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Времена Пугачёвского бунта.

Самозванец выступает перед народом,

говорит о грядущем счастье, которое

придёт в форме мужицкого царства.

Пленный офицер спрашивает:

“Откуда деньги будут на всю эту

благодать”? Пугачёв ответил: “Ты

что, дурак? Из казны жить будем!”

Народная легенда, 1774.

I. INTRODUCTION

Introduced in [1] the ultimate market dynamics problem: an evidence of existence (or a

proof of non–existence) of an automated trading machine, consistently making positive P&L

trading on a free market as an autonomous agent can be formulated in its weak and strong

forms[2]: whether such an automated trading machine can exist with legally available data

(weak form) and whether it can exist with transaction sequence triples (time, execution price,

shares traded) as the only information available (strong form); in the later case execution

flow I = dV/dt is the only available characteristic determining market dynamics.

Let us formulate the problem in the third, “superstrong”, form: Whether the future

value of price can be predicted from (time, execution price, shares traded) sequence of past

transactions? Previously[3, 4] we thought this is not possible, only P&L that includes not

only price dynamics but also trader actions can be possibly predicted. Recent results changed

our opinion.

There are two types of predicted price: “lagging” (retarded) and “advancing” (future)

Lagging price PRet corresponds to past observations; future direction is determined by the

difference of last price P last and PRet. An example of PRet is moving average. A common

problem with lagging price is that it typically assumes an existence of a time scale the PRet

is calculated with, what gives incorrect direction for market movements with time scales

lower than the one of PRet; however making the time scale too low creates a large amount of
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false signals. Advancing price PAdv is predicting actual value of future price; the direction is

determined by the difference of PAdv and P last. The PAdv is typically calculated from limit

order book information, brokerage clients order flow timings, etc.

In this work both lagging and advancing prices are calculated from (time, execution price,

shares traded) sequence of past transactions. The key element is to determine the state∣∣ψ[IH]
〉

of maximal execution flow I = dV/dt (eigenvalue problem (10)), as experiments show

it’s importance for market dynamics. Found
∣∣ψ[IH]

〉
state automatically selects the time scale

what makes the approach robust.

Found lagging price (49) is the price in
∣∣ψ[IH]

〉
state P [IH] plus trending term that

suppresses false signals. The advancing price is obtained by considering density matrix state

∥ρJIH∥ corresponding to the state “since
∣∣ψ[IH]

〉
till now” and experimentally observed fact

that operators
∥∥pdI

dt

∥∥ and
∥∥I dp

dt

∥∥ have to be equal in ∥ρJIH∥ state. This corresponds to the

result of our previous works [3, 5]: execution flow I = dV/dt (the number of shares traded

per unit time), not trading volume V (the number of shares traded), is the driving force of

the market: asset price is much more sensitive to execution flow I (dynamic impact), rather

than to traded volume V (regular impact).

This paper is concerned only with obtaining directional information from a sequence of

past transaction in a “single asset universe” just for simplicity, see Section VIII below for multi

asset universe generalization. Whereas the dynamics theory of Section IV definitely requires

additional research, the lagging indicator (49) of Section VI, see Fig. 8, can be practically

applied to trading even in a single asset universe. In this work we do not implement any

trading ideas of [3, 4], where a concept of liquidity deficit trading: open a position at low

I, then close already opened position at high I, as this is the only strategy that avoids

eventual catastrophic P&L losses. This paper is concerned only with obtaining a directional

information that is required to determine what side the position has to be open on a liquidity

deficit event.

II. THE STATE OF MAXIMAL EXECUTION FLOW

Introduce a wavefunction ψ(x) as a linear combination of basis function Qk(x):

ψ(x) =
n−1∑
k=0

αkQk(x) (1)
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Then an observable market–related value f , corresponding to probability density ψ2(x), is

calculated by averaging timeserie sample with the weight dµ = ψ2(x(t))ω(t)dt; the expression

corresponds to an estimation of Radon–Nikodym derivative[6]:

fψ =
⟨ψ | f |ψ⟩
⟨ψ |ψ⟩

(2)

fψ =

n−1∑
j,k=0

αj ⟨Qj | f |Qk⟩αk

n−1∑
j,k=0

αj ⟨Qj |Qk⟩αk
(3)

For averages we use bra–ket notation by Paul Dirac: ⟨ψ| and |ψ⟩. The (2) is plain ratio

of two moving averages, but the weight is not regular decaying exponent ω(t) from (A3),

but exponent multiplied by wavefunction squared as dµ = ψ2(x(t))ω(t)dt, the ψ2(x) defines

how to average a timeserie sample. Any ψ(x) function is defined by n coefficients αk, the

value of an observable variable f in ψ(x) state is a ratio of two quadratic forms on αk

(3); as an example of a wavefunction see localized state (13), it can be used for Radon–

Nikodym interpolation: f(y) ≈ ⟨ψy | f |ψy⟩
/
⟨ψy |ψy⟩; familiar least squares interpolation is

also available: f(y) ≈ ⟨ψy | f⟩ψy(y) =
∑n−1

j,k=0 ⟨Qjf⟩G−1
jk Qk(y).

One can also consider a more general form of average, dµ = P (x(t))ω(t)dt, where P (x) is

an arbitrary polynomial, not just the square of a wavefunction. These states correspond to a

density matrix average:

fρP =
Spur ∥f |ρP∥
Spur ∥ρP∥

(4)

This average, the same as (2), is a ratio of two moving averages. For an algorithm to convert a

polynomial P (x) to the density matrix ∥ρP∥ see Theorem 3 of [7]. A useful application of the

density matrix states is to study an average “since |ψ⟩”; for example if |ψ⟩ corresponds to a past

dV/dt spike, then the polynomial “since |ψ⟩ till now” is P (x) = J(ψ2(x)) with J(·) defined in

(A9); price change between “now” and the time of spike is P last−⟨ψ | p |ψ⟩ = Spur
∥∥dp
dt

∣∣ρJ(ψ2)

∥∥,

similarly, total traded volume on this interval is Spur
∥∥dV
dt

∣∣ρJ(ψ2)

∥∥.

The main idea of [3] is to consider a wavefunction (1) then to construct (3) quadratic

forms ratio. A generalized eigenvalue problem can be considered with the two matrices from

(3). The most general case corresponds to two operators A and B. Consider an eigenvalue

problem with the matrices ⟨Qj |A |Qk⟩ and ⟨Qj |B |Qk⟩:∣∣A∣∣ψ[i]
〉
= λ[i]

∣∣B∣∣ψ[i]
〉

(5)

https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
https://en.wikipedia.org/wiki/Paul_Dirac
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Generalized_eigenvalue_problem
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n−1∑
k=0

⟨Qj |A |Qk⟩α[i]
k = λ[i]

n−1∑
k=0

⟨Qj |B |Qk⟩α[i]
k (6)

ψ[i](x) =
n−1∑
k=0

α
[i]
k Qk(x) (7)

δij =
〈
ψ[i]

∣∣B ∣∣ψ[j]
〉
=

n−1∑
k,m=0

α
[i]
k ⟨Qk |B |Qm⟩α[j]

m (8)

λ[i]δij =
〈
ψ[i]

∣∣A ∣∣ψ[j]
〉
=

n−1∑
k,m=0

α
[i]
k ⟨Qk |A |Qm⟩α[j]

m (9)

If at least one of these two matrices is positively definite – the problem has a unique solution

(within eigenvalues degeneracy). In the found basis
∣∣ψ[i]

〉
the two matrices are simultaneously

diagonal: (8) and (9). See (A28) to convert an operator’s matrix from
∣∣ψ[i]

〉
to Qj basis and

(A29) to convert it from Qj to
∣∣ψ[i]

〉
basis.

In our previous work [1–3, 5] we considered various A and B operators, with the goal to

find operators and states that are related to market dynamics. We established, that execution

flow I = dV/dt (the number of shares traded per unit time), not trading volume V (the

number of shares traded), is the driving force of the market: asset price is much more sensitive

to execution flow I (dynamic impact), rather than to traded volume V (regular impact). This

corresponds to the matrices ⟨Qj | I |Qk⟩ = ⟨Qj |A |Qk⟩ and ⟨Qj |Qk⟩ = ⟨Qj |B |Qk⟩. These

two matrices are volume- and time- averaged products of two basis functions. Generalized

eigenvalue problem for operator I = dV/dt is the equation to determine market dynamics:

∣∣I∣∣ψ[i]
〉
= λ[i]

∣∣ψ[i]
〉

(10)
n−1∑
k=0

⟨Qj | I |Qk⟩α[i]
k = λ[i]

n−1∑
k=0

⟨Qj |Qk⟩α[i]
k (11)

ψ[i](x) =
n−1∑
k=0

α
[i]
k Qk(x) (12)

ψy(x) =

n−1∑
i=0

ψ[i](y)ψ[i](x)√
n−1∑
i=0

[ψ[i](y)]
2

=
n−1∑
i=0

∣∣ψ[i]
〉 〈
ψy

∣∣ψ[i]
〉
=

n−1∑
j,k=0

Qj(x)G
−1
jk Qk(y)√

n−1∑
j,k=0

Qj(y)G
−1
jk Qk(y)

(13)

〈
ψy

∣∣ψ[i]
〉2

=

[
ψ[i](y)

ψy(y)

]2
=

[
ψ[i](y)

]2
n−1∑
k=0

[ψ[k](y)]
2

(14)



6

P

P
[IH]

λ
[IL]

λ
[IH]

 693

 693.5

 694

 694.5

 695

 695.5

 696

 696.5

 697

 697.5

 698

 9.85  9.9  9.95  10  10.05  10.1  10.15

FIG. 1. Price P , price P [IH] (15), and maximal/minimal eigenvalues of (10) for AAPL stock on

September, 20, 2012. The calculations in shifted Legendre basis with n = 12 and τ=128sec. The

execution flow eigenvalues are scaled and shifted to 693 to fit the chart.

The y = x0 is the time “now”, ψy(x) is a wavefunction localized at x = y. Here and below we

write ψ0(x) instead of ψx0(x) to simplify notations. The
〈
ψ0

∣∣ψ[i]
〉

is the projection of the∣∣ψ[i]
〉

state of (10) eigenproblem to the state “now” |ψ0⟩.

Our analysis[1–3, 5] shows that among the states
∣∣ψ[i]

〉
of the problem (10) the state

corresponding to the maximal eigenvalue among all λ[i], i = 0 . . . n− 1, is the most important

for market dynamics. Consider various observable characteristics in this state
∣∣ψ[IH]

〉
.

In Fig. 1 a demonstration of several observables: the price in
∣∣ψ[IH]

〉
state (15), maximal

eigenvalue λ[IH] of (10) problem, and minimal eigenvalue λ[IL] (for completeness) are presented.

P [IH] =

〈
ψ[IH]

∣∣ pI ∣∣ψ[IH]
〉

⟨ψ[IH] | I |ψ[IH]⟩
(15)

From these observable one can clearly see that singularities in I cause singularities in price,

and that a change in
∣∣ψ[IH]

〉
localization causes an immediate “switch” in an observable. This

switch is caused by the presence of n− 1 internal degrees of freedom αk (n coefficients, one
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less due to normalizing 1 = ⟨ψ |ψ⟩, Eq. (8)). Such a “switch” is not possible in regular moving

average (16) since it has no any internal degree of freedom, hence, all regular moving average

dependencies are smooth.

The state
∣∣ψ[IH]

〉
that maximizes the number of shares traded per unit time on past

observations sample is the main result of our initial work [3].

III. ON TIME SCALE SELECTION OF A TRADING STRATEGY

Financial markets have no intrinsic time scales1 (at least those a market participant

can take an advantage of). For US equity market — market timeserie data manifests an

existence of time scales from microseconds to decades. For NASDAQ ITCH [8] data feed

time-discretization is one nanosecond. Whereas real markets typically have no intrinsic time

scale, any trading strategy typically does have an intrinsic time scale. This time scale is

determined by: available data feeds, available execution, trader personal preferences, etc. An

implementation of trading strategies with time scales under one second requires a costly

IT infrastructure of data feed/execution, and is hard to program algorithmically; moreover,

market liquidity at such a low time scale is low, a situation when a dozen of HFT firms are

chasing a single limit order of 100 shares is very common. For trading strategies with a large

time scale the major difficulty is that a trader, observing post-factum missed opportunities,

often starts to “adjust” the strategy to lower time scales. For professional money managers

(managing other people money), with the rare exception of “super-stars”, the maximal possible

time scale is one month: once a month a letter to investors explaining the fund performance is

required to be sent. There is no such a “monthly” constraint for somebody managing his own

money, for example, an individual crypto investor may be 50% down in April 2022 – but for

him this problem is not as big as it were for a fund. For traders the most popular time scales

are between “daily trading” and “monthly P&L”; these time scales provide sufficient number

of opportunity events along with market data availability (e.g. Bloomberg). Important that

these time scales are “compatible” with human reaction time.

The major drawbacks of trading systems the authors observed among institutional in-

vestors/hedge funds/individual investors is that all of them typically have a few time scales.

1 Trivial time scales such as seasonal, daily open/close, year end, etc. while actually do exist provide little

trading opportunities.
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FIG. 2. An example of regular exponential moving average corresponding to τ = 128s and τ = 256s.

Standard deviation is also calculated with the same τ and moving average ± standard deviation is

plotted as a thin line in the same color. As τ increases – the moving average “shifts to the right”

(τ -proportional time delay, lagging indicator). The data is for AAPL stock on September, 20, 2012.

Most often – a single time scale. It may be explicit or implicit, but it almost always exists.

The contradiction between a spectrum of time scales of the financial markets and a single

time scale of a trading system is the most common limitation in trading systems design.

Consider familiar demonstration with a moving average. Let P τ be a regular exponential

moving average. The average ⟨·⟩ is calculated with the weight (A3):

P τ (tnow) =
⟨pI⟩
⟨I⟩

=
⟨Q0pI⟩
⟨Q0I⟩

=
⟨Q0 | pI |Q0⟩
⟨Q0 | I |Q0⟩

=

∫ tnow

−∞ dV ω(t)p(t)∫ tnow

−∞ dV ω(t)
(16)

The averaging dµ = ω(t)dt takes place between the past and tnow using exponentially decaying

weight ω(t) = exp (−(tnow − t)/τ). With τ increase, the contributing to integral interval

becomes larger and moving average “shifts to the right” (τ -proportional time delay, lagging

indicator). The (16) has no single parameter that can “adjust” the time scale as αk do in

(3) where dµ = ψ2(x(t))ω(t)dt. In (16) we have ψ(x) = const. Trading strategies that watch
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crossing between price and moving average, or between two moving averages calculated with

different values of τ , have the problem that the specific values of time scales are initially preset.

We personally observed a number of successful (and failed) traders who were constantly

watching moving averages on Bloomberg — we may tell that their success is caused by

intuitively switching from one scale to another; if you ask such a person what he is doing

– he cannot explain; but looking at him from a side it is clear – the person is trying to

identify relevant time- and price- scales. Successful traders also jump frequently by observing

assets of different classes; it is a common situation before placing a trade on GOOG to

observe: DJI, AAPL, commodity, power generating industry, chemical industry – all withing

less than a minute. If you go from a human (who select the time scale based on intuition,

market knowledge, news, personal communications, experience, etc.) to an “automated trading

machine” that has none of that – the problem of selecting the time scale becomes very difficult.

The problem of automatic time scale selection is crucial in trading systems design. Another

critically important problem is to adsorb information of different financial instruments. The

theory presented below is perfectly applicable in multi asset universe; the analysis and

interpretation, however, become more complicated, see Section VIII below for a discussion.

In this paper we will be concerned only with a single asset universe to demonstrate the main

ideas, and a detailed generalization of the theory to multi asset universe will be published

elsewhere.

Whereas we still have no approach to price scale selection (the [5] uses price basis pk as

Qk, but in the stationary case this is actually a time scale equivalent), we do have a practical

method for an authomatic selection of the time scale.

Considered in Section II above the state
∣∣ψ[IH]

〉
that maximizes the number of shares

traded per unit time on past observations sample determines the time scale. Let us consider

in this state not the price and execution flow as we studied before, but simply time distance

to “now” in
∣∣ψ[IH]

〉
state:

T [IH] =

〈
ψ[IH]

∣∣ (tnow − t)I
∣∣ψ[IH]

〉
⟨ψ[IH] | I |ψ[IH]⟩

(17)

T τ =
⟨(tnow − t)I⟩

⟨I⟩
(18)

here T τ is regular moving average. As all the values of time (future and past) are known, the

(17) carry information about
∣∣ψ[IH]

〉
localization. When the value is small – a large dV/dt
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FIG. 3. T [IH] and regular moving average (18) (dark blue) T τ for τ = 128s and τ = 256s; the values

are multiplied by 10−3 and shifted up to fit the chart. The AAPL stock on September, 20, 2012.

The calculations in shifted Legendre basis with n = 12. Top: for operator I = dV/dt. Bottom: for

operator V/T .

spike event happened very recently. When it is large – a large spike happened a substantial

time ago, the value is an information when a large spike in dV/dt took place.

In Fig. 3 (top) the value of T [IH] (scaled by the factor 10−3 and shifted up to fit the chart)
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is presented for τ = 128s and τ = 256s. One can clearly see that there is no smooth transition

between the states, the “switch” happens instantly, there is no τ -proportional time delay,

what is typical for regular moving averages T τ . A linear dependence of T [IH] on time is also

observed, this is an indication of stability of
∣∣ψ[IH]

〉
state identification. The value of T [IH]

is the time scale; typically it is easier to work with the density matrix ρJ(ψ2) obtained from

ψ(x) = ψ[IH](x) rather than with the time scale itself; a typical operation with time scale –

calculate an average of some observable in the interval of time scale length till “now”: the

density matrix does exactly this.

We have tried a number of other operator pairs in generalized eigenvalue problem (6)

A B eigenvalue meaning

⟨Qj | I |Qk⟩ ⟨Qj |Qk⟩ I = dV/dt (execution flow)

⟨Qj |V |Qk⟩ ⟨Qj |T |Qk⟩ V/T (aggregated execution flow)

⟨Qj |TI − V |Qk⟩ ⟨Qj |T |Qk⟩ I − V/T

⟨Qj |V |Qk⟩ ⟨Qj |Qk⟩ V (traded volume)

⟨Qj | p |Qk⟩ ⟨Qj |Qk⟩ p (price)

⟨Qj | pI |Qk⟩ ⟨Qj | I |Qk⟩ p (price)〈
Qj

∣∣ dp
dt

∣∣Qk

〉
⟨Qj |Qk⟩ dp/dt〈

Qj

∣∣ dp
dt

∣∣Qk

〉
⟨Qj | I |Qk⟩ dp/dV (market impact)〈

Qj

∣∣P last − p
∣∣Qk

〉
⟨Qj |V |Qk⟩ P last−p

V
(aggregated market impact)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

among many others[1, 2]. An eigenproblem with an additional constraint was also considered,

see “Appendix F” of [2] and, more generally, “Appendix G” of [6]. All price-related operators

cause noisy behavior, no “switching” whatsoever. Only the operator V/T does have similar

to I = dV/dt switching (but less pronounced); it is also more sensitive to τ selection.

Time to max spike in V/T is presented in Fig. 3 (bottom). See [2] about the properties of

|V |ψ⟩ = λ |T |ψ⟩ states: “Appendix C: The state of maximal aggregated execution flow V/T ”.

This makes us to conclude that the state to determine the time scale is the state
∣∣ψ[IH]

〉
that maximizes the number of shares traded per unit time on past observations sample. This

state allows us to average an observable f with the weights:
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meaning measure
∫
fdµ

“at spike” dµ = ψ[IH]2(x(t))ω(t)dt
〈
ψ[IH]

∣∣ f ∣∣ψ[IH]
〉

variation “at spike” dµ = 2ED
(
ψ[IH]

)
ψ[IH](x(t))ω(t)dt 2

〈
ED

(
ψ[IH]

) ∣∣ f ∣∣ψ[IH]
〉

“since spike till now” dµ = P (x(t))ω(t)dt; P (x) = J
(
ψ[IH]2

)
Spur∥f |ρP∥

“since since spike” dµ = P (x(t))ω(t)dt; P (x) = J
(
J
(
ψ[IH]2

))
Spur∥f |ρP∥

Found solution automatically adjusts averaging weight what makes the value of parameter τ

in (A3) much less important. The “switch” happens instantly, without a τ -proportional time

delay as it were for a regular moving average.

IV. ON THE IMPACT FROM THE FUTURE

The concept of the Impact From The Future was introduced in [1]. It predicts the value

of future execution flow. Given currently observed (at t = tnow) value of execution flow

I0 = ⟨ψ0 | I |ψ0⟩ we know with certainty that future value of execution flow IF0 will be greater

than I0 because more trading will definitely occur in the future. But how to estimate the value

of IF0 ? The maximal eigenvalue λ[IH] of (10) is used as the estimation of future execution

flow IF0 :

IF0 = λ[IH] (19)

dIF = IF0 − I0 (20)

dIF ≥ 0 (21)

Whereas the I0 is an “impact from the past” (already observed current execution flow), the

dIF is an “impact from the future” (not yet observed contribution to current execution flow);

it’s value is non–negative by construction. Similar ideology (use past maximal value as an

estimator of future value) is often applied by market practitioners to asset prices or their

standard deviations. This is incorrect. Experimental observations show: this ideology is

applicable only to execution flow I = dV/dt, not to the trading volume, asset price standard

deviation or any other observable.

A criterion of no information about the future can be formulated. If current I0 is close to

λ[IH], this means that we have a “very dramatic market” right now and there is no information
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about the future of this market:

dIF = 0 (22)

An alternative form of (22) is more convenient in practice because the value is [0 : 1] bounded:

〈
ψ0

∣∣ψ[IH]
〉2

= 1 (23)

This means that
∣∣ψ[IH]

〉
and |ψ0⟩ are the same (14). In practice a good value of the threshold

is between [0.2 : 0.8] instead of the maximal value of 1. In Fig. 1 one can clearly see the

spikes in λ[IH] when (23) approaches 1, for I0(t) see Fig. 1 of [2], it is not presented in Fig. 1

to save the place.

We have the state
∣∣ψ[IH]

〉
and the criterion (23) of no information about the future. How

to obtain directional information? Previously [3] we considered the price P [IH] (15) in the

found state
∣∣ψ[IH]

〉
as an indicator related to market direction. The difference between P last

and P [IH] was used as a directional indicator. A typical result is presented in Fig. 1. The

price P [IH] is actually a moving average with positive weight having n− 1 internal degrees of

freedom. It determines the direction (and can possibly work for “reverse to the mean” type

of strategy), but this is not the future price.

Consider a concept from classical machanics. Let us introduce a Lagrangian–like function:

S =

t2∫
t1

L(p, V, t)dt (24)

and try to variate it. Let us first take L to be an exact differential (e.g. total energy in

classical mechanics L = T + U). Then (24) carry no information about the dynamics, but

we obtain two distinct terms
∫ t2
t1
Tdt and

∫ t2
t1
Udt that we can consider the difference of and

obtain actual equation of motion. We implemented this strategy below by considering various

hypothesises for action S and testing them experimentally.

A. Volume Driven Dynamics

Assume that price changes are caused by trading volume. Introduce

L(p, V ) =
d

dt
(p− P last)(V − V last)
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= (V − V last)
dp

dt
+ (p− P last)

dV

dt
(25)

Then “exact differential action”

Sed =
〈
ψ[IH]

∣∣∣∣(V − V last)
dp

dt

∣∣∣∣ψ[IH]

〉
+
〈
ψ[IH]

∣∣(p− P last)I
∣∣ψ[IH]

〉
(26)

To obtain “actual” action we have to change the sign in between:

S =

〈
ψ[IH]

∣∣∣∣(V − V last)
dp

dt

∣∣∣∣ψ[IH]

〉
−
〈
ψ[IH]

∣∣(p− P last)I
∣∣ψ[IH]

〉
(27)

These two terms can be considered as “kinetic” and “potential” energy. It is difficult to variate

(27) so let us just find the price P last that makes these two terms equal2:

∆V D =

〈
ψ[IH]

∣∣∣∣(V − V last)
dp

dt

∣∣∣∣ψ[IH]

〉
(28)

PEQ = P [IH] − 1

λ[IH]
∆V D (29)

The dynamics with (27) action is a volume-driven dynamics. Let I = dV
dt

= const then both

price and volume are linear functions on time, P = αt+C and V −V last = It, and two terms

in (27) are equal exactly in any state: (p− P last)I = (V − V last)dp
dt

. Taking into account that∣∣ψ[IH]
〉

is typically localized (see Fig. 6 of Ref. [2]) obtain
〈
ψ[IH]

∣∣(V − V last)dp
dt

∣∣ψ[IH]
〉
≈〈

ψ[IH]
∣∣V − V last

∣∣ψ[IH]
〉 〈
ψ[IH]

∣∣ dp
dt

∣∣ψ[IH]
〉
. Since V −V last is negative, the (29) means trend

following, the trend is determined in
∣∣ψ[IH]

〉
state. In this state we have price equals to P [IH]

and dp/dt =
〈
ψ[IH]

∣∣ dp
dt

∣∣ψ[IH]
〉
. The (29) means that reference price will slowly follow the

trend as trading proceed. This trend following stops only with
∣∣ψ[IH]

〉
state switch, what

means a new spike in I has been observed and this new spike is now the “most dramatic

market observed”.

An important feature of PEQ is that in (29) there are only the moments that are calcu-

lated directly from sample using (A14): ⟨QmI⟩, ⟨QmpI⟩, and
〈
QmV

dp
dt

〉
. This makes all the

calculations easy. In Fig. 4 we present the PEQ along with P [IH]. In [3] the best directional

indicator found was the difference between last price and P [IH], without trending term. As

the price reaches some trading band – it starts crossing P [IH] multiple times thus creating

false signals. The PEQ has a great advantage of extra trend following contribution in (29),

what very much suppresses false signals. The result is also stable in situations when max I

“switch” is missed.
2 Similar concept in mechanics corresponds to finding the state in which kinetic energy equals to potential

energy. This gives an exact result for oscillators and approximate result for many other systems, see Virial

theorem.

https://en.wikipedia.org/wiki/Virial_theorem
https://en.wikipedia.org/wiki/Virial_theorem


15

P

P
EQ

P
[IH]

λ
[IH]

 693

 694

 695

 696

 697

 698

 699

 9.5  10  10.5  11  11.5

FIG. 4. Price P , price P [IH] (15), PEQ (29) and maximal eigenvalue of (10) for AAPL stock on

September, 20, 2012. The calculations in shifted Legendre basis with n = 12 and τ=256sec. The

execution flow eigenvalue is scaled and shifted to 693 to fit the chart.

B. Execution Flow Driven Dynamics

Consider “exact differential” action with −
〈
ψ[IH]

∣∣(p− P last)dV
dt

∣∣ψ[IH]
〉

term from (25):

Sed =
〈
ψ[IH]

∣∣(P last − p)I
∣∣ψ[IH]

〉
= Spur

∥∥∥∥ ddt(p− P last)I

∣∣∣∣ρJIH∥∥∥∥
= Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥+ Spur

∥∥∥∥pdIdt
∣∣∣∣ρJIH∥∥∥∥ (30)

Then “actual” action3 is considered as “kinetic” and “potential” terms split; the kinetic term

is defined as the one with first derivative of price in Spur with ∥ρJIH∥.

S = Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥− Spur

∥∥∥∥pdIdt
∣∣∣∣ρJIH∥∥∥∥ (31)

3 Note that if one put in (31)
∥∥∥ d
dt (V

last − V )dpdt

∥∥∥ and
∥∥ d
dt (P

last − p)I
∥∥ instead of

∥∥∥I dp
dt

∥∥∥ and
∥∥pdI

dt

∥∥ the (27)

is obtained.
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Here and below ∥ρJIH∥ is the densitity matrix corresponding to the state “since
∣∣ψ[IH]

〉
till

now” (A8), obtained from the polynomial J
(
ψ[IH]2

)
(A11) by applying Theorem 3 of [7], see

com/polytechnik/utils/BasisFunctionsMultipliable.java:getMomentsOfMeasurePr

oducingPolynomialInKK_MQQM for numerical implementation; the ∥ρJJIH∥ is the densitity

matrix corresponding to the polynomial J
(
J
(
ψ[IH]2

))
(A12);

∥ρJIH∥ =
∥∥∥ρJ(ψ[IH]2)

∥∥∥ (32)

∥ρJJIH∥ =
∥∥∥ρJ(J(ψ[IH]2))

∥∥∥ (33)

see com/polytechnik/freemoney/IandDM.java:{QQDensityMatrix,QQDensityMatrix2}

for numerical calculation of ∥ρJIH∥ and ∥ρJJIH∥ from ψ[IH](x). The second term in (31)

does not depend on price shift p → p + const as with (19) boundary condition we have

Spur
∥∥dI
dt

∣∣ρJIH∥∥ = 0. The dynamics with (31) action is execution flow driven dynamics. Let

I = dV
dt

= const then the volume is a linear functions on time V − V last = It and the price

is constant dp/dt = 0, both terms in (31) are zero in any state; moreover when p(t) = I(t)

the two terms are equal exactly for any I(t). This is different from the dynamics defined by

(27) action where constant I causes linear dependence of price on time. With (31) action all

changes in price are caused by changes in execution flow. Our previous observations [3, 5]

show that asset prices are much more sensitive to execution flow I (dynamic impact), rather

than to traded volume V (regular impact).

Whereas the calculation of (27) action was easy because the moments were calculated

directly from sample, the calculation of (31) is much more difficult. We can obtain directly

from sample only operator ∥pI∥ and then, using (A20), operator
∥∥dpI
dt

∥∥ =
∥∥I dp

dt

∥∥+
∥∥pdI

dt

∥∥:∥∥∥∥I dpdt
∥∥∥∥−

∥∥∥∥pdIdt
∥∥∥∥ = 2

∥∥∥∥I dpdt
∥∥∥∥−

∥∥∥∥dpIdt
∥∥∥∥ (34)

The problem left is to calculate the operator
∥∥I dp

dt

∥∥. Currently we do not have a method

to obtain it exactly. The problem is simplified by the fact that we need not the operator∥∥I dp
dt

∥∥ per se, but just Spur
∥∥I dp

dt

∣∣ρJIH∥∥, what enables us to work with it’s approximation.

See Appendix A below for several approximations for
∥∥I dp

dt

∥∥; one can possibly try secondary

sampling approach of Appendix D as an alternative route. Different approximations give

noticeably different results. Nevetheless, assume we know the value of Spur
∥∥I dp

dt

∣∣ρJIH∥∥ on past

sample. Then, assume one more observation with price PEQ is coming. With the knowledge

of future execution flow (19) we can put equal “kinetic” and “potential” terms in (31), thus
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to obtain the value of price PEQ at which (31) is zero (use (19) boundary condition with

(A20) expansion):

∆I = Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥− Spur

∥∥∥∥pdIdt
∣∣∣∣ρJIH∥∥∥∥

= 2Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥− Spur

∥∥∥∥dpIdt
∣∣∣∣ρJIH∥∥∥∥ (35)

PEQ = P last − ∆I

λ[IH]
(36)

= 2P last − P [IH] − 2

λ[IH]
Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥

In (36) all “future” price contributions are moved to the left hand side and in the right

hand side all the integration is performed till last observed point with p = P last. Technically

(36) means: calculate the difference ∆I (35) on observed sample, and if it is not zero – the

price will move on −∆I/λ
[IH] to compensate. Our experiments show that these two terms

are very close to each other and the value of ∆I is small. One may also try other states,

such as ∥ρJJIH∥ (33) to consider the operators in, but the property of operators
∥∥I dp

dt

∥∥ and∥∥pdI
dt

∥∥ being equal in some density matrix state seems to be special to the state ∥ρJIH∥, see

Appendix F below for a study of the state ∥ρJJIH∥.

C. Local Volume Driven Dynamics

Similarly to (30) one can consider the term −
〈
ψ[IH]

∣∣(V − V last)dp
dt

∣∣ψ[IH]
〉

from (25) to

be an “exact differential” action:

Sed =
〈
ψ[IH]

∣∣∣∣(V last − V )
dp

dt

∣∣∣∣ψ[IH]

〉
= Spur

∥∥∥∥ ddt(V − V last)
dp

dt

∣∣∣∣ρJIH∥∥∥∥
= Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥+ Spur

∥∥∥∥(V − V last)
d2p

dt2

∣∣∣∣ρJIH∥∥∥∥ (37)

Then “actual” action is:

S = Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥− Spur

∥∥∥∥(V − V last)
d2p

dt2

∣∣∣∣ρJIH∥∥∥∥ (38)

The dynamics with (38) action is local volume driven dynamics. Let I = dV
dt

= const, then

the volume is a linear functions on time V − V last = It. Two terms equal give quadratic

dependence of price on time: P = αt2 + C; then two terms in (38) are equal exactly in any

state: I dp
dt

= (V − V last)d
2p
dt2

. There is a similar problem with calculation of the derivatives to
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the one considered above. Taking into account
∥∥ d
dt
(V − V last)dp

dt

∥∥ =
∥∥I dp

dt

∥∥+∥∥∥(V − V last)dp
2

dt2

∥∥∥
obtain: ∥∥∥∥I dpdt

∥∥∥∥−
∥∥∥∥(V − V last)

d2p

dt2

∥∥∥∥ = 2

∥∥∥∥I dpdt
∥∥∥∥−

∥∥∥∥ ddt(V − V last)
dp

dt

∥∥∥∥ (39)

As with (34) above the second term is obtained by applying (A20) to the moments∥∥(V − V last)dp
dt

∥∥ that are available directly from sample. Consider one more observation with

price PEQ coming. With the knowledge of future execution flow (19) we can obtain the

equilibrium price:

∆V = Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥− Spur

∥∥∥∥(V − V last)
d2p

dt2

∣∣∣∣ρJIH∥∥∥∥
= 2Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥− Spur

∥∥∥∥ ddt(V − V last)
dp

dt

∣∣∣∣ρJIH∥∥∥∥ (40)

PEQ = P last − ∆V

λ[IH]
(41)

Technically (41) means: calculate the difference ∆V (40) on observed sample, and if it is not

zero – the price will move on −∆V /λ
[IH] to compensate.

D. Total Lagrangian Driven Dynamics

The same as in Sections IVB and IVC above we can consider the entire L(p, V ) from

(25) in
∣∣ψ[IH]

〉
state −

〈
ψ[IH]

∣∣L(p, V )
∣∣ψ[IH]

〉
to be an “exact differential” action:

Sed =
〈
ψ[IH]

∣∣(P last − p)I
∣∣ψ[IH]

〉
+

〈
ψ[IH]

∣∣∣∣(V last − V )
dp

dt

∣∣∣∣ψ[IH]

〉
= 2Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥+ Spur

∥∥∥∥pdIdt
∣∣∣∣ρJIH∥∥∥∥+ Spur

∥∥∥∥(V − V last)
d2p

dt2

∣∣∣∣ρJIH∥∥∥∥ (42)

This is actually the same expression as (26) above (with changed sign), but split differently

into “kinetic” and “potential” energy terms. The “actual” action is then obtained by changing

the sign of “potential” contributions:

S = 2Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥−

Spur

∥∥∥∥pdIdt
∣∣∣∣ρJIH∥∥∥∥+ Spur

∥∥∥∥(V − V last)
d2p

dt2

∣∣∣∣ρJIH∥∥∥∥ (43)

The dynamics for I = dV
dt

= const can be obtained in a regular way. The volume is a linear

functions on time V − V last = It. The price with “kinetic” and “potential” terms equal gives

cubic dependence of price on time: P = αt3 + C; the terms in (43) are equal exactly in any

state: 2I dp
dt

= 0 + (V − V last)d
2p
dt2

.
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The ∆T correponds to the sum of (35) and (40):

∆T = ∆I +∆V (44)

= 4Spur

∥∥∥∥I dpdt
∣∣∣∣ρJIH∥∥∥∥− Spur

∥∥∥∥dpIdt
∣∣∣∣ρJIH∥∥∥∥− Spur

∥∥∥∥ ddt(V − V last)
dp

dt

∣∣∣∣ρJIH∥∥∥∥ (45)

PEQ = P last − ∆T

λ[IH]
(46)

Whereas this “Total Lagrangian Driven” and “Volume Driven” dynamics of Section IVA

above use the same “exact differential action”: (42) and (26), they generate different dynamics

as we differently split action into “kinetic” and “potential” terms. The dynamics of Section

IVA is of trend following type, the direction changes only when
∣∣ψ[IH]

〉
“switches”. The

direction of “Total Lagrangian Driven” dynamics takes into account a number of factors in

(43), thus it may reverse the direction even without a “switch” in
∣∣ψ[IH]

〉
.

V. ON SELECTION OF A TYPE OF THE DYNAMICS

In Sections IVA, IVB, IVC, and IVD we chose an “exact differential” action from

which price dynamics was determined. The “volume driven” dynaimcs of Section IV A stays

separately as it is a trend–following model with automatic time–scale selection of Section III,

it is the simplest “practical” model. An important feature of possible “action” of the forms:

(31), (38), and (43) is that all of them include fluctuations of execution flow dI/dt. Now we

have to choose which one corresponds to market dynamics most closely. Technically, we have

three calculated characteristics: Spur
∥∥dpI
dt

∣∣ρJIH∥∥ and Spur
∥∥ d
dt
(V − V last)dp

dt

∣∣ρJIH∥∥ that are

obtained exactly and Spur
∥∥I dp

dt

∣∣ρJIH∥∥ that is obtain from an approximation, such as in the

Appendix A. Now we need to select from them the most appropriate linear combination to

obtain the future price according to (35), (40), or (44).

Experiments show that only execution flow driven dynamics of (31) form can possibly

work to determine the future price. This type of dynamics has only two contributing terms:

I dp
dt

and pdI
dt

, that are very close to each other in ∥ρJIH∥ state. The sum of them is equal

exactly to λ[IH](P last − P [IH]) = Spur
∥∥dpI
dt

∣∣ρJIH∥∥ (the result of [3]), and their difference

determines (35) future price (a new result of this paper). In Fig. (5) a demonstration of

PEQ (35) (field com/polytechnik/freemoney/PFuture.java:PEQ_I_fromDPI, obtained

with ∥I dp
dt
∥ from (A26) is presented. The result is almost identical to (A36) approximation,
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FIG. 5. Price P , price P [IH] (15), and PEQ (35) for AAPL stock on September, 20, 2012. The ratio

of aggregated V
T execution flow and λ[IH] is also presented (shifted up to 693); it is about 1/2 in∣∣ψ[IH]

〉
state. The calculations in shifted Legendre basis with n = 12 and τ=256sec.

field com/polytechnik/freemoney/PFuture.java:PEQ_I_fromI2DtpDivI, and the ∆I is

slightly lower with (A25)). This is the only “advancing” (not lagging!) indicator we managed

to obtain so far. A very important feature is that operators
∥∥pdI

dt

∥∥ and
∥∥I dp

dt

∥∥ from (34)

are very close in ρJIH state, and the difference determines future direction (35). This

corresponds to 2
λ[IH]Spur

∥∥I dp
dt

∣∣ρJIH∥∥ ≈ Spur
∥∥dp
dt

∣∣ρJIH∥∥; the ratio of aggregated execution

flow V
T
= Spur∥I|ρJIH∥

Spur∥ρJIH∥ and execution flow λ[IH] is about 0.5 in
∣∣ψ[IH]

〉
state, see green line in

Fig. 5.

One may also consider other states, e.g. from [2]: “Appendix C: The state of maximal

aggregated execution flow V/T ”, that corresponds to eigenvalue problem

∣∣V ∣∣ψ[i]
〉
= λ[i]

∣∣T ∣∣ψ[i]
〉

(47)

and using this V/T maximal λ in boundary condition (19). A remarkable feature of this state
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∣∣ψ[V T ]
〉

is that in it dV/dT = V/T = λ[V/T ]:〈
ψ[V T ] |I|ψ[V T ]

〉
⟨ψ[V T ] |ψ[V T ]⟩

=

〈
ψ[V T ] |V |ψ[V T ]

〉
⟨ψ[V T ] |T |ψ[V T ]⟩

=
Spur ∥I|ρJV T∥
Spur ∥ρJV T∥

= λ[V/T ] ≤ λ[IH] (48)

what allows us to consider “double integrated” type of the density matrix we considered in

Appendix F. In this
∣∣ψ[V T ]

〉
state we typically have Spur

∥∥I dp
dt

∣∣ρJV T∥∥ ≈ Spur
∥∥dpI
dt

∣∣ρJV T∥∥, no

“advancing” information we managed to obtain so far.

When asked about “direct application” of the solution presented in Fig. 5, an “advancing”

indicator, to practical trading – it is not ready for two reasons:

• The result strongly depends on approximation used for
∥∥I dp

dt

∥∥, see Appendix A.

• In Fig. 5 we have shown only the interval, where predicted future price is substantially

different from last price. For large intervals of this trading session the difference between

predicted and last price is very small, this means the relation Spur
∥∥pdI

dt

∣∣ρJIH∥∥ =

Spur
∥∥I dp

dt

∣∣ρJIH∥∥ holds almost exactly in
∣∣ψ[IH]

〉
state.

This makes us to conclude that execution flow driven dynamics of Section IVB, while is a

very promising one and is the only one we obtained, that can possibly provide an “advancing”

indicator – it still requires more work for practical applications. These two directions are the

most promising:

1. Select other eigenvalue problem (6) that will be determining the time scale. The best

what we found is (10) with the state
∣∣ψ[IH]

〉
of maximal eigenvalue λ[IH]. All other

tried have been worse.

2. Select directional indicator. The best indicator we found so far is the (35).

VI. ON PRACTICAL SOURCE OF DIRECTIONAL INFORMATION

Whereas our attempts above to obtain an “advancing” indicator were promising but not

ready yet for practical trading, a lagging directional indicator with automatic time–scale

selection of Section IVA, is ready and can be applied to trading. This indicator (29) is the

P [IH] price plus trend-following factor that is proportional to dp/dt in
∣∣ψ[IH]

〉
state:

PEQ = P [IH] − 1

λ[IH]

〈
ψ[IH]

∣∣∣∣(V − V last)
dp

dt

∣∣∣∣ψ[IH]

〉
(49)
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The formula automatically selects the time scale from the interval [τ/n : τ ] (in Shifted

Legendre basis) or from the interval [τ : nτ ] (in Laguerre basis). The difference between last

price and PEQ determines the trend. Trend “switch” occurs instantly as a “switch” in
∣∣ψ[IH]

〉
of (10) eigenproblem. In Fig. 8 below the (49) is presented in higher resolution than in Fig. 4

above. The situation when PEQ is close to P last corresponds to no information about the

future (23) situation. Typically all the directional signals should be ignored (23) when

〈
ψ0

∣∣ψ[IH]
〉2

≳ 0.1 (50)

as this corresponds to little information about the future available.

VII. A BRIEF DESCRIPTION OF THE ALGORITHM

Whereas a theory presented is this work may look rather complicated, it’s computer

implementation is very straightforward. It is way simpler than multiple systems of other

people the authors have seen in diversity ··
⌢. Technically an implementation of the theory

requires an integration to calculate the moments from timeserie sample (A14), polynomials

multiplication (A1) to calculate the matrices from moments, and solving an eigenproblem (10)

for time scale. There is no magic, simple and precise description of an algorithm implementing

the theory is this: On each (Time, Execution Price, Shares Traded) tick coming do the

following:

1. Have an integrator that on each tick coming recurrently updates an internal states to

calculate the moments: ⟨Qm⟩, ⟨QmI⟩, ⟨QmpI⟩, and
〈
QmV

dp
dt

〉
; see com/polytechnik/

freemoney/CommonlyUsedMoments.java.

2. Using these moments construct the matrices ⟨Qj |Qk⟩, ⟨Qj | I |Qk⟩, ⟨Qj | pI |Qk⟩, and〈
Qm

d
dt
V dp

dt

〉
by applying multiplication operator (A1), then solve generalized eigenvalue

problem (11) to find the state of maximal execution flow
∣∣ψ[IH]

〉
determining the time

scale, see com/polytechnik/freemoney/FreeMoneyForAll.java.

3. Construct a polynomial corresponding to the state “since
∣∣ψ[IH]

〉
till now” (A8), then

obtain corresponding density matrix ∥ρ
J(ψ[IH]2)∥ using Theorem 3 of [7], see com/poly

technik/freemoney/IandDM.java.
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4. Obtain (49) price as directional indicator. Use (50) as non-applicability criterion. See c

om/polytechnik/freemoney/PFuture.java:PEQV_from_M.

5. Optionally. Try (36), but this calculation requires an approximation for
∥∥I dp

dt

∥∥ and

is much more sensitive to time-scale selection than (49). The result for “advancing”

directional indicator (36) is not always satisfactory.

See Appendix C below with a description of the software implementing the algorithm. This

software reads a sequence of (Time, Execution Price, Shares Traded) ticks (line after line,

one tick per line), and for every tick read prints the results.

VIII. CONCLUSION

An approach to obtain directional information from a sequence of past transactions with

an automatic time–scale selection from execution flow I = dV/dt is presented. Whereas a

regular moving average has a built-in fixed time scale, the approach of this paper uses the

state of maximal execution flow (10) to automatically determine the one. Contrary to regular

moving average the developed approach has n − 1 internal degrees of freedom to adjust

averaging weight according to spikes in execution flow I = dV/dt. These internal degrees of

freedom allow to obtain an immediate “switch”, what is not possible in regular moving average

that always has a τ -proportional time delay, lagging indicator. For a problem of dimension n

in Shifted Legendre basis the system automatically selects the time scale from the interval

[τ/n : τ ], and in Laguerre basis from the interval [τ : nτ ]. Among unsolved problem we

would note a selection of optimal
∥∥I dp

dt

∥∥ interpolation to obtain an advancing price from

(35), see Appendix A, and studying a possibility to “split” some average value based on some

other operator spectrum, see Appendix E, Eq. (E6). The software implementing the theory

is available from the authors. Among directly applicable to trading results we would note the

price (49) that includes both “switching” and “tending” contributions, see Fig. 8.

A generalization of the developed theory to a multi asset universe creates a number of

new opportunities. Now from a sequence of past transactions l = 1 . . .M for Na financial

instruments: (
tl, p

(a)
l , dV

(a)
l

)
a = 1 . . . Na (51)

http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
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one can construct Na execution flow operators
〈
Qj

∣∣I(a)∣∣Qk

〉
, each one with it’s own state∣∣∣ψ[IH](a)

〉
of maximal I(a) and corresponding to it ρ(a)JIH . In addition to this an operator of

capital-flow index

Ĩ =
Na∑
a=1

p(a)
dV (a)

dt
=

Na∑
a=1

p(a)I(a) (52)

can be constructed to determine market overall activity; it also has it’s own state
∣∣∣ψ[IH]Ĩ

〉
of maximal Ĩ4. Critically important that all these |ψ⟩ are in the same basis (the one of

(A4)) and their scalar products ⟨ψ |ϕ⟩ can be readily calculated. Technically this means

we can independently use Na integrators com/polytechnik/freemoney/CommonlyUsedM

oments.java, where each one calculates the moments
〈
Qmf

(a)
〉

of it’s own single asset

a = 1 . . . Na, and then, from here, all the cross-asset characteristics can be calculated via

projections! For example: how similar is the state of high execution flow of asset a and the

one of asset b ?— it is just a regular scalar product of two wavefunctions
〈
ψ[IH](a)

∣∣∣ψ[IH](b)
〉2

;

“correlated” assets are not the assets which prices “go together” but the assets with simultaneous

spikes in execution flow. In addition to simultaneously criterion (projection) a criterion for

“which one came earlier: a spike in ∥I(a)∥ or a spike in ∥I(b)∥” can be written in a similar

way:
〈
ψ[IH](a)

∣∣∣ (tnow−t)I(a)
∣∣∣ψ[IH](a)

〉
〈
ψ[IH](a)

∣∣∣ I(a) ∣∣∣ψ[IH](a)
〉 −

〈
ψ[IH](b)

∣∣∣ (tnow−t)I(b)
∣∣∣ψ[IH](b)

〉
〈
ψ[IH](b)

∣∣∣ I(b) ∣∣∣ψ[IH](b)
〉 obtained from directly sampled

moments
〈
Qm(tnow − t)I(a)

〉
and

〈
Qm(tnow − t)I(b)

〉
, or as Spur∥ρ(a)JIH∥ − Spur∥ρ(b)JIH∥ what

does not require other moments. There are several alternative forms of “distance” to determine

which |ψ⟩ happened earlier, see [1], “Appendix A: Time–Distance Between |ψ⟩ States”.

In a multi asset univers complexity of calculations growths linearly with Na, hence the

value of Na can be very high even for realtime processing. Moreover, as every integrator com

/polytechnik/freemoney/CommonlyUsedMoments.java works independently, the problem

can be easily parallelized to run each integrator on a separate core. Then all the cross-asset

characteristics can be obtained from individual asset data (the moments from com/poly

technik/freemoney/CommonlyUsedMoments.java instance) with standard linear algebra

operations such as projection (scalar product), taking the difference between two Spur∥ρJIH∥

to determine the distance, or considering some other operator (e.g. capital-flow index (52))

in a state like |ψ⟩, ∥ρJ(ψ2)∥, or ∥ρJ(J(ψ2))∥.

4 A one of self-evident trading strategies: when current value of Ĩ is large
〈
ψ0

∣∣∣∣ψ[IH]Ĩ
〉2

≳ 0.8 select the

assets a with currently low execution flow
〈
ψ0

∣∣∣ψ[IL](a)
〉2

≳ 0.5 as “lagging” and soon to follow in the

direction of the market.
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We see an application of this paper theory to multi asset universe as the most promising

direction of future research. The simplest, but really good, indicator is the P last(a) − PEQ(a)

indicator (49) calculated for each a = 1 . . . Na asset then all summed with the λ[IH](a) weights

for the terms in the sum to have the dimension of capital flow.
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Appendix A: On Calculation of
〈
QmI

dp
dt

〉
moments from ⟨QmpI⟩ sampled moments.

A theory developed in this paper works primarily with an observable f and corresponding

operator (matrix) ⟨Qj | f |Qk⟩, j, k = 0 . . . n− 1 that is obtained by applying multiplication

operator:

QjQk =

j+k∑
m=0

cjkmQm (A1)

to sampled moments ⟨Qmf⟩, m = 0 . . . 2n− 2. The moments are defined with Qm(x) being a

polynomial of order m and integration measure ω(t) dt having the support t ∈ [−∞ . . . tnow]:

⟨Qmf⟩ =
tnow∫

−∞

dt ω(t)Qm(x(t))f(t) (A2)

In this paper we use: ω(t) is decaying exponent and x(t) is either linear or exponential

function on time:

ω(t) = exp (−(tnow − t)/τ) (A3)

x(t) =

(t− tnow)/τ Laguerre basis

exp (−(tnow − t)/τ) shifted Legendre basis
(A4)

These two bases correspond to a more general (also analytically approachable) form x(t) =

exp (−(tnow − t)/τ ∗), where ω(t) and x(t) are both exponential functions on t but with

different time scales: τ and τ ∗. Other forms can also be considered.

https://xn--80akau1alc.xn--p1ai/
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If we want to consider df/dt moments, then put it to (A2) and do an integration by parts:〈
Qm

df

dt

〉
= f(tnow)ω(x0)Qm(x0)−

tnow∫
−∞

dt f(t)
d

dt
ω(x(t))Qm(x(t)) (A5)

if d
dt
ω(x(t))Qm(x(t)) is equal to the same weight multiplied by a polynomial: ω(x)P (x) then

the moments of df/dt can be obtained from the moments of f according to (A5). The key

element is an existence of ED(·), a polynomial–to–polynomial mapping function (it is obtained

as a derivative of a polynomial multiplied by the weight):

d

dt
ω(x(t))ψ(x(t))φ(x(t)) = ω(x) [ED(ψ)φ+ ψED(φ)] (A6)

ED(ψ(x)) =


dψ(x)

dx
+

1

2
ψ(x) Laguerre basis

x
dψ(x)

dx
+

1

2
ψ(x) shifted Legendre basis

(A7)

where the time-derivative of a polynomial multiplied by a weight is represented by the same

weight multiplied by other polynomial. The (A5) corresponds to ψ = 1 and φ = Qm.

For the two bases we consider in this paper it is also possible to obtain ⟨Qmf⟩ moments

from
〈
Qm

df
dt

〉
moments using integration by parts, see [2], section “Basic Mathematics”, about

J(·) polynomial-to-polynomial mapping such that for an arbitrary polynomial P (x):

t∫
−∞

P (x(t′))ω(t′)dt′ = ω(t)J(P ) (A8)

For the bases we use such a polynomial-to-polynomial transform exists:

J(P ) =



1

exp(x)

x∫
−∞

P (x′) exp(x′)dx′ Laguerre basis

1

x

x∫
0

P (x′)dx′ shifted Legendre basis

(A9)

A remarkable feature of this transform is that since ⟨(f(tnow)− f)P ⟩ =
〈
J(P )df

dt

〉
and J(P )

is also a polynomial, thus an average with it can be converted to a density matrix average,

any average ⟨Pf⟩ can be represented as the spur from a product of operator ∥df/dt∥ and a

density matrix ∥ρ∥:

⟨Pf⟩ = Spur

∥∥∥∥ρ∣∣∣∣dfdt
∥∥∥∥ (A10)
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This way any average of an observable f can be calculated as operator ∥df/dt∥ averaged in

some mixed state ρ obtained from the polynomial P (x). Note, that J(·) transform can be

applied in chain:

tnow∫
−∞

df

dt
J(P )ω(t)dt = f

∣∣∣
x0
J(P )

∣∣∣
x0
ω(x0)−

tnow∫
−∞

fP (x(t))ω(t)dt (A11)

tnow∫
−∞

d2f

dt2
J(J(P ))ω(t)dt =

df

dt

∣∣∣
x0
J(J(P ))

∣∣∣
x0
ω(x0)− f

∣∣∣
x0
J(P )

∣∣∣
x0
ω(x0) +

tnow∫
−∞

fP (x(t))ω(t)dt

(A12)

The moments of f are usually obtained from direct sampling of all available observations

l = 1 . . .M in a timeserie:

⟨Qmf⟩ =
M∑
l=1

f(tl)Qm(x(tl))ω(tl) [tl − tl−1] (A13)

the moments of a derivative df/dt can also be obtained from direct sampling:〈
Qm

df

dt

〉
=

M∑
l=1

Qm(x(tl))ω(tl) [f(tl)− f(tl−1)] (A14)

See [1], section “Basis Selection”, for one more basis: price basis: Qk(t) = pk(t). It has no

ED(·) and J(·) operators available, but has similar sampling formula. Given a good choice of

basis polynomials:

Qm(x) =

Lm(−x) Laguerre basis

Pm(2x− 1) shifted Legendre basis
(A15)

one can calculate (with double precision arithmetic) the moments to a very high order m ≲ 50

(limited by the divergence of cjkm multiplication coefficients (A1)) in Laguerre basis, and

m ≲ 150 (limited by poorly conditioned matrices) in shifted Legendre basis; Chebyshev

polynomials Tm(2x − 1) also provide very stable calculations in shifted Legendre basis

(Chebyshev polynomials have perfectly stable multiplication: all cjkm = 0 except cjkj−k = cjkj+k =

0.5, j ≥ k). The result is invariant with respect to basis choice, Qm(x) = xm and the ones

from (A15) give identical results, but numerical stability can be drastically different[3, 10].

Moments calculated from market data timeserie using Eqs. (A13) and (A14) are the

cornerstone of our theory. The most important are the moments of execution flow I = dV/dt,

https://en.wikipedia.org/wiki/Quantum_state#Mixed_states
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they are obtained from (A14) by putting the volume as f = V , thus the moments ⟨QmI⟩

are obtained from timeserie sample; the matrix ⟨Qj | I |Qk⟩ is obtained from them using

multiplication operator (A1). The matrix ⟨Qj |Qk⟩ is known analytically. These two matrices

are volume- and time- averaged products of two basis functions. A generalized eigenvalue

problem (5) is then formulated: ∣∣I∣∣ψ[i]
〉
= λ[i]

∣∣ψ[i]
〉

(A16)
n−1∑
k=0

⟨Qj | I |Qk⟩α[i]
k = λ[i]

n−1∑
k=0

⟨Qj |Qk⟩α[i]
k (A17)

ψ[i](x) =
n−1∑
k=0

α
[i]
k Qk(x) (A18)

and solved. Whereas the calculation of the moments ⟨QmI⟩, ⟨QmpI⟩,
〈
Qm

dp
dt

〉
,
〈
QmV

dp
dt

〉
,

⟨Qmp⟩ create no problem whatsoever, an attempt to go beyond them turned out to be

problematic. For example any second order derivative (e.g. d2p/dt2) cannot be obtained

directly from sample (A14) and, in the same time, has singularities when applying an

integration by parts (A5), not to mention difficulties to formulate a boundary condition at

x = x0.

However, some of these characteristics are of great interest. The most important one is〈
QmI

dp
dt

〉
. The price p =

∫
dp
dt
dt =

∫
dp provides an information of current market state, but

little one about possible trading opportunities. Assume at a given time interval dt we have

some specific constant value of execution flow I = dV/dt and some dp/dt. During this dt

interval dV = Idt shares were traded and the price change was dp = dp
dt
dt. How much money

we potentially can make during this dt? Buy at the beginning of t: dV shares at p. Sell at

the end of t + dt: dV shares at p + dp. Total potential P&L (assuming we can perfectly

frontrun the market5) is then dP&L = Idp. The P&L =
∫
Idp tells us how much money

can be potentially made (or lost) on market movements taking into account traded volume

capacity. This is the same sum of price changes as for regular price p =
∫
dp, but not all

dp are created equal. If dp occurred on a large execution flow – it contributes more, if on

a small – it contributes less6 This creates a different way to study opportunities of market

movements, see Fig. 6.
5 During every dt we hold dV shares, i.e. we always hold a position S equals to execution flow I = dV/dt,

the P&L =
∫
S(t)dp, see [3], Section “P&L operator and trading strategy”.

6 The concept of I dp
dt = dV

dt
dp
dt is very different from commonly studied market impact concept that is a price

sensitivity to volume traded: dp/dV .

https://en.wikipedia.org/wiki/Market_impact#Market_impact_cost
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P&L=∫Idp

p=∫dp

FIG. 6. A schematic example of price (the sum of price elementary changes dp) vs. possible P&L

(the sum of price changes multiplied by execution flow Idp). The second curve tells how much money

one can be potentially made (or lost) on market movements taking into account traded volume

capacity.

The value of
〈
QmI

dp
dt

〉
cannot be calculated directly as well as it cannot be calculated

using integration by parts (A5) in a general basis. However, if we change the basis and

vary basis functions in the basis of (A16) eigenproblem
∣∣I∣∣ψ[i]

〉
= λ[i]

∣∣ψ[i]
〉

an approximate

solution can be obtained. Consider the basis
∣∣ψ[i]

〉
, it is orthogonal (8), (9) as:

δjk =
〈
ψ[j]

∣∣ψ[k]
〉

(A19a)

λ[j]δjk =
〈
ψ[j]

∣∣ I ∣∣ψ[k]
〉

(A19b)

what gives
〈
φ
∣∣ I ∣∣ψ[i]

〉
= λ[i]

〈
φ
∣∣ψ[i]

〉
for an arbitrary |φ⟩. Then taking into account (A5)

and (A6) put f = pI and P last = p(tnow). Obtain for matrix elements:〈
ψ[j]

∣∣∣∣dpIdt
∣∣∣∣ψ[k]

〉
= P lastI(tnow)ω(x0)ψ

[j](x0)ψ
[k](x0)

−
〈
ED(ψ[j])

∣∣ pI ∣∣ψ[k]
〉
−
〈
ψ[j]

∣∣ pI ∣∣ED(ψ[k])
〉

(A20)

These are matrix elements of
〈
ψ[j]

∣∣dpI
dt

∣∣ψ[k]
〉
. We are going to modify them to obtain sought

matrix elements
〈
ψ[j]

∣∣I dp
dt

∣∣ψ[k]
〉
, that should be zero when p = const. For this reason the

average in (A20) should be reduced to an integral of an exact differential to be canceled with

out of integral term. Taking into account (A16) and (A19) one can see that〈
ψ[j]

∣∣∣∣I dpdt
∣∣∣∣ψ[k]

〉
= P last

√
λ[j]λ[k]ω(x0)ψ

[j](x0)ψ
[k](x0)
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−
√
λ[j]

λ[k]
〈
ED(ψ[j])

∣∣ pI ∣∣ψ[k]
〉
−
√
λ[k]

λ[j]
〈
ψ[j]

∣∣ pI ∣∣ED(ψ[k])
〉

(A21)

satisfies exact differential condition. Then practically applicable expression is:〈
ψ[j]

∣∣∣∣I dpdt
∣∣∣∣ψ[k]

〉
=

√
λ[j]

λ[k]
〈
ED(ψ[j])

∣∣ (P last − p)I
∣∣ψ[k]

〉
+

√
λ[k]

λ[j]
〈
ψ[j]

∣∣ (P last − p)I
∣∣ED(ψ[k])

〉
(A22)

This is an expression of operator
∥∥I dp

dt

∥∥ in the basis of (A16). The reason why we were

able to obtain this explicit expression is that we managed to combine differentiation of a

product (A6) with eigenvalues problem (A16) to write, when p = const, each matrix element

as an exact differential. This approximation can also be viewed as operators multiplication

factoring:

〈
φ
∣∣ pI ∣∣ψ[i]

〉
≈

n−1∑
k=0

〈
φ
∣∣ p ∣∣ψ[k]

〉 〈
ψ[k]

∣∣ I ∣∣ψ[i]
〉
=

〈
φ
∣∣ p ∣∣ψ[i]

〉
λ[i] (A23)

what gives

DPjk =
1

λ[k]
〈
ED(ψ[j])

∣∣ (P last − p)I
∣∣ψ[k]

〉
+

1

λ[j]
〈
ψ[j]

∣∣ (P last − p)I
∣∣ED(ψ[k])

〉
(A24)

and two approximations for ∥I dp
dt
∥:〈

ψ[j]

∣∣∣∣I dpdt
∣∣∣∣ψ[k]

〉
≈

√
λ[j]λ[k]DPjk = ∥I1/2∥ · ∥DP∥ · ∥I1/2∥ (A25)〈

ψ[j]

∣∣∣∣I dpdt
∣∣∣∣ψ[k]

〉
≈ ∥DP∥ · ∥I∥ (A26)

Using an approximation ∥Iβ dp
dt
∥ ≈ ∥I β

2 |dp
dt
|I β

2 ∥ the (A25) result can be generalized to a

I–power β, however this result is not very accurate for β other than 0 or 1, since it is obtained

from the ⟨QmpI⟩ moments:〈
ψ[j]

∣∣∣∣Iβ dpdt
∣∣∣∣ψ[k]

〉
≈

(
λ[j]λ[k]

)β
2 DPjk = ∥Iβ/2∥ · ∥DP∥ · ∥Iβ/2∥ (A27)

This method of calculation is implemented in com/polytechnik/freemoney/MatricesFro

mPI.java:getbQQIpowdpdtFromQQpi_withLastP; for DPjk see e.g. com/polytechnik/fre

emoney/PFuture.java:bQQ_DP. A matrix obtained in
∣∣ψ[i]

〉
basis can be converted to Qj

basis in a regular way:

⟨Qj | f |Qk⟩ =
n−1∑

l,i,s,m=0

Gjlα
[i]
l

〈
ψ[i]

∣∣ f ∣∣ψ[s]
〉
α[s]
mGmk (A28)

https://en.wikipedia.org/wiki/Exact_differential
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〈
ψ[j]

∣∣ f ∣∣ψ[k]
〉
=

n−1∑
s,m=0

α[j]
s ⟨Qs | f |Qm⟩α[k]

m (A29)

where Gram matrix Gjk = ⟨Qj |Qk⟩, and α[i]
k are (A16) eigenvectors in Qj basis, Eq. (A18),

see com/polytechnik/utils/EVXData.java. 7 The expression (A25) is an approximation,

similar (and slightly better) approximation is a non–Hermitian matrix (A26) as it has a

single approximate product compared with two in (A25).

Different approximations can be obtained using a general form of (A23):

∥fg∥ ≈ ∥f∥ · ∥g∥ (A30)

corresponding to an approximation δ(x−y) ≈
∑n−1

j,k=0Qj(x)G
−1
jk Qk(y). We can obtain a result

applying it to other moments available directly from sample:
〈
QmV

dp
dt

〉
,
〈
Qm

dp
dt

〉
along with

their derivatives
〈
Qm

dI
dt

〉
,
〈
Qm

dpI
dt

〉
,
〈
Qm

d
dt
V dp

dt

〉
, and

〈
Qm

d2p
dt2

〉
obtained from integration by

parts formula (A5) with boundary conditions: 1). impact from the future (19) and 2). zero V

at tnow; traded volume V is measured relatively tnow, it is negative for past observations. A

few useful approximations of operator
∥∥I dp

dt

∥∥:∥∥∥∥dpdt
∥∥∥∥ · ∥I∥ (A31)∥∥∥∥dpIdt
∥∥∥∥− ∥p∥ ·

∥∥∥∥dIdt
∥∥∥∥ (A32)∥∥∥∥ ddtV dpdt

∥∥∥∥− ∥V ∥ ·
∥∥∥∥d2pdt2

∥∥∥∥ (A33)

Despite these operators being non-Hermitian this creates no problem as they are used only in

calculation of Spur with Hermitian density matrix such as in (45). The approximation (A31)

uses directly sampled moments
〈
Qm

dp
dt

〉
, it is a product of two separately sampled operators

with spikes, nevertheless it gives very similar to (A26) results, without spurious artifacts;

sometimes, however, there is a difficulty to combine it with ∥dpI
dt
∥ from (34), as in this case the

moments from two different samplings are used together. The approximation (A32) uses exact∥∥dpI
dt

∥∥ and
∥∥dI
dt

∥∥ operators matrix elements but the result is noisy. The (A33) also uses exact

values of
∥∥ d
dt
V dp

dt

∥∥ and
∥∥∥d2pdt2 ∥∥∥ (obtained from (A5) with zero boundary condition due to V

7 A question arise whether obtained matrix
〈
Qj

∣∣∣Iβ dp
dt

∣∣∣Qk

〉
, j, k = 0 . . . n− 1 corresponds to a measure or not: Whether it

can be obtained from some
〈
QmIβ

dp
dt

〉
moments, m = 0 . . . 2n− 2 by applying multiplication operator (A1)? We have an

algorithm to establish this fact, see Theorem 3 of [7]. Numerical experiments show that this is almost the case. A mismatch
may be caused either by some numerical instability or by some degeneracy in the problem. A numerical instability is very
unlikely because (A10) holds exactly for both: 1). original

〈
Qj

∣∣∣Iβ dp
dt

∣∣∣Qk

〉
matrix (A25) and 2). the matrix obtained by

applying multiplication operator (A1) to the moments
〈
QmIβ

dp
dt

〉
obtained from Theorem 3 of [7] applied to the original

matrix (A25). A mismatch between these two matrices is observed starting with n ≥ 3; the difference is very small but clearly
established numerically. This degeneracy (if exists) does not create any problem in calculation of the value of any observable
as the density matrix used has the form: a state since

∣∣ψ[IH]
〉

spike.
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factor) operators, but it is completely useless due to d2p/dt2 singularities; however without the

last term the operator
∥∥ d
dt
V dp

dt

∥∥ gives similar to
∥∥dpI
dt

∥∥ results. Two these operators should prob-

ably be considered together as corresponding to V dp and pdV . In sufficiently localizes states

(e.g.
∣∣ψ[IH]

〉
) we typically have

〈
ψ[IH]

∣∣V dp
dt

∣∣ψ[IH]
〉
≈

〈
ψ[IH]

∣∣V ∣∣ψ[IH]
〉 〈
ψ[IH]

∣∣ dp
dt

∣∣ψ[IH]
〉
.

Another possible approach to obtain
∥∥I dp

dt

∥∥ that enters into (35) together with
∥∥pdI

dt

∥∥ is

to consider the operator
∥∥ d
dt
p
I

∥∥. As above, let us take (A20) and, assuming that changes in p

are much smaller than changes in I, modify it to obtain
∥∥ d
dt
p
I

∥∥ matrix elements:〈
ψ[j]

∣∣∣∣ ddt pI
∣∣∣∣ψ[k]

〉
≈ P last

IF0
ω(x0)ψ

[j](x0)ψ
[k](x0)

− 1

λ[k]
2

〈
ED(ψ[j])

∣∣ pI ∣∣ψ[k]
〉
− 1

λ[j]
2

〈
ψ[j]

∣∣ pI ∣∣ED(ψ[k])
〉

(A34)

This expression satisfies limit case conditions. When p = const the result exactly equals

to
∥∥ d
dt

1
I

∥∥, when I = const the result exactly equals to
∥∥dp
dt

∥∥, and when ∥pI∥ = ∥I∥ · ∥I∥

the result is a differential of a constant. With IF0 = λ[IH] as per (19), the (A34) also

satisfies Spur
∥∥ d
dt

1
I

∣∣ρJIH∥∥ = 0, the same as for Spur
∥∥ d
dt
I
∣∣ρJIH∥∥ = 0. See com/polytechni

k/freemoney/MatricesFromPI.java:getbQQDtpDivIFromQQpi_withLastP for numerical

implementation. This approximation
∥∥ d
dt
p
I

∥∥ =
∥∥∥ Idp/dt−pdI/dtI2

∥∥∥ can be tried as a proxy to

∥Idp/dt− pdI/dt∥ in (35), but the result is very poor. The problem is that (A34) has an

extra common factor 1/I2. Similarly to (A24) we can modify it by λ[j]λ[k] factor to remove

I2 from the denominator:∥∥∥∥ψ[j]

∣∣∣∣I dpdt − p
dI

dt

∣∣∣∣ψ[k]

∥∥∥∥ ≈ ∥I∥ ·
∥∥∥∥ ddt pI

∥∥∥∥ · ∥I∥ (A35)〈
ψ[j]

∣∣∣∣I dpdt − p
dI

dt

∣∣∣∣ψ[k]

〉
≈ P last

IF0
ω(x0)λ

[j]λ[k]ψ[j](x0)ψ
[k](x0)

− λ[j]

λ[k]
〈
ED(ψ[j])

∣∣ pI ∣∣ψ[k]
〉
− λ[k]

λ[j]
〈
ψ[j]

∣∣ pI ∣∣ED(ψ[k])
〉

(A36)

but this creates a problem that the condition Spur
∥∥I∣∣ d

dt
1
I

∣∣I∣∣ρJIH∥∥ = 0 no longer holds, thus

it cannot be applied in (35). One may try to adjust the value of IF0 in (A36) to have this

condition satisfied (put p = const and take the Spur with ∥ρJIH∥ of (A36), let it equals to zero;

the values of IF0 and “adjusted” IF0 are typically very close, adjusted value is often slightly

larger). An important difference between
∥∥∥ Idp/dt−pdI/dtI2

∥∥∥ and ∥Idp/dt− pdI/dt∥ is that the

first one is an exact differential (thus it’s Spur with ρJIH can be reduced to sub-differential

expression in
∣∣ψ[IH]

〉
state and the boundary term), and the second one is not, thus it cannot

be reduced to some observable in
∣∣ψ[IH]

〉
state.
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FIG. 7. Averages: T [IH] (17) and regular moving average (18) (dark blue) T τ for τ = 256s; the

values are multiplied by 10−3 and shifted up to fit the chart). The time-to now calculations with

real volume (green) and surrogate volume (light blue). Real volume V and surrogate volume A are

also presented (scaled by 10−6 and 5 · 10−3 respectively) and shifted up to fit the chart). The AAPL

stock on September, 20, 2012. The calculations in shifted Legendre basis with n = 12.

The (A26), (A31), and (A36) are approximations that can be used for operator
∥∥I dp

dt

∥∥,

see com/polytechnik/freemoney/PFuture.java for numerical implementation.

Appendix B: On Surrogate Volume

Another question of interest is whether all the developed theory and software of this work

can be used without trading volume available. For a number of markets (such as: sovereign

CDS, corporate fixed income, crypto exchanges, currency trading, etc.) it is quite common

to have the price to be very accurate and available almost realtime, but the traded volume

is either not available at all or provided incorrectly (sometimes intentionally incorrectly).

In such a case there is an option to use the absolute value of price change as it were the

volume; the calculations are the same – in (A14) instead of df = Vl − Vl−1 one can use

da = |pl − pl−1|. The only problem with this approach is that market events without price
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change would not be taken into account as for them da = 0, hence the results will be less

accurate. However, our past experiments, see [3], Fig. 6, show that absolute value of price tick

as a “poor man volume” often provides quite similar results. A feed of “all price ticks” can be

used as a surrogate volume. For a liquid asset it typically takes a few minutes for
∑
da to

exceed P last − P 0 =
∑
dp in several orders of magnitude; for the entire trading session in

Fig. 7 a typical maximal price change is about 5, but the sum of all absolute price changes

is about 500; total reported by NASDAQ ITCH [8] trading volume of this session is about

3 · 106 shares. As this da sequence is all positive, we also tried it with the market impact

dp/dV concept (that completely failed with actual price change dp) in a hope that with this

da we may find an identifiable limit for dV/da. The result is also unsatisfactory: The dV/da

is very similar to dV/dt: it fluctuates in orders of magnitude and clearly has no stable limit

at any time scale below 10 minutes (for US equity marker). However the da/dt is similar to

dV/dt and for liquid assets can be used as a “poor man volume” I = da
dt

with the matrices〈
Qj

∣∣ da
dt

∣∣Qk

〉
and ⟨Qj |Qk⟩ in (A17). See com/polytechnik/freemoney/CommonlyUsedMom

ents.java:addObservationNoBasisShift for calculation of surrogate volume moments.

In Fig. 7 we present T [IH] (17) average (along with regular moving average T τ ) calculated

for regular volume dV and surrogate volume da = |pl − pl−1|. One can see similar behavior

of localization “switches”. However, surrogate volume states have some “switches” missed and

overall picture is less detailed. In Fig. 8 the price PEQ from (29) is presented. One can see

similar, but less detailed picture. This makes us to conclude that da = |pl − pl−1| is a “poor

man volume”.

Appendix C: Software Usage Description

The software is written in java. As with [1] follow the steps:

• Install java 19 or later.

• Download from [11] NASDAQ ITCH data file S092012-v41.txt.gz, and the archive

AMuseOfCashFlowAndLiquidityDeficit.zip with the source code. There is also an

alternative location of these files.

• Decompress and recompile the program:

http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
https://disk.yandex.ru/d/AtPJ4a8copmZJ?locale=en
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FIG. 8. The equilibrium price PEQ from (29) for real volume PEQI and surrogate volume PEQA .

unzip AMuseOfCashFlowAndLiquidityDeficit.zip

javac -g com/polytechnik/*/*java

• Run the command to test the program
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java com/polytechnik/algorithms/TestCall_FreeMoneyForAll \

--musein_file=dataexamples/aapl_old.csv.gz \

--musein_cols=9:1:2:3 \

--n=12 \

--tau=256 \

--measure=CommonlyUsedMomentsLegendreShifted \

--museout_file=museout.dat

Program parameters are:

--musein_file=aapl.csv : Input tab–separated file with (time, execution price,

shares traded) triples timeserie. The file is possibly gzip-compressed.

--musein_cols=9:1:2:3 : Out of total 9 columns of dataexamples/aapl_old.csv.gz

file, take column #1 as time (nanoseconds since midnight), #2 (execution price),

and #3 (shares traded), column index is base 0.

--museout_file=museout.dat : Output file name is set to museout.dat.

--n=12 : Basis dimension. Typical values are: 2 (for testing a concept), or some

value about [4 . . . 12] for more advance use.

--tau=256 : Exponent time (in seconds) for the measure used.

--measure=CommonlyUsedMomentsLegendreShifted The measure. The values

CommonlyUsedMomentsLaguerre,CommonlyUsedMomentsMonomials correspond

to Laguerre measure and CommonlyUsedMomentsLegendreShifted corresponds

to shifted Legendre measures. The results of CommonlyUsedMomentsMonomials

(uses Qk(x) = xk) should be identical to CommonlyUsedMomentsLaguerre (uses

Qk(x) = Lk(−x)), as the measure is the same and all the calculations are Qk(x)–

basis invariant (but numerical stability is worse for CommonlyUsedMomentsMonom

ials).

• The results are saved in output file museout.dat. Among the values of interest are the

following:

pFV.pv_average Regular moving average P τ from (16).

pFV.Tv_average The moving average T τ from (18).
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pFV.totalVolume Total volume traded up to current tick.

pFV.pv_M The value of P [IH] (15).

pFV.Tv_M The value of T [IH] (17), an indicator of localization of
∣∣ψ[IH]

〉
.

pFV.I.wH_squared The value of
〈
ψ0

∣∣ψ[IH]
〉2 (50), an indicator of applicability

of any prediction.

pFV.PEQV_from_M The value of predicted “lagging price” PEQ from (49) that

includes both P [IH] and trending term, the best directional indicator we managed

to obtain so far, see Fig. 8.

The output includes two versions: calculated with “actual” volume (prefixed with pFV.) and

calculated with “surrogate volume” of Appendix B (prefixed with pFA.).

1. Software Code Structure

Provided software is located in several directories:

• com/polytechnik/utils/ General basis utilities including my Radon-Nikodym ap-

proach [6] to machine learning.

• com/polytechnik/lapack/ Ported to java LAPACK library.

• com/polytechnik/lapack/ NASDAQ ITCH [8] parsing.

• com/polytechnik/trading/ Both: “scaffolding” for new ideas and a “graveyard” for

old ones. Also contains unit tests. One can run all unit tests (takes >10 hours) as

java com/polytechnik/trading/QVM

or three simple unit test of this paper algorithms:

java com/polytechnik/trading/PnLInPsiHstateLegendreShifted\$PnLInPsiHstateLegendreShiftedTest

java com/polytechnik/trading/PnLInPsiHstateLaguerre\$PnLInPsiHstateLaguerreTest

java com/polytechnik/trading/PnLInPsiHstateMonomials\$PnLInPsiHstateMonomialsTest

• com/polytechnik/freemoney/ The code implementing the theory of this paper. Most

noticeable are:

http://www.netlib.org/lapack/
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com/polytechnik/freemoney/CommonlyUsedMoments.java Calculate the mo-

ments from (Time, Execution Price, Shares Traded) sequence of transactions

using direct sampling.

com/polytechnik/freemoney/FreeMoneyForAll.java A wrapper to calculate

the matrices ⟨Qj | f |Qk⟩ from sampled moments ⟨Qmf⟩. Secondary sampling of

Appendix D is also included.

com/polytechnik/freemoney/PFuture.java To calculate all the theory of this

paper.

• com/polytechnik/algorithms/ Drivers to call various algorithms.

Appendix D: On Secondary Sampling

When direct sampling (A14) of an observable is not available an advanced technique of

“secondary sampling”[2] can be applied to calculate the moments of it. An example. Assume on

every tick a moving average is calculated. Then this calculated value is used as it were a new

observable, and the moving average of this new observable is calculated. For trivial cases this

gives nothing new: a moving average of a moving average is a moving average with different

weight (for exponential moving average it is the moving average with twice lower exponent

time). However, calculated quantity “as it were an observable” can be a characteristic that

describes an immanent property of the system. In [2] we applied this technique to the maximal

eigenvalue λ[IH] of eigenproblem (10); we treated tick change in λ[IH] (calculated value, see

Fig. 1) as it were a change in the observable fl = λ[IH]
∣∣
tl

and calculated the moments with

dfl = λ[IH]
∣∣
tl − λ[IH]

∣∣
tl−1

as
〈
Qmg

df
dt

〉
=

∑M
l=1Qm(x(tl))g(tl)ω(tl)dfl. The simplest application

of this “calculated observable” is the sum of price changes corresponding to positive λ[IH]

changes what gives the scalp price[2]:

P =
M∑
l=1

p(tl)− p(tl−1) if λ[IH]
∣∣
tl − λ[IH]

∣∣
tl−1

> 0

0 otherwise
(D1)

Normalization P(tnow) = P last is typically used for scalp price. Regular price corresponds to

no condition on λ[IH]. Whereas actual computation is performed in a single pass by highly

optimized code using recurrent relation for moments and in-place calculation of the value to
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be used as a “new observable”, for understanding the concept one may think about secondary

sampling as having two-passes for input timeserie: first — scan all timeserie observations

and build a “new observable” for every timeserie point read; second — scan this timeserie

once again treating the value calculated on the first pass as it were a regular observable.

This “secondary sampling” approach greatly extends the types of observable that can be

studied. However, while being very powerful in calculation of moments that otherwise are

not approachable at all, it has difficulties in interpretation of the results.

The implementation of this technique is available in com/polytechnik/freemoney/Comm

onlyUsedMoments.java. The methods updateWithSingleObservation recurrently adjusts

the basis and adds calculated contributions corresponding to regular measures dP , dV , dA

as in (A14). After this call all regular moments become available, and we have an option

to calculate the value of some “secondary” observable from them, such as λ[IH]. When the

calculation is completed — the method addIHObservationSecondarySampling(double IH

) can be called. It, in addition to the moments already available from updateWithSingle

Observation, calculates, as in (A14), three other moments corresponding to the measure

dfl = IHl − IHl−1, specifically:
〈
Qm

df
dt

〉
,
〈
Qmp

df
dt

〉
, and

〈
Qm

dpf
dt

〉
. The IH can be a calculated

characteristic of various meaning, and the moments of this characteristic are now obtained as

it were a regular observable. This technique is also very convenient for unit tests of moments

calculation by using regular observable as IH.

Appendix E: On Separation of States Based On dI/dt Sign

The value of future execution flow IF0 (19) allows us to obtain ∥dI/dt∥ operator’s matrix

elements. Using integration by parts (put p = const in (A20)) obtain:〈
ψ[j]

∣∣∣∣dIdt
∣∣∣∣ψ[k]

〉
= IF0 ω(x0)ψ

[j](x0)ψ
[k](x0)−

〈
ED(ψ[j])

∣∣ I ∣∣ψ[k]
〉
−
〈
ψ[j]

∣∣ I ∣∣ED(ψ[k])
〉

(E1)

This operator’s matrix elements cannot be obtained directly from sample (A14), however

the knowledge of the impact from the future allows us to apply an integration by parts.

Actually this is the only operator for which integration by parts gives exact answer; for other

operators (e.g ∥d2p/dt2∥) the boundary value at x0 is not known and matrix elements are

typically obtained “within a boundary term”. Only having determined the exact value of IF0
(that includes both: an “impact from the past” and an “impact from the future”) it is possible
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to have the ∥dI/dt∥ matrix elements that are accurate enough to consider an eigenproblem:∣∣∣∣dIdt
∣∣∣∣ψ[i]

dI

〉
= λ

[i]
dI

∣∣∣ψ[i]
dI

〉
(E2)

Other than IF0 = λ[IH] (19) values can be used in the boundary term of (E1), see [2] “Appendix

E: On calculation of dI/dt operator matrix elements from operator I” for a list of reasonable

options for IF0 . The concept introduced in [2] is to treat low I → high I and high I → low I

transitions separately, as they lead to a very different price behavior. These I-transitions

correspond to dI/dt derivative of different signs; corresponding operator ∥dI/dt∥ always has

eigenvalues λ[i]dI of different signs:
〈
ψ[IH]

∣∣ dI
dt

∣∣ψ[IH]
〉
= 0. Let us split the entire |ψ⟩ space into

direct sum of two subspaces8. Construct two projection operators:

∥ΠdI+∥ =
∑

i:λ
[i]
dI>0

∣∣∣ψ[i]
dI

〉〈
ψ

[i]
dI

∣∣∣ (E3)

∥ΠdI−∥ =
∑

i:λ
[i]
dI≤0

∣∣∣ψ[i]
dI

〉〈
ψ

[i]
dI

∣∣∣ (E4)

∥1∥ = ∥ΠdI+∥+ ∥ΠdI−∥ (E5)

This transform can be considered as eigenvalues adjustment technique[12] where the eigenval-

ues (not the eigenvectors!) are adjusted for an effective identification of weak hydroacoustic

signals. The ∥ΠdI+∥ can be viewed as ∥dI/dt∥ operator with all negative eigenvalues set to 0

and all positive eigenvalues set to 1; the same with ∥ΠdI−∥ for opposite sign. This technique

is most easy to implement in (E2) basis (where ∥dI/dt∥ is diagonal), then to convert obtained

projection operators back to the basis used applying (A28). Alternatively one can convert

all the matrices ∥I∥, ∥pI∥, ∥V dp
dt
∥, ∥dpI

dt
∥, ∥ d

dt
V dp

dt
∥, ∥ρ∥ to the basis of (E2) eigenproblem

applying (A29). All the results will be identical as the theory is gauge invariant[6]. With

projection operators (E3) and (E4) any density matrix average can be written in the form:

Spur ∥f |ρ∥ = Spur ∥f |ΠdI+|ρ∥+ Spur ∥f |ΠdI−|ρ∥ (E6)

This split allows us to separate an average of f in density matrix ∥ρ∥ state to the ones

corresponding to positive and negative dI/dt.

8 Here we use ∥dI/dt∥ matrix elements (E1) that are calculated from directly sampled ∥I∥ moments. An

alternative is to split the states according to dI/dt or dλ[IH]/dt sign using the “secondary sampling” of [2].

The simplest example of it’s application is the scalp price P (D1) that takes into account only “important”

price changes (regular price is the sum of all price changes).
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First candidates on application of this technique are the terms from Total Lagrangian

action (43) where the operators are calculated in the state of ∥ρJIH∥ density matrix. Every

Spur that enter into the ∆ expression (44) can be split into dI/dt contributions of different

signs. There are several implementation of this technique, e.g. com/polytechnik/freemo

ney/SplitdIdt.java and several others. The result, however, is not that great and this

projection operators approach requires more research to be performed.

The property that requires special attention is that while the density matrix ∥ρJIH∥ is

obtained from the polynomial ψ[IH]2(x) with J
(
ψ[IH]2

)
transform (A8), and all the average

relations hold exactly, the density matrix itself may not have all the eigenvalues positive.

This creates no problem with the total Spur but sometimes lead to spurious artifacts when

combined with projection operators; the effect, however, is small. These small but negative

eigenvalues of the density matrix, “Hermann Minkowski-style space”, also require additional

research.

1. Execution Flow Based Eigenvalues Adjustment Example

In the Appendix above we considered projection operators (E5) to “split” ∥I∥ or ∥pI∥

based on some other operator spectrum, e.g.
∥∥dI
dt

∥∥. To demonstrate a simplified example of

this eigenvalues adjustment technique let us apply it to the operator ∥I∥. Consider the state

“since
∣∣ψ[IH]

〉
till now” ∥ρJIH∥ and a trading strategy: buy at execution flow below aggregated

execution flow VIH
TIH

with (F6) and (F7), and sell above it. The P&L position changes dS, see

[3] Section “P&L operator and trading strategy”, is:

dS =

(
I − VIH

TIH

)
dt (E7)

Then the constraint 0 =
∫
dS is satisfied:

0 = Spur

∥∥∥∥dSdt
∣∣∣∣ρJIH∥∥∥∥ (E8)

and, for this dS, the P&L = −
∫
pdS can be calculated:

P&L = −Spur

∥∥∥∥pdSdt
∣∣∣∣ρJIH∥∥∥∥ (E9)

If we want to consider (E9) as a superposition of
∣∣ψ[i]

〉
states, introduce an operator:

Π =
n−1∑
i=0

∣∣ψ[i]
〉(

1− VIH
TIH

1

λ[i]

)〈
ψ[i]

∣∣ (E10)

https://en.wikipedia.org/wiki/Hermann_Minkowski
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Π = Π+ +Π− (E11)

Π+ =
n−1∑

i:λ[i]>
VIH
TIH

∣∣ψ[i]
〉(

1− VIH
TIH

1

λ[i]

)〈
ψ[i]

∣∣ (E12)

Π− =
n−1∑

i:λ[i]≤VIH
TIH

∣∣ψ[i]
〉(

1− VIH
TIH

1

λ[i]

)〈
ψ[i]

∣∣ (E13)

The operator ∥Π∥ is actually the operator ∥I∥ but with the eigenvalues 1− VIH
TIH

1
λ[i]

instead of

the λ[i]9. Then (E8) and (E9) become (E14) and (E15) respectively:

0 = Spur ∥I|Π|ρJIH∥ = Spur ∥I|Π+ +Π−|ρJIH∥ (E14)

P&L = −Spur ∥pI|Π|ρJIH∥ = −Spur ∥pI|Π+ +Π−|ρJIH∥ (E15)

From these operators ∥Π+∥ and ∥Π−∥ one can obtain “equilibrium prices” P± = Spur∥pI|Π±|ρJIH∥
Spur∥I|Π±|ρJIH∥

and etc. The result is similar to the technique of “extra volume” Ṽ and P ∗ of the Appendix

F below; no advancing information we managed to obtain from (E10).

Appendix F: On The States Of Double Integration

The density matrix state ρJIH (32) was obtained from the pure state of maximal execution

flow
∣∣ψ[IH]

〉
by applying J(·) transform (A8) to the polynomial ψ[IH]2(x), a variant of

integration by parts:

Spur

∥∥∥∥dfdt
∣∣∣∣ρJIH∥∥∥∥ = f

∣∣∣
x0
ρJIH(x0)ω(x0)−

〈
ψ[IH] |f |ψ[IH]

〉
= f

∣∣∣
x0

−
〈
ψ[IH] |f |ψ[IH]

〉
(F1)

n−1∑
j,k,l,m=0

Qj(x0)G
−1
jk ρJIHklG

−1
lmQm(x0) = 1 (F2)

with (F2) due to 1 =
〈
ψ[IH]

∣∣ψ[IH]
〉

normalizing and 1 = ω(x0) due to basis choice obtain

familiar “integration by parts” relation (A11). The ∥ρJIH∥ density matrix allows us to calculate

“execution-flow”-related values from
∥∥dI
dt

∥∥ operator. We already used this relation (a special

case of (A10)) to calculate e.g.

Spur

∥∥∥∥dpdt
∣∣∣∣ρJIH∥∥∥∥ = P last − ⟨ψ | p |ψ⟩ (F3)

9 The operator ∥Π∥ may not correspond to a measure, i.e. it does not necessary correspond to m = 0 . . . 2n−2

moments ⟨QmΠ⟩ from which to obtain ⟨Qj |Π |Qk⟩ using multiplication operator (A1).
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FIG. 9. Price P , price P [IH] (15), and P ∗ (F11) for AAPL stock on September, 20, 2012. The

calculations in shifted Legendre basis with n = 12 and τ=256sec.

Spur

∥∥∥∥dpIdt
∣∣∣∣ρJIH∥∥∥∥ = P lastIF0 −

〈
ψ[IH] |pI|ψ[IH]

〉
(F4)

Spur

∥∥∥∥dIdt
∣∣∣∣ρJIH∥∥∥∥ = IF0 −

〈
ψ[IH] |I|ψ[IH]

〉
(F5)

Spur ∥I|ρJIH∥ = VIH = V last −
〈
ψ[IH] |V |ψ[IH]

〉
(F6)

Spur ∥ρJIH∥ = TIH = T last −
〈
ψ[IH] |T |ψ[IH]

〉
(F7)

The (F4) corresponds to (A20), (F5) with boundary condition (19) gives Spur
∥∥dI
dt

∣∣ρJIH∥∥ = 0

we used in (31), (F6) and (F7) are traded volume and time since
∣∣ψ[IH]

〉
spike till “now”;

typically we use normalizing V last = 0 and T last = 0.

Now consider a density matrix ρJJIH (33) obtained from the pure state of maximal

execution flow
∣∣ψ[IH]

〉
by applying J(·) transform (A8) to the polynomial ψ[IH]2(x) twice.

This density matrix corresponds to integration by parts performed twice. Obtain from (A12):

Spur

∥∥∥∥dIdt
∣∣∣∣ρJJIH∥∥∥∥ = IF0 Spur ∥ρJIH∥ − Spur ∥I|ρJIH∥ = IF0 TIH − VIH (F8)
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Spur

∥∥∥∥dpIdt
∣∣∣∣ρJJIH∥∥∥∥ = IF0 P

lastSpur ∥ρJIH∥ − Spur ∥pI|ρJIH∥ (F9)

The ∥ρJJIH∥ density matrix allows us to calculate “volume”-related values from
∥∥dI
dt

∥∥ operator.

One of the major results of this paper is established in Section IV B fact that in ∥ρJIH∥ state

the values of operators
∥∥pdI

dt

∥∥ and
∥∥I dp

dt

∥∥ are very close and their difference (if exists) gives

future price (36). Let us consider these operators not in ∥ρJIH∥ state, but instead in the state

∥ρJJIH∥. An important difference from ∥ρJIH∥ state is that the condition of
∥∥dI
dt

∥∥ being zero

in ∥ρJJIH∥ state no longer holds, as execution flow I = dV/dt and aggregated execution flow

VIH/TIH are different in
∣∣ψ[IH]

〉
state. The (F8) requires an “extra volume” Ṽ

Ṽ =

(
IF0 − VIH

TIH

)
TIH (F10)

to obtain proper value of operator
∥∥pdI

dt

∥∥; an alternative is to use eigenvalues adjustment

technique of Appendix E 1 above. Using (35) obtain

∆ = Spur

∥∥∥∥I dpdt
∣∣∣∣ρJJIH∥∥∥∥− Spur

∥∥∥∥pdIdt
∣∣∣∣ρJJIH∥∥∥∥+ Ṽ P ∗

= 2Spur

∥∥∥∥I dpdt
∣∣∣∣ρJJIH∥∥∥∥− Spur

∥∥∥∥dpIdt
∣∣∣∣ρJJIH∥∥∥∥+ Ṽ P ∗ (F11)

The difference from (35) is that there is an extra term Ṽ P ∗ caused by the difference between

IF0 and VIH
TIH

. We can consider |V |ψ⟩ = λ |T |ψ⟩ providing equal execution flow and aggregated

execution flow, see [2]: “Appendix C: The state of maximal aggregated execution flow V/T ”,

but these states gives little improvement. Consider instead a simplistic approach: select the

value of P ∗ that makes ∆ equals to zero:

P ∗ = − 1

Ṽ

2Spur

∥∥∥∥I dpdt
∣∣∣∣ρJJIH∥∥∥∥− Spur

∥∥∥∥dpIdt
∣∣∣∣ρJJIH∥∥∥∥ (F12)

In Fig. 9 the P ∗ is presented. We see no “advancing” property as it is for (36), this is an

indicator of “lagging” type. This makes us to conclude that the state ρJJIH while it has a

number of interesting properties to research, does not immediately provide and “advancing”

indicator. The ρJIH is probably the only state in which
∥∥pdI

dt

∥∥ and
∥∥I dp

dt

∥∥ operators are very

close and their difference (if exists) gives future price (36).
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