], [8]. In our recent work[3] we established,

that the most practical approach to obtain (z!7, wl) for an arbitrary measure (often available



only through data sample) is to put f = x in Eq. and to solve the generalized eigenvalue

problem:
n—1 n—1
(@)1 71Qu) op) =AY (Q;| Qu) (11)
k=0 k=0
gl =\l (12)
L
T i) (13)

The n—th order orthogonal polynomial relatively the measure dpu is equal to the m,(z) =
const - (x — x)pll(z) = const | o (z — 2b1). The Gaussian quadrature nodes z!! are
eigenvalues, the weights are equal to inverse square of the eigenfunction at z = zl! (the
eigenfunctions are normalized as (¢ | pll) = Z?klo Q1 Qr) ol = 1). The is
exactly the threediagonal Jacobi matrix eigenvalue problem (see Ref. [9] and references
therein for a review), but written in the basis of Q¢ (x), not in the basis of 7y (x) as typically
studied. Particularly, this makes it easy to obtain three term recurrence coefficients a5 and by,
(xm) = apy1Tps1 + bk + apme—1) from a sampled data numerically: find the moments (Q,,)

m =0...2n — 1 and obtain orthogonal polynomials 7 ; k = 0...n in Qx(x) basis; then
calculate aj and by using multiplication operator of Qx(z) basis functions, see the method g
etAB() of provided software. An ability to use Chebyshev or Legendre basis as Qx(z) allows
us to calculate the a; and by to a very high order (hundreds). The weight expression is

typically more convenient numerically than the one with the Christoffel function K(x):
1 1
>t Q@) G Q) i) [0 ()]

Here G;kl is Gram matrix G, = (Q;Q)) inverse; in 1} the ¢l!(x) is an arbitrary orthogonal
basis, such that <¢[i] | gzﬁ[j]> = 05, when ¢l1(z) = l(z) obtain 1}

The Gaussian quadrature ({L0[ can be considered as a Riemann integral formula, its nodes
211 select optimal positions of a function’s argument, they are ||z|| operator eigenvalues
, this integration formula assumes that f(z[) exist and can be calculated. As with any

Riemann integral it requires the f(z) to be sufficiently regular for the integral to exist.

B. The Lebesgue quadrature

The Riemann integral sums the measure of all [x : x + dx] intervals. The Lebesgue integral

sums the measure of all x intervals for which the value of a function f(z) is in the interval
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[f : f+ df], see demonstrating Fig. 1 of Ref. [7]. Consider a n-point Lebesgue quadrature
(fil ;i =0...n—1:

[ @i = (1)~ Y gt (15)

Now quadrature nodes f [ are in function value space, not in function argument space as
in . We will call them the value—nodes. To obtain the value—nodes and weights of a
Lebesgue quadrature for the measure du and function f consider an arbitrary polynomial

P(x) of a degree n — 1 or less and expand it in eigenfunctions:

—_

n—

P(z) =) (P|¢!T)(z) (16)

(2

Il
o

Taking into account that (P | f|¢) = A (P |41} the expression for (P | f|S) can be
written (here P(x) and S(z) are arbitrary polynomials of a degree n — 1 or less):

n—1

(PLFIS) =Y NPt (s |vH) (17)
(f) = EAM (pl)” (18)

The l) (the case P =S = 1) is eigenvalues averaged with the weights <w[i]>2 (note that
<[¢M}2> =1). The gives the Lebesgue quadrature value—nodes and weights:

f[i] — \[i (19)
Wl — <¢[z’1>2 (20)
The Lebesgue quadrature can be considered as a Lebesgue integral interpolating formula by

a n—point discrete measure . The value-nodes fl select optimal positions of function

values, they are || f|| operator eigenvalues , the weight w!! is the measure corresponding to

the value fl1. The weights give

1) =Y wl (21)

the same normalizing as for the Gaussian quadrature weights (L3)). As with the Gaussian
quadrature the Lebesgue quadrature is exact for some class of functions.



Theorem 1. If a n—point Lebesque quadrature is constructed for a measure dy and a
function f(x), then any integral (P(zx)f(x)), where P(x) is a polynomial of a degree 2n — 2

or less, can be evaluated from it exactly.

Proof. When P(x) is of a degree n — 1 or less, then apply with S = 1. For a degree above
n — 1 expand P(x) = Zj o @ () M;pQp(x). The matrix Mj; is non—unique, but always
exists and can be obtained e.g. by synthetic division P(x) = Q,—1(x)q(x ) + r(x), or using

density matrix approach of the Appendix . The integral (fP(z)) =", ik 0 Q| f|Qr) M
then can be evaluated using formula:

Z/\[@] ZA& <¢[z
ufhy = (us 3

ﬁ\w% = 37 (0] Qy) My @i | ) (23)
The formula (22)) has the same eigenvalues A/, but they are now averaged with the weights

Plut?) (22)

J,k=0

EZI]D that are not necessary positive as in 1' note that (P(x)) = Z?:_Ol wz]g). O

Remark. The Gaussian quadrature can be considered as a special case of the Lebesgue
quadrature. If one put f = x, then n—point Lebesque quadrature gives exact answer for an
integral { f P(x)) with a polynomial P(x) of a degree 2n — 2 or less, is reduced to a quadrature
that is exact for a polynomial xP(x) of a degree 2n — 1 or less, i.e. to a Gaussian quadrature.
When f = x the Lebesque quadrature value—nodes are equal to the Gaussian nodes. The most
remarkable feature of the Lebesque quadrature is that it directly estimates the distribution of
f: each w from (@ is the measure of f(x) ~ fU sets. For an application of this feature to

the optimal clustering problem see [10)].

Theorem (1] gives an algorithm for (f P(x)) integral calculation: use the same value-nodes
{1 from , but the weights are now from (23)). The Lebesgue quadrature allows to obtain
the value of any (fP(x)) integral, adjusting only the weights, value-nodes remain the same,
what provides a range of opportunities in applications.

A question arises about the most convenient way to store and apply a quadrature. As
both Gaussian and Lebesgue quadratures are obtained from generalized eigenvalue
problem, the n pairs (A, 41) completely define the quadrature. For the Gaussian quadrature

f(z) = x, the eigenvalues are the nodes, the eigenvectors are Lagrange interpolating



polynomial built on z! roots of orthogonal polynomial 7, (x) degree n relatively the measure

dp: Yi(z) = const - m,(z) /(x — x11). For cigenvectors (2" | ) = (27)" () the (23)
is then wE]) P(2l! <wm>2, hence it is more convenient to store a Gaussian quadrature as
(21, wl) pairs rather than as (7, ¢[!) pairs. For Lebesgue quadrature the w@) dependence
on P(x) is not that simple, it requires an access to eigenvectors ! to calculate, for this
reason it is more convenient to store a Lebesgue quadrature as (f, 1) pairs rather than
as (U, wll) pairs. The specific form of quadrature storage is determined by application, in
any case all the results are obtained from defining the quadrature pairs (A, 4l1), a unique

solution of problem. This uniqueness makes the basis ¥ (x) very attractive for principal

components expansion. For example the variation can be PCA expanded:

[y
)_l

n— n—

(@) = frs@)) = (/) =3 D wl = (=D =3 (=l (1)

%
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Here f = (f)/(1). The difference between (24)) and regular principal components is that the
basis ¥ (z) of the Lebesgue quadrature is unique. This removes the major limitation of a

principal components method: it’s dependence on the attributes scale.

C. Numerical Estimation Of Radon—Nikodym Derivative

Radon—Nikodym derivative[5] is typically considered as a probability density dv/du
relatively two Lebesgue measures dv and du. Consider f = dv/dpu, then (8)) is generalized
Qj> and (Q; | ;) matrices (basis functions products Q;Qx

eigenvalue problem with <Qj g—;
averaged with respect to the measure dv and du respectively). If at least one of these two

matrices is positively defined then has a unique solution.

Theorem 2. The cigenvalues \! i = 0...n — 1 are dv/dy Radon-Nikodym derivative

extremums in the basis of (@

dv
Proof. Consider the first variation of Ll in the state w( ) = (x) + 01, then

Y1)
< Ty >_< ‘Z_: 1">

e2 (oo - ol

oy wlon)|+.. @)



when |¢) is eigenvector, then the first variation (linear in d%)) is zero because of

dv
dp

1/)> = \|¢) relation for eigenvectors. This extremal property was originally obtained
in [I1], where Radon—Nikodym derivative approach has been used for execution flow trading

rate study; execution flow extremal states correspond to price singularities. ]

Remark. If 01 does not belong to the original basis space of (@ problem — then extremal
property no longer holds.

Other estimates of Radon—Nikodym derivative can be easily expressed in terms of
eigenvectors. For example Nevai operator [12] is equal to eigenvalues Al averaged with the

(vl (z)] ? weights:

P PN
L) = 2
i S [l (2)]?

1=0

(26)

Other estimates, such as the ratio of two Christoffel functions[13] for the measures dv and
dy if both are positive, can also be expressed in a form of A averaged, but with the other
weights:

d ?itWD”WW@ﬂz
@(I): -1<4y<1 (27)

S Al ()]

;) (A" [0l ()]
Different estimators converge to each other for n — co. A weighted A type of expression
preserves the bounds: if original f is [f1 : fg]| bounded then is [f1 : fu] bounded as well;
this is an important difference from positive polynomials interpolation[14], where only a low
bound (zero) is preserved. A distinguishing feature of Radon—Nikodym derivative estimate
as spectrum is that it is not linked to the states localized in xz—space (such as ), but
instead is linked to extremal states of the Radon—Nikodym derivative dv/dpu.

The ¥l (z) in is ll(z) = 307, ag]Qk(x), i.e. it can be considered as a distribution
with a single support point x: the distribution moments are equal to Qr(z). Now assume
Qr(x) correspond to some actual distribution of x and ¢, are the moments of this distribution.

dv e
Then the g=(z) is:
n—=1 _ [n=1 . 2
Al {Z aqu}
dv =0 k=0
e (28)
v n—1 [n—1 (]
> |2

=0 Lk=0




The is averaged eigenvalues A\ with positive weights, for ¢, = Qx(z) it coincides with
r—localized . However the is much more general, it allows to obtain a Radon—Nikodym
derivative for non—localized states. The is the value of the Radon—Nikodym derivative for
a distribution with given g, moments. Such “distributed” states naturally arise, for example, in
a distribution regression problem[I5], [I6], where a bag of x—observations is mapped to a single
f—observation. There is one more generalization, considered in[7, [I7]: density matrix mixed
states, that cannot be reduced to a pure state of a () form, we are going to discuss this
generalization elsewhere, for a few simple examples see Appendix [A] where a density matrix
corresponding to a given polynomial is constructed and Appendix [B] where a density matrix
corresponding to the Chrisoffel function is constructed. Our approach can estimate both:
the measure (as a Lebesgue quadrature) and two measures density (as a Radon—Nikodym
derivative), together with provided numerical implementation, this makes the approach
extremely attractive to a number of practical problems, for example to joint probability

estimation|[1§].

III. NUMERICAL ESTIMATION

The (A1, 1) pairs of eigenproblem (for a Gaussian quadrature with (Q; |z |Qx)
and (Q; | Q) matrices, and for a Lebesgue one with (Q; | f|Qk) and (Q; | Q) matrices)
are required to calculate a quadrature. A question arise about numerically most stable and
efficient way of doing the calculations. Any (Q; | f | Qx) matrix (j,k =0...n — 1) can be
calculated from the (Q,,f) moments (m = 0...2n — 2) using multiplication operator:

j+k

QiQr =Y dkQm (29)
m=0

The value of ¢* is analytically known (see numerical implementation in the Appendix A of
Ref. [3]) for four numerically stable Qr(x) bases: Chebyshev, Legendre, Hermite, Laguerre,
and for a basis with given three term recurrence coefficients a, and b, it can be calculated
numericallyﬂ (all the bases give mathematically identical results, because (8|) is invariant
with respect to an arbitrary non—degenerated linear transform of the basis, but numerical

stability of the calculations depends greatly on basis choice).

1 See the class com/polytechnik/utils/RecurrenceAB. java of provided software.
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Once the matrices (Q; | f| Qk) and (Q; | Q) are calculated the (§) can be solved using
e.g. generalized eigenvalue problem| subroutines from Lapack[19]. With a good basis choice
numerically stable results can be obtained for a 2D problem[20] with up to 100 x 100 elements
in basis, i.e. for 10,000 basis functions.

In Appendix A & B of Ref. [3] the description of API and java implementation of polyno-
mial operations in Chebyshev, Legendre, HermiteE, Laguerre, Shifted Legendre, Monomials
bases is presented. The code is available from|21], file code_polynomials_quadratures.z
ip. See the program com/polytechnik/algorithms/ExampleRadonNikodym_F_and_DF.ja
va for usage example. This program reads (z), f!)) pairs from a tab-separated file, then
calculates value—nodes and weights for Lebesgue integral of the functions: f(x),
df /dx with the measure du = dx, and %df /dx with the measure du = fdx, see Ref. [6] for a
description, and Appendix @ for an example. As a proof-of-concept a simple matlab/octave
implementation com/polytechnik/utils/LebesgueQuadratureWithEVData.m is also pro-
vided, the class calculates the Lebesgue quadrature value-nodes and weights (f1, wl) either
from two matrices, or, second option, given f(z) in an analytic form, calculates two matrices
first and then finds the Lebesgue quadrature. Usage demonstration in available from com/po
lytechnik/utils/LebesgueQuadratures_selftest.m. This unoptimized code calculates
(Qj] f| Q) and (Q; | Qk) matrices in monomials and Chebyshev bases, then builds Gaussian

and Lebesgue quadratures.

IV. CONCLUSION

Obtained Lebesgue quadrature is a new class of quadratures, besides being suitable for
(fP(x)) integrals estimation, it can be applied to an estimation of the distribution of f: each
wl from is the measure of f(x) ~ fll sets. This is especially important for f(z) of
relaxation type, this approach is superior to typically used approaches based on (f), (f?),
(£3), (f?), skewness and kurtosis approaches|22]. In our early works[6], 23] the (8] equation
was obtained, but all the eigenvalues were considered to have equal weights, their distribution
was interpreted as a one related to the distribution of f(x), this is similar to an interpretation
of eigenvalues distribution used in random matrix theory|24].

In this paper an important step forward is made. An eigenvalue A should have the

Lebesgue quadratures weight <¢[i]>27 not the same weight as in our previous works (first
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FIG. 1. Two stage degradation model with the slope on first and second stages —10~% and —5-1074
per cycle respectively. The stages length is 500:500 for (a), (b), (c) and 800:200 for (d), (e), (f).
The (a) and (d) are C(N) models for which f = dC/dN is put to (§). The (b) and (e) are the
distributions of Al from (8)) with equal weights, Ref. [23] results. The (c) and (f) are the distributions
of Al with weights, the peak height corresponds exactly to the stage length because of chosen

measure dyu = dN. The calculations are performed for n = 50 in polynomial basis.

time the Eq. was obtained in Ref. [I7] as cluster coverage, formula (20) for C! therein,

but it’s importance was not then understood).

To demonstrate the difference in weights accounting take two—stage degradation data
model from Ref. [23]. Li-ion batteries capacity fade with each cycle, the degradation rate per
cycle dC/dN is the characteristics of interest. Consider x = N and the measure dy = dN
(recent and old cycles are equally important), use f(x) as battery degradation rate f = dC'/dN.
As in Ref. [23] consider C(N) for 1000 cycles, the degradation rate for the first and second
stages is 107% and 5- 10~ per cycle respectively. Two processes with first:second stages ratio
as 500:500 (f = —107* for 0 < x < 500 ; f = —5-107 for 500 < x < 1000) and 800:200
(f =—-10"%for 0 < 2 <800 ; f = —5-107* for 800 < x < 1000) are used as the model
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data, Fig. . In our previous works[6, 23] we established, that the distribution of A from
is related to the distribution of f. In this paper this relation is found, the weights are
Lebesgue quadrature weights. Note, that for the data in Fig. , the peaks height for (c) and

(f) correspond exactly to stage length, because of the measure chosen dy = dN.

A Lebesgue quadrature (£, wl!) can be interpreted as f(z) discrete distribution. The
selection of value—nodes is optimal, such a quadrature performs optimal n—point discretization
of f(x). The approach is applicable to non-Gaussian distributions (e.g. with infinite standard
deviation (but not with infinite mean), burst of many orders of magnitude, etc.). The
situation is similar to the one in quantum mechanics: when a quantum Hamiltonian is known
incorrectly and have some energy state, that is greatly different from the ground state, such
a state does not change system behavior at all, because it has close to zero probability. The
Lebesgue quadrature has similar ideology, it separates the state on: an observable value
fl and the probability of it w!?. Similar path have been successfully tried earlier in our
quantum-mechanics approach to machine learning of Ref. [I7], where we separated system
properties (described by the outcomes) and system testing conditions (described by the

coverage).
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Appendix A: Density matrix, corresponding to a given polynomial

In Section the integral (P(z)f(z)) with a polynomial P(z) of a degree 2n — 2 or less is
considered. The technique of [3] deals mostly with (1)%(z)f(z)) = (¢ | f| ) type of integrals,

and it is of practical value to be able to reduce a state described by an arbitrary polynomial:

2n—2

P(x) =Y wQx(z) (A1)
k=0
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to the state described by the density matrix:

pla.) = 3 ATyt o) (42)
P(z) = p(x,x) (A3)

such that P(z) = p(z, x), and Al; () are the eigenvalues and the eigenvectors of some

operator ||p||.

Theorem 3. For a non—degenerated basis Qx(x) relatively the measure du such operator

always exists and is generated by a measure with the moments (Qy(z)) p.

Proof. To find a measure, such that P(x) = Z?sik 0 @) [Gj_sl (QsQ1) p Gii'] Qu(x) (here
Gj_k1 is Gram matrix G = (Q;Q}.) inverse) apply multiplication operator ¢/* from to
obtain:

2n—2 n—1 Jj+k s+t

3 mQn(e) = 3 30 D diGIGR Qe Qi) (A4)

7,8,t,k=0 m=0 [=0

Comparing the coefficients by @Q,,(z) obtain a linear system of 2n — 1 dimension, from which

the (Q;)p ; I =0...2n — 2 moments can be found:

n—1 s+t
Yo D GGG Q) p = (A5)
7,8,t,k=0 [=0

Then construct (Q;Qk), Gram matrix of the measure corresponding to found moments
(Q1) p, this gives the required P(z) = Z?sikz 0 @j(z) j_sl (QsQ1) p G Qi(7). To construct
|p|| operator, eigenvalues/eigenvectors of which give (A3)): solve generalized eigenvalue
problem with the matrices (Q;Qr)p and (Q;Qx) in (8) left— and right— hand side respectively,

obtained eigenvalues/eigenvectors pairs give (A3|) expansion over the states of ||p|| operator:

3
,_.
3
—_

" Q00 p 0l = AT ST (Q,Qu) ol (A6)

0
ZMW ()ul(y) Z [T A ] = o] (A7)

P(z) = p(z,z) (A8)

i

0

TT
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Remark. The expansion of P(x) = Z;;i,k:o Qi (2)G5, (QsQy) p Gy Q) with the matriz
(Q;Qk) p generated by a measure is unique, the measure moments are linear system
solution; without a requirement that the matriz to be generated by a measure, the solution
is non—unique. Another non-uniqueness can arise from a degeneracy of (Q;Qx)p matriz,
for example, take Christoffel function , 1/K(z) = P(z) = Zﬁio Qj(x)G;lek(x): the
solution and the matriz (Q;Qr) p are unique, but the expansion is non-unique due
to spectrum degeneracy (all the eigenvalues are equal to one), 1/K () = Y7 (4l (x)}z
holds for an arbitrary orthogonal basis ‘qb[i]>.

Note. This prof is actually an algorithm to construct the density matriz ||p||, producing a
given polynomial P(x). In provided implementation com/polytechnik/utils/BasisFuncti
onsMultipliable. java the method getMomentsOfMeasureProducingPolynomial InKK_MQ
gM(), for a given P(x), solves the linear system and obtains the moments (Qn,) . The
method getDensityMatrizProducingGivenPolynomial () uses these moments to solve
and to obtain the ||p|| from as a Lebesque quadrature, the spectrum of which corresponds

to a given polynomial P(z) (A3).
From it immediately follows that the sum of all ||p|| eigenvectors is equal to (P(x)) =
S AL particularly for Christoffel function we have: (1/K(z)) = 3277} Al = n, and in

general case:

n—1

(f(x)P(z)y =D AT (| f |yl (A9)

i=0
The is a representation of (f(x)P(z)) integral as a sum of f-moments over the states
of the density matrix ||p|| operator (A€]). This formula is a complementary one to (22)), which
is a representation of (f(x)P(z)) integral as a sum of P-moments over the states of || f||
operator ({g]).

Finally, we want to emphasize, that used all of the above <¢>2 is a special case of a
density matrix. Consider ||p|| = |1) (1], then ())> = (3| p|¥), and for an operator ||f]|,
(f) = Spur||f|p|l Similarly, a spur with a density matrix ||p||, e.g. corresponding to a

polynomial P(x), can be used instead of all averages:

(f) = Spur || /ol (A10)

This way the approach we developed can be extended not only to polynomial by operator

products study, but also to operator—by—operator products. Then, instead of Spur ||f|p]|,
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which can be written either in or in (A9)) representation, a general case of two operators

Spur || f|g|| can be considered. The first attempt to explore this direction is presented in [18§].

Appendix B: On The Christoffel Function Spectrum

In the consideration above f was a given function with finite moments (Q; | f | Q) in
. It’s selection depends on the problem approached, for example we used f = = to obtain
Gaussian quadrature and f = dC/dN for Li-ion degradation rate study in Fig. |1 A
question arise what the result we can expect if the Christoffel function is usedE| as

f) = K(2) =1/ Y5 Qi(2)G5! Qu(@).
Theorem 4. If f(x) is equal to the Christoffel function K(x) the eigenproblem

ST Q| K@) @) oll = NS (Q, Q) ol (B1)
() = Za Qu() (B2)

has the sum of all eigenvalues )\[;(] equals to the total measure:

1) = [ - Z Al (B3)

2n—2

Proof. For a given n Christoffel function K(z) vanishes at large x with 1/x asymptotic,

the integrals are finite and 1} has a solution with eigenvalues )\[Ii(] (possibly degenerated)
and eigenfunctions wy(] (x). The Christoffel function can be expressed in any orthogonal

basis, take ¢l (z) = %(m) From )\[;; = <w% x) ‘¢¥(1> = <[ %(I)]Q K(:c)> and K(z) =
1 / S [ ] )]2 obtain (1) = S~ Al O

The eigenfunctions of a Gaussian quadrature correspond to x—localized states, they are

||| operator eigenfunctions and the total weight is (1) = S>>0 K (2l1) with wl! = K (21) =

2 Christoffel function is determined by integration measure and the basis used; it is invariant relatively a
non—degenerated basis linear transform. In this paper a polynomial basis Qg (z) for an arbitrary measure
du is considered. Other bases can be also considered; if one chooses the harmonic basis: 1/v2, sin(krz),
cos(krx), z € [-1:1],du =dz, k =1,...,n—1 then Chrisoffel function is exactly the constant 1/(n—0.5);
Chrisoffel function study for non—polynomial bases may be an important direction of further research. The
definition can be generalized to a multi-dimensional measure, in [I0] it is used for clustering analysis

of an arbitrary data sampled from an arbitrary space.
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<w[”>2; the 1!(z) is (11 eigenproblem solution. The states w[l]( ) of (B eigenproblem satisfy
Theorem {4 and the Lebesgue quadrature weights sum 1) (1) =>""", < ] ‘ z/JM>

> ico < M> However an eigenvalue )\[;(] of 1) is not equal to the Lebesgue quadrature

2
weight <¢12< (x)> , see D below. A density matrix operator can be constructed from lb

eigenvalues and eigenfunctions:

nZA )ty Z‘¢[z]>/\[z]<
=0

it is similar to “regular average” density matrix ||p|| = |1) (1] considered in the Appendix
[A] e.g. both have the same Spur (equals to total measure). The (B4) is the same as (A7)
but the eigenvalues/eigenfunctions are (B1]) instead of (A6|). The density matrix operator

(B4)

|px|| corresponds to the Christoffel function K (x). The problem of averaging an operator
|lg|l with the Christoffel function used as a weight is a difficult problem [I5]. The (B4
allows this problem to be approached directly: take the Spur ||¢g|pk]|. A question arise about
lpk|l < K(z) mapping: whether it is a one-to—one mapping or not? For 1/K (z), a polynomial
of 2n—2 degree, the mapping is (A7). For K (z) this requires a separate consideration. Anyway,
built from the Christoffel function density matrix operator (B4)) allows us to consider an
operator average with the Christoffel function in a regular “operatorish” way: by taking a
Spur of operators product.

Recent progress[I0] in numerical computability of Radon-Nikodym derivative for multi—
dimensional x allows us to demonstrate Theorem |4 numerically. Take a simple duy = dz

demonstration measure of the Appendix C of [10]:

du = dx (B5)
€[-1:1]

The file dataexamples/runge_function.csv is bundled with provided software. It has
10001 rows (the measure support is split to 10000 intervals) and 9 columns. In the first seven
columns there are the powers of x: 1, z, 22, 23, 2, 2%, 25. Then, in the next two columns, follow:
Runge function 1/(1 + 2522) and the weight. Run the program to obtain Christoffel

function value for all observations in data file (column indexes are base 0):

java com/polytechnik/utils/RN --data_cols=9:0,6:1:8:1 \

--data_file_to_build_model_from=dataexamples/runge_function.csv


http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://en.wikipedia.org/wiki/Runge%27s_phenomenon
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Here as f we use the z, the data is in the column with index 1. The Lebesgue quadrature

then produces the Gaussian quadrature for the measure (B5)):

2% = —0.9491080257215085
M = —0.7415313130354606

212 = —0.40584522389537203

2B =0

¢ = 0.405845223895157
2Pl = 0.7415313130353846
2% = 0.9491080257213823

wl® = 0.1294848235792277
wll = 0.279705429437816
w? = 0.3818301175303132
wbB = 0.41795925890484187
w = 0.3818301175306451
wbP! = 0.2797054294378024
wlf = 0.12948482357916594

wl = 0.11746154871932572
wll = 0.2794795769155739

wld = 0.38911964330481996
wll = 0.42787846212051234
wld = 0.38011964330486587
wl) = 0.27947957691558917

w!¥ = 0.11746154871930853
K
(B6)

A small difference between and exact values of 7-point Gaussian quadrature for the

measure (B5)) is due to the fact that the moments calculation is not exact, they are calculated

from 10001 discrete points in the file dataexamples/runge_function.csv. The Christoffel

weights w%] are close to wl’ in case f = . Created file runge_function.csv.RN.csv

has 22 columns. First column is the label, next 7 columns are the powers of x (copied from
input), then f = x, weight, Radon-Nikodym derivative of fdu and du (here f = x), and
the Christoffel function K (z) is in the column with index 12; the other columns follow

to total 22. Run the program again using the Christoffel function as f (Christoffel function

is in the column with index 12; an alternative is to use --flag_replace_f_by_christoffe

1_function=true):

java com/polytechnik/utils/RN --data_cols=22:1,7:12:9:0 \

--data_file_to_build_model_from=runge_function.csv.RN.csv

or

java com/polytechnik/utils/RN --data_cols=9:0,6:1:8:1 \

--flag_replace_f_by_christoffel_function=true \

--data_file_to_build_model_from=dataexamples/runge_function.csv

The output file runge_function.csv.RN.csv.RN.csv now contains the eigenvalues )\[;(] and
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the Lebesgue weights wl? for eigenproblem (B1) with the measure (B5):

A = 0.10226835684407387 w!® = 0.16153573777120298 w!) = 0.10226835684403417
AW = 0.12057295282629424  wl =0 wll = 0.12057295282626747
A2 = 0.25910242661821975  wl?! = 0.4476418241676696  w'? = 0.2591024266180915
AP = 0.2924778951810179  w?! = 0 wll = 0.2924778951809419
A = 0.37696956667653253  wl* = 0.6388507741017023  wl! = 0.37696956667633214
AT — 0.4079988698735509  wl =0 wl = 0.40799886987353334

A — 0.44060993198085746  w® = 0.751971663959237  w!Y = 0.44060993198079923

(B7)
We see that for f(x) = K(z) both: the eigenvalues sum and the Lebesgue quadrature weights
sum are equal to total measure, it is 2 for . Some of the Lebesgue quadrature weights are
equal to 0; for measure Christoffel function is even, there are even and odd eigenfunctions,
the average of odd eigenfunctions is zero. All Christoffel weights wy(] from are NON—zero
and coincide with )\[;(] because f(z) = K(z), they will not coincide if optimal clustering to
D < n is performed with ||p|| = |1) (1], see Appendix [C| below.

For a given f(z) an eigenfunction 1!(x) of eigenproblem may possibly produce zero
weight in the Lebesgue quadrature, this can be an inconvenient feature in a practical situation.
The operator ||pgk|| allows us to introduce the “Christoffel weights” wM that are always
positive. The operator ||pk|| Spur is calculated in ‘w@ basis, it is equal to total measure
(1). The Spur is invariant with respect to basis transform, it will be the same when written
in W)[i]> basis, eigenvectors.

n—

(1) =3 (ui

(2

—_
—_

n—

i) = 7wl pc | ) (B8)

%

Il
o
I
o

Define “Christoffel weights” wL? as an alternative to the “Lebesgue weights” wll = <1/1[i]>2

| . | } [i](2)]
wie = (W1 o [9F) = (w1 [ K (@) | 1) = <an1 [L[ﬂ}(@f> o

The weights w satlsfy the same normalizing condition 1’ as the Lebesgue weights
normalizing (21] . In Fig. I 2| the Christoffel weights are compared to (20| weights. One can see
these weights are very close. However, the Christoffel weights wg have a property of being

always positive and are related to Christoffel function operator ||pg]|.
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FIG. 2. The same model as in Fig. (1} but with the Christoffel weights instead of weights;
(a) corresponds to [Lcf and (b) corresponds to [1fl As in Fig. [I| the peak height corresponds exactly to
the stage length because of chosen measure du = dN. The calculations are performed for n = 50 in

polynomial basis.

The eigenvalues of are the Lebesgue integral valuenodes fl, the weights are
obtained from eigenfunction WM> average. As we emphasized above in 1} any average
corresponds to some density matrix. The ||p|| = |1) (1] corresponds to a “regular” average,
the Lebesgue weights then are: wl! = (7 | p | l1). The | px|| corresponds to “Christoffel
function average” with the weights .

The calculation of “Christoffel weights” requires one more matrix (Q); | K(z)| Q) to be
calculated from the data sample. The cost to pay for the “Christoffel weights” is that the

data sample now should be processed twice:

e Construct <Qj | Qr) and <Qj | f1Qk)-

e For every observation calculate Christoffel function K (x) from the matrix (Q; | Q).

Build the matrix (Q; | K(z) | Qk)-

A second pass is required because Christoffel function matrix elements (Q; | K(x) | Qx) go
beyond basis function products and should be evaluated directly. In addition to the matrix
of outcomes (Q; | f | @x) we now have a matrix of “coverage” (Q; | K(x) | Qx) which is used
to obtain operator ||pg]||, corresponding to the Christoffel function K (x). The Christoffel
function can be considered as a “proxy” for coverage[I5], 25], 26]: the number of observations
that are “close enough” to a given x; but it can estimate only the coverage of a “localized” at

x state, not the coverage of a given state [1). In contradistinction to the Christoffel function
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K (z), the Christoffel function density matrix ||pk]|| can estimate the coverage of any
given state [¢) as (¢ | px | 1); it is not limited to localized states as the Christoffel function
K(z) is.

A uniqueness of the Lebesgue quadrature makes it a very attractive tool for data analysis.
When a data analysis problem defines some f, for example Li-ion degradation rate f = dC/dN
in Fig.[1] a class label in ML [10], gray intensity in image reconstruction[20], etc. the solution
(Al 1) of (8)) is unique and can be used as a basis for: PCA expansion , f distribution
estimation or (BY)), optimal clustering of Appendix [C] etc. There is a setup where a
function f either cannot be defined or is a multivalued function for which an eigenvalue
problem cannot be formulated. However, we still want to obtain a unique basis that is
constructed from the data sample, for example to avoid PCA dependence on attributes
scale. In this case the most straightforward approach is to take the Christoffel function
as f(z) = K(z). This approach can be easily extended to a multi-dimensional x, see [10].
An issue that often arise in case of a multi-dimensional x is a degeneracy of Gram matrix
Gjr = (Q;Qr). In the Appendix A of [10] a regularization algorithm is presented, it needs to
be applied to x to obtain a regularized basis X. Then, in the regularized basis, the Christoffel
function can be calculate the eigenproblem solved, and a unique basis w%(x)

obtained!

Appendix C: On The Optimal Clustering Problem With A Density Matrix Average

The most noticeable result of our work [10] is basis reduction algorithm, Section “Optimal
Clustering”. For n input attributes (such as Qg(z) or multi-dimensional x) construct D < n
linear combinations of them dzg” ] (), m=0...D — 1, that optimally separate f in terms of
(f1?) / (1*). This solution is the key concept of our approach to data overfitting problem. A
sketch of [10] theory:

o Solve (8)), obtain n pairs (i1 = AW, 4l7). Introduce a measure (),
n—1
(= g(fDywt (C1)
i=0

Wl = <¢[z‘]>2 (C2)

3 See the method com/polytechnik/utils/DataRegularized.java:getRNatXoriginal (double[lxorig)

.getChristoffelOatX() of provided software calculating the 1/K(x).


https://en.wikipedia.org/wiki/Multivalued_function
https://en.wikipedia.org/wiki/Principal_component_analysis#Properties_and_limitations_of_PCA
https://en.wikipedia.org/wiki/Principal_component_analysis#Properties_and_limitations_of_PCA
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
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e Construct a D-point Gaussian quadrature in f-space with the measure (-),, obtain
the functions ¢[CT ]( f) in f-space (Eq. of dimension D with f used instead of z).
The optimization problem in f—space is solved only once, all the solutions in z—space
are obtained from the Q/J[CT }( f). This is different from [27] where for every given x
a conditional minimization of the polynomial 1/K(Z) is required: for a fixed z in

T = (x, f) find the f providing the minimum.

e Convert the optimal clustering solution 1/J[Gm ] (f) from f-space to z—space, obtain 1/J[Gm ] (x).

This conversion is possible only because the Lebesgue weights (C2)) are used in (C1)).

The Lebesgue weights wll = <¢[i]>2 correspond to a very specific form of the density
matrix ||p|| = |1) (1] (a “regular” average), this density matrix operator is a pure state. A
question arise whether the optimal clustering success of Ref. [I0] can be repeated with a

more general form of the density matrix, e.g. with the ||pg|| from (B4])? Introduce a measure

P

(6, = S (Ml (©3)
Wl = (13 | p| ) (C4)

The weights is the most general form of the Lebesgue weighs; corresponds to
lpll = {1) (1]

As in [I0] a D-point Gaussian quadrature can be constructed from (C3)) measure, the
eigenfunctions ;Ng” ]( f) are eigenvectors with the replace: n — D and x — f. They are

orthogonal as

ms = (5" (1) |9E(5)), (C5a)
Nons = (W) | £| € D), (C5b)
wffl = () = (C50)

¢ v o)

The problem is to convert obtained optimal clustering solution wgn ]( f) from f to x space; D

eigenvalues are denoted as )x[gL V'in order to not to mistake them with n eigenvalues fl of .


https://en.wikipedia.org/wiki/Quantum_state#Pure_states
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Introduce D operators H\II[CT]H, (m=0...D—-1;i=0...n—1):

n—1

M) =S [y (£ () (C6)
1=0

(A), = Spur | Alp| (C7)

In the basis of (8)) eigenproblem the operators H\p[é” ] || are diagonal. With 1' definition of
average the orthogonality relation for ||\I/[én ]H with respect to () is the same as l) for
ngn}(f) with respect to the measure (), :

Oms = (W | Wl C8a
(v | v (C3a)
N 5ms = (W £ ) (C8b)
p
ml _ [l \?
we =(V¥ C8c
&= (vs) (C8c)
For ||p|| = |1) (1] the w[m]( ) of [10] can be expressed via the operators H\Il[gL]H
) =) o
m(2) = [l ()] C10
p™(z) = v (z) (C10)
D1
Z—o MG ()
fRN(«T) = m_D—l (Cll)
2 pimi(z)
D-1
3G @
fRNW(«T) == Dfl (C12>
> ol (@)

The optimal clustering states 1/1[67? ]( f) can only be converted to pure states in x—space w[én }(x)
when the density matrix ||p|| is of a pure state form |p) (¢|, otherwise the conversion to
x—space produces mixed states described by the operators ||\I/[(T ] ||. While the ’l/)gn ] (x) does not
exist for a general ||p||, the p™l(x) weight, required to obtain Radon-Nikodym interpolation

(C11)) and classification ((C12)) solutions, can always be obtained. From (C6)) it follows that

p(a) = (| W | | W ) = Zwm (p P @)l (P () (0 | p | 91)

(C13)
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For ||p|| = |1) (1] (C13) becomes (C10)). A very important feature of the Radon-Nikodym
2
approach (C11)) is that it can be generalized to the density matrix states. The [wgn ] (x)]

used as an eigenvalue weight needs to be replaced by a more general form . Thus all
the optimal clustering results of Ref. [10] are now generalized from the weights to the
weights (¢ | p|417), described by a density matrix |[p|| of the most general form, e.g. by
the Christoffel function density matrix (B4]).

Appendix D: Usage Example of

com/polytechnik/algorithms/ExampleRadonNikodym_F_and_DF.java

The com/polytechnik/algorithms/ExampleRadonNikodym_F_and_DF.java is a pro-
gram processing 1D data. It was used in [6] to obtain relaxation rate distribution. In contrast
with advanced multi-dimensional approach of [10], this program has a rigid interface and
limited functionality. It is bundled with provided software. Usage example to reproduce Fig.
data: Create a two—stage linear model of Fig. [1d] with 800:200 lengths, save the model to s
lope_800_200.csv.

java com/polytechnik/algorithms/PrintFunTwoLinearStages \
slope_800_200.csv 10000 1000 800 le-4 5e-4 0

Solve (8)) for f = dC/dN (f = C is also calculated). Use n = 50 and the data from slope_8
00_200.csv.

java com/polytechnik/algorithms/ExampleRadonNikodym_F_and_DF \
slope_800_200.csv 50 sampleDX

The files slope_800_200.csv.QQdf_QQ_spectrum.dat and slope_800_200.csv.QQdf_QQ_
spectrum.dat are generated. They correspond to f = dC'/dN and to f = C respectively. The
files contain 5 columns: eigenvalue index, eigenvalue A,z = (Yl |z | ) / (] pl0),
wl weight , and w[;(] weight . The data can be grouped to 25 bins of Al (the column
with index 1) to produce Fig. [If] (the weight is in the column with index 3) and Fig. 2b| (the

weight is in the column with index 4).

java com/polytechnik/algorithms/HistogramDistribution \
slope_800_200.csv.QQdf_QQ_spectrum.dat 5:1:3 25 >W_800_200.csv


http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
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