Market Directional Information Derived From (Time, Execution
Price, Shares Traded) Sequence of Transactions.

On The Impact From The Future.

Vladislav Gennadievich Malyshkin[|
loffe Institute, Politekhnicheskaya 26, St Petersburg, 194021, Russia

Mikhail Gennadievich Below
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics,
GSP-1, Moscow, Vorob’evy Gory, 119991, Russia
(Dated: September, 20, 2022)

$Id: ImpactFromTheFuture.tex,v 1.271 2024/11/05 15:00:58 mal Exp $

An attempt to obtain market directional information from non—stationary solution
of the dynamic equation: “future price tends to the value maximizing the number of
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flow calculated on past transactions. Both lagging and advancing prices are calculated.
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Bpemena Ilyrauésckoro 6yHnra.
Camo3BaHeIl BBICTYTAET TePeJT HAPOIOM,
FOBOPUT O IPSAYINEM CYACTHE, KOTOPOE
npuéT B hopMe MYKHUIIKOTO IAPCTBA.
ILnennntit oduriep crpamnmBaer:
“OTKyza JIeHbI'n OYyIyT Ha BCIO 9TY
6srarogatrs”’? Ilyraués orBerui: “T'bi

110, mypak? V3 ka3ubl KUTH Oyaem!”

Haponnas serenna, 1774.

I. INTRODUCTION

Introduced in [I] the ultimate market dynamics problem: an evidence of existence (or a
proof of non—existence) of an automated trading machine, consistently making positive P&L
trading on a free market as an autonomous agent can be formulated in its weak and strong
forms|2]: whether such an automated trading machine can exist with legally available data
(weak form) and whether it can exist with transaction sequence triples (time, execution price,
shares traded) as the only information available (strong form); in the later case execution
flow I = dV/dt is the only available characteristic determining market dynamics.

Let us formulate the problem in the third, “superstrong”’, form: Whether the future
value of price can be predicted from (time, execution price, shares traded) sequence of past
transactions? Previously[3], 4] we thought this is not possible, only P&L that includes not
only price dynamics but also trader actions can be possibly predicted. Recent results changed
our opinion.

There are two types of predicted price: “lagging” (retarded) and “advancing” (future)
Lagging price PR corresponds to past observations; future direction is determined by the
difference of last price P! and PF*. An example of PF¢ is moving average. A common
problem with lagging price is that it typically assumes an existence of a time scale the Pfe
is calculated with, what gives incorrect direction for market movements with time scales

lower than the one of Pf*'; however making the time scale too low creates a large amount of



false signals. Advancing price PA% is predicting actual value of future price; the direction is
determined by the difference of PA% and P!**. The PA% is typically calculated from limit
order book information, brokerage clients order flow timings, etc.

In this work both lagging and advancing prices are calculated from (time, execution price,
shares traded) sequence of past transactions. The key element is to determine the state
| 1) of maximal execution flow I = dV/dt (eigenvalue problem ), as experiments show
it’s importance for market dynamics. Found ‘w[l i ]> state automatically selects the time scale
what makes the approach robust.

Found lagging price l’ is the price in WUH}> state PUH! plus trending term that
suppresses false signals. The advancing price is obtained by considering density matrix state
|psrm|l corresponding to the state “since WU H]> till now” and experimentally observed fact
that operators ||p4 || and HI%H have to be equal in ||p;y|| state. This corresponds to the
result of our previous works [3], 5]: execution flow I = dV/dt (the number of shares traded
per unit time), not trading volume V' (the number of shares traded), is the driving force of
the market: asset price is much more sensitive to execution flow I (dynamic impact), rather
than to traded volume V' (regular impact).

This paper is concerned only with obtaining directional information from a sequence of
past transaction in a “single asset universe” just for simplicity, see Section [VIII below for multi
asset universe generalization. Whereas the dynamics theory of Section [[V] definitely requires
additional research, the lagging indicator of Section , see Fig. , can be practically
applied to trading even in a single asset universe. In this work we do not implement any
trading ideas of [3], 4], where a concept of liquidity deficit trading: open a position at low
I, then close already opened position at high I, as this is the only strategy that avoids
eventual catastrophic P&L losses. This paper is concerned only with obtaining a directional
information that is required to determine what side the position has to be open on a liquidity

deficit event.

II. THE STATE OF MAXIMAL EXECUTION FLOW

Introduce a wavefunction ¢ (z) as a linear combination of basis function Q(x):
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Then an observable market-related value f, corresponding to probability density 1?(z), is
calculated by averaging timeserie sample with the weight du = ¥?(x(t))w(t)dt; the expression

corresponds to an estimation of Radon—Nikodym derivative[6]:
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For averages we use bra—ket notation by Paul Dirac: (¢| and |¢). The is plain ratio
of two moving averages, but the weight is not regular decaying exponent w(t) from ,
but exponent multiplied by wavefunction squared as du = ?(z(t))w(t)dt, the 1?(z) defines
how to average a timeserie sample. Any ¢ (z) function is defined by n coefficients ay, the
value of an observable variable f in ¢ (x) state is a ratio of two quadratic forms on oy
; as an example of a wavefunction see localized state , it can be used for Radon—
Nikodym interpolation: f(y) =~ (¢, | f|1y) / (¢y | 1y); familiar least squares interpolation is
also available: f(y) ~ (¥, | f) vy (y) = S75l0 (Qif) G Qe(v)-

One can also consider a more general form of average, du = P(x(t))w(t)dt, where P(x) is
an arbitrary polynomial, not just the square of a wavefunction. These states correspond to a
density matrix average:
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This average, the same as , is a ratio of two moving averages. For an algorithm to convert a
polynomial P(z) to the density matrix ||pp|| see Theorem 3 of [7]. A useful application of the
density matrix states is to study an average “since [¢))”; for example if |1} corresponds to a past
dV/dt spike, then the polynomial “since [t) till now” is P(x) = J(¢*(x)) with J(-) defined in
; price change between “now” and the time of spike is P! — (3 | p | ¢) = Spur H % |,0J(¢2)

b

similarly, total traded volume on this interval is Spur ||Cﬁl—‘;|p T(42) H

The main idea of [3] is to consider a wavefunction then to construct quadratic
forms ratio. A generalized eigenvalue problem can be considered with the two matrices from
(3). The most general case corresponds to two operators A and B. Consider an eigenvalue

problem with the matrices (Q; | A| Q) and (Q; | B | Qx):

Ay = AT [ Byl (5)


https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
https://en.wikipedia.org/wiki/Paul_Dirac
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Generalized_eigenvalue_problem
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If at least one of these two matrices is positively definite — the problem has a unique solution

(within eigenvalues degeneracy). In the found basis WM> the two matrices are simultaneously

diagonal: and @ See to convert an operator’s matrix from |¢[i]> to (); basis and
to convert it from @); to }¢[i]> basis.

In our previous work [1H3] [5] we considered various A and B operators, with the goal to
find operators and states that are related to market dynamics. We established, that execution
flow I = dV/dt (the number of shares traded per unit time), not trading volume V' (the
number of shares traded), is the driving force of the market: asset price is much more sensitive
to execution flow I (dynamic impact), rather than to traded volume V' (regular impact). This
corresponds to the matrices (Q; |1 |Qk) = (Q; | A|Qk) and (Q; | Q) = (Q; | B| Q). These
two matrices are volume- and time- averaged products of two basis functions. Generalized

eigenvalue problem for operator I = dV/dt is the equation to determine market dynamics:
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FIG. 1. Price P, price PUH] , and maximal /minimal eigenvalues of for AAPL stock on
September, 20, 2012. The calculations in shifted Legendre basis with n = 12 and 7=128sec. The

execution flow eigenvalues are scaled and shifted to 693 to fit the chart.

The y = x¢ is the time “now”, ¢, (z) is a wavefunction localized at z = y. Here and below we
write ¢o(x) instead of 1., (z) to simplify notations. The <¢0 | ¢[ﬂ> is the projection of the
W[i]> state of |D eigenproblem to the state “now” [ig).

Our analysis[IH3], 5] shows that among the states ‘w[i]> of the problem the state
corresponding to the maximal eigenvalue among all A, i = 0...n —1, is the most important
for market dynamics. Consider various observable characteristics in this state ‘1/)[1 H ]>.

In Fig. a demonstration of several observables: the price in |¢[I H}> state , maximal
eigenvalue A\ of problem, and minimal eigenvalue A% (for completeness) are presented.

plra] _ (gt ‘p[ | Yl
(QUHT|L | plrH)

From these observable one can clearly see that singularities in I cause singularities in price,

(15)

and that a change in WU H]> localization causes an immediate “switch” in an observable. This

switch is caused by the presence of n — 1 internal degrees of freedom oy, (n coefficients, one



less due to normalizing 1 = (1| ¥), Eq. (§))). Such a “switch” is not possible in regular moving
average since it has no any internal degree of freedom, hence, all regular moving average
dependencies are smooth.

The state WUH}> that maximizes the number of shares traded per unit time on past

observations sample is the main result of our initial work [3].

III. ON TIME SCALE SELECTION OF A TRADING STRATEGY

Financial markets have no intrinsic time scalesE] (at least those a market participant
can take an advantage of). For US equity market — market timeserie data manifests an
existence of time scales from microseconds to decades. For NASDAQ ITCH [8] data feed
time-discretization is one nanosecond. Whereas real markets typically have no intrinsic time
scale, any trading strategy typically does have an intrinsic time scale. This time scale is
determined by: available data feeds, available execution, trader personal preferences, etc. An
implementation of trading strategies with time scales under one second requires a costly
IT infrastructure of data feed/execution, and is hard to program algorithmically; moreover,
market liquidity at such a low time scale is low, a situation when a dozen of HF'T firms are
chasing a single limit order of 100 shares is very common. For trading strategies with a large
time scale the major difficulty is that a trader, observing post-factum missed opportunities,
often starts to “adjust” the strategy to lower time scales. For professional money managers
(managing other people money), with the rare exception of “super-stars”, the maximal possible
time scale is one month: once a month a letter to investors explaining the fund performance is
required to be sent. There is no such a “monthly” constraint for somebody managing his own
money, for example, an individual crypto investor may be 50% down in April 2022 — but for
him this problem is not as big as it were for a fund. For traders the most popular time scales
are between “daily trading” and “monthly P&L”; these time scales provide sufficient number
of opportunity events along with market data availability (e.g. Bloomberg). Important that
these time scales are “compatible” with human reaction time.

The major drawbacks of trading systems the authors observed among institutional in-

vestors/hedge funds/individual investors is that all of them typically have a few time scales.

! Trivial time scales such as seasonal, daily open/close, year end, etc. while actually do exist provide little

trading opportunities.
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FIG. 2. An example of regular exponential moving average corresponding to 7 = 128s and 7 = 256s.
Standard deviation is also calculated with the same 7 and moving average £ standard deviation is
plotted as a thin line in the same color. As 7 increases — the moving average “shifts to the right”

(T-proportional time delay, lagging indicator). The data is for AAPL stock on September, 20, 2012.

Most often — a single time scale. It may be explicit or implicit, but it almost always exists.

The contradiction between a spectrum of time scales of the financial markets and a single

time scale of a trading system is the most common limitation in trading systems design.
Consider familiar demonstration with a moving average. Let P7 be a regular exponential

moving average. The average (-) is calculated with the weight (A3):

P (thow) = (pI) _ (Qopl)  (Qolpl|Qo) _ [ro v w(t)p(t) "

()~ Q) (QlI]Q) — [™avw(t)

The averaging du = w(t)dt takes place between the past and t,,,,, using exponentially decaying

weight w(t) = exp (—(thow — t)/7). With 7 increase, the contributing to integral interval
becomes larger and moving average “shifts to the right” (7-proportional time delay, lagging
indicator). The has no single parameter that can “adjust” the time scale as oy do in
(3) where du = ¢?(x(t))w(t)dt. In we have ¥(z) = const. Trading strategies that watch



crossing between price and moving average, or between two moving averages calculated with
different values of 7, have the problem that the specific values of time scales are initially preset.
We personally observed a number of successful (and failed) traders who were constantly
watching moving averages on Bloomberg — we may tell that their success is caused by
intuitively switching from one scale to another; if you ask such a person what he is doing
— he cannot explain; but looking at him from a side it is clear — the person is trying to
identify relevant time- and price- scales. Successful traders also jump frequently by observing
assets of different classes; it is a common situation before placing a trade on GOOG to
observe: DJI, AAPL, commodity, power generating industry, chemical industry — all withing
less than a minute. If you go from a human (who select the time scale based on intuition,
market knowledge, news, personal communications, experience, etc.) to an “automated trading
machine” that has none of that — the problem of selecting the time scale becomes very difficult.
The problem of automatic time scale selection is crucial in trading systems design. Another
critically important problem is to adsorb information of different financial instruments. The
theory presented below is perfectly applicable in multi asset universe; the analysis and
interpretation, however, become more complicated, see Section [VII] below for a discussion.
In this paper we will be concerned only with a single asset universe to demonstrate the main
ideas, and a detailed generalization of the theory to multi asset universe will be published
elsewhere.

Whereas we still have no approach to price scale selection (the [5] uses price basis p* as
Qk, but in the stationary case this is actually a time scale equivalent), we do have a practical
method for an authomatic selection of the time scale.

Considered in Section |[[I| above the state W[IH]> that maximizes the number of shares
traded per unit time on past observations sample determines the time scale. Let us consider
in this state not the price and execution flow as we studied before, but simply time distance

to “now” in [ /H1) state:

any _ (P (tnow — O] $1111)
N (PUHT]T | pIHHT)
<<tnow _ t)[>

{I)

here T7 is regular moving average. As all the values of time (future and past) are known, the

carry information about |¢!#1) localization. When the value is small — a large dV//dt

T (17)

T = (18)
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FIG. 3. TUH] and regular moving average (dark blue) T for 7 = 128s and 7 = 256s; the values
are multiplied by 1073 and shifted up to fit the chart. The AAPL stock on September, 20, 2012.
The calculations in shifted Legendre basis with n = 12. Top: for operator I = dV//dt. Bottom: for
operator V/T.

spike event happened very recently. When it is large — a large spike happened a substantial

time ago, the value is an information when a large spike in dV/dt took place.

In Fig. [3| (top) the value of Tl (scaled by the factor 1073 and shifted up to fit the chart)
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is presented for 7 = 128s and 7 = 256s. One can clearly see that there is no smooth transition
between the states, the “switch” happens instantly, there is no 7-proportional time delay,
what is typical for regular moving averages 77. A linear dependence of TV on time is also
observed, this is an indication of stability of WU H}> state identification. The value of T
is the time scale; typically it is easier to work with the density matrix p;(y2) obtained from
Y(z) = Y(z) rather than with the time scale itself; a typical operation with time scale —
calculate an average of some observable in the interval of time scale length till “now™: the
density matrix does exactly this.

We have tried a number of other operator pairs in generalized eigenvalue problem @

A B eigenvalue meaning

Qi |1 Qk) Q| Qr) I = dV/dt (execution flow)

Qi |V 1]Qr) Qi |T| Q) V/T (aggregated execution flow)
(Q; | TI =V [Qx) Q1T Q) I-V/T

(Q; |V | Q) (Qj | Q) V' (traded volume)

(Qjlp| Q) (Q; ] Q) p (price)

(Qj |pI'| Q) (Q; [ 1] Qx) p (price)

Q| % Q) (Q; 1 Q) dp/dt

<Qj % ’ Qk> (Qj 1| Qk) dp/dV (market impact)

(Q; ‘ Plast _ | Q) (Q; |V | Q) Plas%y (aggregated market impact)

among many others|[I} 2]. An eigenproblem with an additional constraint was also considered,
see “Appendix F” of [2] and, more generally, “Appendix G” of [6]. All price-related operators
cause noisy behavior, no “switching” whatsoever. Only the operator V/T does have similar
to I = dV/dt switching (but less pronounced); it is also more sensitive to 7 selection.
Time to max spike in V/T is presented in Fig. 3| (bottom). See [2] about the properties of
[V|) = N |T|1) states: “Appendix C: The state of maximal aggregated execution flow V/T".

This makes us to conclude that the state to determine the time scale is the state }@D[I H]>
that maximizes the number of shares traded per unit time on past observations sample. This

state allows us to average an observable f with the weights:
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meaning measure [ fdu
“at spike’ dp = YU (o (t) oo (8 dt (U] f| gl
variation “at spike” |du = 2ED () U (g (8))w(t)dt 2 (ED (¢lH1) | f]plTH1)

“since spike till now” |du = P(z(t))w(t)dt; P(x)=J <¢[IH}2> Spur|| f|pp||
“since since spike”  |du = P(z(t))w(t)dt; P(x) = J <J (@/JUH]Q)) Spurl| f|pp||

Found solution automatically adjusts averaging weight what makes the value of parameter 7
in (A3) much less important. The “switch” happens instantly, without a 7-proportional time

delay as it were for a regular moving average.

IV. ON THE IMPACT FROM THE FUTURE

The concept of the Impact From The Future was introduced in [I]. It predicts the value
of future execution flow. Given currently observed (at t = t,,,) value of execution flow
Iy = (¢o | I |1y) we know with certainty that future value of execution flow Il” will be greater
than I because more trading will definitely occur in the future. But how to estimate the value
of If'? The maximal eigenvalue A\I/# of is used as the estimation of future execution

flow [OF:

15 = )4 (19)
dif =15 — I, (20)
drt >0 (21)

Whereas the I is an “impact from the past” (already observed current execution flow), the
dIT is an “impact from the future” (not yet observed contribution to current execution flow);
it’s value is non—negative by construction. Similar ideology (use past maximal value as an
estimator of future value) is often applied by market practitioners to asset prices or their
standard deviations. This is incorrect. Experimental observations show: this ideology is
applicable only to execution flow I = dV/dt, not to the trading volume, asset price standard
deviation or any other observable.

A criterion of no information about the future can be formulated. If current I, is close to

AH] this means that we have a “very dramatic market” right now and there is no information
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about the future of this market:
I =0 (22)
An alternative form of is more convenient in practice because the value is [0 : 1] bounded:

(o [wH) =1 (23)

This means that |¢[I H]> and |1g) are the same . In practice a good value of the threshold
is between [0.2 : 0.8] instead of the maximal value of 1. In Fig. (1| one can clearly see the
spikes in A/ when approaches 1, for I(t) see Fig. 1 of [2], it is not presented in Fig.
to save the place.

We have the state ‘L/J[I H ]> and the criterion of no information about the future. How
to obtain directional information? Previously [3] we considered the price P!/ in the
found state ‘w[l i ]> as an indicator related to market direction. The difference between P'est
and PUH] was used as a directional indicator. A typical result is presented in Fig. . The
price PUH] is actually a moving average with positive weight having n — 1 internal degrees of
freedom. It determines the direction (and can possibly work for “reverse to the mean” type
of strategy), but this is not the future price.

Consider a concept from classical machanics. Let us introduce a Lagrangian—like function:
to

s [ Lin. vty (24)
t1

and try to variate it. Let us first take L to be an exact differential (e.g. total energy in
classical mechanics L =T + U). Then carry no information about the dynamics, but
we obtain two distinct terms fttf T'dt and j;tf Udt that we can consider the difference of and
obtain actual equation of motion. We implemented this strategy below by considering various

hypothesises for action S and testing them experimentally.

A. Volume Driven Dynamics

Assume that price changes are caused by trading volume. Introduce

d
(p _ Plast)(v o Vlast)



14

= v Py pen O (25)
Then “exact differential action”
Sed — <w[IH] (V- Vlast)% w[IH]> n <¢[1H] ‘(p _ Plast>[| w[IH]> (26)
To obtain “actual” action we have to change the sign in between:
S= <w“H1 (V- V““)% WH]> = (I |(p = P I ) (27)

These two terms can be considered as “kinetic” and “potential” energy. It is difficult to variate

so let us just find the price P'*** that makes these two terms equa:

asty P
Avp = <¢UH1 (V -V t)%‘ ¢”Hl> (28)
1
pEQ — plH] _ Vi Avyp (29)

The dynamics with action is a volume-driven dynamics. Let I = ‘fi—‘t/ = const then both
price and volume are linear functions on time, P = at +C and V — V!®! = [t and two terms
in are equal exactly in any state: (p — P = (V — Vl““)%. Taking into account that
1) is typically localized (see Fig. 6 of Ref. [2]) obtain (¢! |(V — Vl‘“t)%‘ YUHD) ~
(YUHI |y — ylast | UHTY (AT | 4 | Y1) Since V — V'@ is negative, the means trend
following, the trend is determined in [¢)/1) state. In this state we have price equals to P!
and dp/dt = (I | 9 | IHD) The means that reference price will slowly follow the
trend as trading proceed. This trend following stops only with ‘@Z)[IH]> state switch, what
means a new spike in I has been observed and this new spike is now the “most dramatic
market observed”.

An important feature of PF? is that in there are only the moments that are calcu-
lated directly from sample using : (QuI), (Qmpl), and <Qmel—f . This makes all the
calculations easy. In Fig. 4| we present the P”% along with PU#] In [3] the best directional
indicator found was the difference between last price and PY#! without trending term. As
the price reaches some trading band — it starts crossing P/ multiple times thus creating
false signals. The PF? has a great advantage of extra trend following contribution in ,
what very much suppresses false signals. The result is also stable in situations when max [

“switch” is missed.

2 Similar concept in mechanics corresponds to finding the state in which kinetic energy equals to potential
energy. This gives an exact result for oscillators and approximate result for many other systems, see Virial

theorem.


https://en.wikipedia.org/wiki/Virial_theorem
https://en.wikipedia.org/wiki/Virial_theorem
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FIG. 4. Price P, price PUH] 1} PEQ 1) and maximal eigenvalue of for AAPL stock on
September, 20, 2012. The calculations in shifted Legendre basis with n = 12 and 7=256sec. The

execution flow eigenvalue is scaled and shifted to 693 to fit the chart.
B. Execution Flow Driven Dynamics
Consider “exact differential” action with — <¢[I H] ‘(p — Pl“s’f)‘fi—‘ﬂ Pl H}> term from 1’

d
_<p . PlaSt)I

St = (YU |(Plst — p)I| ) = Spur |- patn
d d
= Spur ]d—f psra|| + Spur Py |Pats (30)

Then “actual” actionﬁ is considered as “kinetic” and “potential” terms split; the kinetic term
is defined as the one with first derivative of price in Spur with ||psru||-

dI

S = Spur pa

d
[d_zt) pJre|| — Spur PITH (31)

3 Note that if one put in H%(Vlast _ V)%

is obtained.

and ||&(P'st — p)I|| instead of HI%

and |[p4L|| the
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Here and below ||p;rp|| is the densitity matrix corresponding to the state “since | till
now” , obtained from the polynomial .J (1#” H]2> A11) by applying Theorem 3 of [7], see

com/polytechnik/utils/BasisFunctionsMultipliable. java:getMomentsOfMeasurePr

oducingPolynomialInKK_MQQM for numerical implementation; the ||pssrg|| is the densitity

matrix corresponding to the polynomial J <J (1/)[[ H]2)> A12);

| (32)

lprsrull = H/ﬁ@@[mﬁ)) H (33)

lpsrmll = Hpj(qp[fH]Q)

see com/polytechnik/freemoney/IandDM. java:{QQDensityMatrix,QQDensityMatrix2}
for numerical calculation of ||p;rg|| and ||pssrx| from U!(z). The second term in (31))
does not depend on price shift p — p + const as with boundary condition we have

Spur H %|pJIHH = 0. The dynamics with action is execution flow driven dynamics. Let

=9

5 = const then the volume is a linear functions on time V' — Viest — It and the price

is constant dp/dt = 0, both terms in are zero in any state; moreover when p(t) = I(t)
the two terms are equal exactly for any /(¢). This is different from the dynamics defined by
action where constant I causes linear dependence of price on time. With action all
changes in price are caused by changes in execution flow. Our previous observations [3], [5]
show that asset prices are much more sensitive to execution flow / (dynamic impact), rather
than to traded volume V' (regular impact).

Whereas the calculation of action was easy because the moments were calculated

directly from sample, the calculation of is much more difficult. We can obtain directly

from sample only operator ||p/|| and then, using (A20|), operator H dp[” HI%H + Hp%”:
il -l -2l H o o0
The problem left is to calculate the operator HI H Currently we do not have a method

to obtain it exactly. The problem is simplified by the fact that we need not the operator
HI H per se, but just Spur HI gt ’ pJIHH what enables us to work with it’s approximation.
See Appendix l below for several approximations for ||] || one can possibly try secondary
sampling approach of Appendix [D] as an alternative route. Different approximations give
noticeably different results. Nevetheless, assume we know the value of Spur ||I | PII HH on past
sample. Then, assume one more observation with price PF? is coming. With the knowledge

of future execution flow (|19)) we can put equal “kinetic” and “potential” terms in , thus
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to obtain the value of price P9 at which (31)) is zero (use boundary condition with

(A20) expansion):

A = Spur ||I d_f pJre|| — Spur Zé PJITH
= 2Spur || % pJre|| — Spur dgtl PJITH (35)
PEQ _ plast _ )ﬁII{ ] (36)
_ g plast _ plIH] _ N ‘ICZ) PIIH ‘

In all “future” price contributions are moved to the left hand side and in the right
hand side all the integration is performed till last observed point with p = P'**!. Technically
(36) means: calculate the difference A; on observed sample, and if it is not zero — the
price will move on —A; /A to compensate. Our experiments show that these two terms
are very close to each other and the value of A; is small. One may also try other states,
such as ||ps JIHH to consider the operators in, but the property of operators HI H and
Hp o || being equal in some density matrix state seems to be special to the state ||psr||, see

Appendix [F] below for a study of the state ||pssr||.

C. Local Volume Driven Dynamics

Similarly to 1) one can consider the term — <1/JUH] |( — Vtast dp‘ ¢[IH]> from ([25)) to

be an “exact differential” action:

dp d dp
Sed _ [IH] Vlast — )X [TH| — S vV — Vlast
<¢ ( ) |¥ pur || )y |parn

d2
= Spur || ] e pra ||+ Spur [[(V — VlaSt)—Z; PIIH (37)

dt dt

Then “actual” action is:
d d?

S = Spur Id_]Z psrr| — Spur [[(V — VlaSt)Ef PIITH (38)

The dynamics with action is local volume driven dynamics. Let [ = ‘gt/ = const, then

the volume is a linear functions on time V — V%t = Jt. Two terms equal give quadratic

dependence of price on time: P = at? + C; then two terms in (38) are equal exactly in any

state: [ % = (V — Viast) ‘;té’ There is a similar problem with calculation of the derivatives to
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the one considered above. Taking into account || (V — V'est) dp )2 = H[ |+1{|(V - Vl‘“t)flj]’t’2
obtain:
dp
Vlast Vlast 39
I I

As with ( above the second term is obtained by applying to the moments
H( — Vlast) dp H that are available directly from sample. Consider one more observation with
price PP coming. With the knowledge of future execution flow (19) we can obtain the

equilibrium price:

d d?
Ay = Spur Id_i) psra|| — Spur ||(V — VlaSt)d_;; PIIH
d d d
= 2Spur [d_]t? PIITH Spur dt (V - VlaSt) d]Z PJIITH (40)
A
EQ __ plast |4
PPO = Pt — (41)

Technically means: calculate the difference Ay on observed sample, and if it is not

zero — the price will move on —Ay /AU to compensate.

D. Total Lagrangian Driven Dynamics

The same as in Sections [IV Bl and [IV C| above we can consider the entire L(p, V') from
in [ state — (YU | L(p, V) [ TH1) to be an “exact differential” action:

(Vlast . V)%‘ ¢[IH]>
d*p

vV — Vlast -y
( )

Sed _ <77Z}[IH] |(Plast —p)]’ 77Z)[IH]> + <¢[IH}

dl

dp
I—
dt

= 2Spur 7 |PH + Spur ||p—|psrm|| + Spur PITH (42)

This is actually the same expression as above (with changed sign), but split differently
into “kinetic” and “potential” energy terms. The “actual” action is then obtained by changing

the sign of “potential” contributions:

(V . Vlast) @

dp
] =
dt2

dl
S = 2Spur o gr |PITH + Spur

PJIH PJIH

— [Spur P

|

The dynamics for I = ‘il—‘t/ = const can be obtained in a regular way. The volume is a linear
functions on time V' — V't = Jt. The price with “kinetic” and “potential” terms equal gives
cubic dependence of price on time: P = at® + C; the terms in are equal exactly in any

. dp _ ast\ d?
state: 21 = 04 (V — V%) L.
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The Ar correponds to the sum of and :

Ar = A+ Ay (44)
dpl d d
= 4Spur ]d_i) pyrH|| — Spur % psrE|| — Spur EG/ — Ylast) d]: PITH (45)
A
EQ __ plas T
PP = plot — (46)

Whereas this “Total Lagrangian Driven” and “Volume Driven” dynamics of Section [V A
above use the same “exact differential action” and , they generate different dynamics
as we differently split action into “kinetic” and “potential” terms. The dynamics of Section
[V Al is of trend following type, the direction changes only when WJ[I H]> “switches”. The
direction of “Total Lagrangian Driven” dynamics takes into account a number of factors in

, thus it may reverse the direction even without a “switch” in WUH]>.

V. ON SELECTION OF A TYPE OF THE DYNAMICS

In Sections [[VA] [VB|] [VC] and [VD] we chose an “exact differential” action from

which price dynamics was determined. The “volume driven” dynaimes of Section [V A] stays

separately as it is a trend—following model with automatic time-scale selection of Section [[T]
it is the simplest “practical” model. An important feature of possible “action” of the forms:
31, B8), and is that all of them include fluctuations of execution flow dI/dt. Now we
have to choose which one corresponds to market dynamics most closely. Technically, we have
three calculated characteristics: Spur H ap I|PJIHH and Spur || = — last) ap ‘pJIHH that are
obtained exactly and Spur HI ‘p JIHH that is obtain from an approximation, such as in the
Appendix [A] Now we need to select from them the most appropriate linear combination to
obtain the future price according to , , or .

Experiments show that only execution flow driven dynamics of form can possibly
work to determine the future price. This type of dynamics has only two contributing terms:
I % and p4, that are very close to each other in ||p;;p| state. The sum of them is equal
exactly to AUHI(plast — PUHY) — Spur || L) ;|| (the result of [3]) and their difference
determines future price (a new result of this paper). In Fig. a demonstration of
PEQ (field com/polytechnik/freemoney/PFuture.java:PEQ_I_fromDPI, obtained

with ||15¢ || from l} is presented. The result is almost identical to |D approximation,
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FIG. 5. Price P, price PU/H] |D and PF@ for AAPL stock on September, 20, 2012. The ratio
of aggregated % execution flow and A\ is also presented (shifted up to 693); it is about 1/2 in

W[I H}> state. The calculations in shifted Legendre basis with n = 12 and 7=256sec.

field com/polytechnik/freemoney/PFuture. java:PEQ_I_fromI2DtpDivI, and the Aj is

slightly lower with (A25))). This is the only “advancing” (not lagging!) indicator we managed
) . . d d

to obtain so far. A very important feature is that operators de—ﬂ} and ||I d—’t’” from

are very close in pyrg state, and the difference determines future direction (35)). This

corresponds to ﬁSpur ||[%|pJIHH ~ Spur H%|pJIH }; the ratio of aggregated execution

flow ¥ = W and execution flow A/} is about 0.5 in [/#]) state, see green line in
Fig.

One may also consider other states, e.g. from [2]: “Appendix C: The state of maximal

aggregated execution flow V/T”, that corresponds to eigenvalue problem
|V}¢[i]> — )\l |T|¢[i]> (47)

and using this V/T maximal A in boundary condition . A remarkable feature of this state
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|wV 71y is that in it dV/dT = V/T = XV/70:

(VT 1] V) B (YT V| VT _ Sour vl _ s wyry oy
(VI vIT) o (VT T VI Spur [[pvr| a

what allows us to consider “double integrated” type of the density matrix we considered in

(48)

Appendix [F| In this [¢[V7) state we typically have Spur HI 2| psvr|| ~ Spur || % 1no

“advancing” information we managed to obtain so far.
When asked about “direct application” of the solution presented in Fig. 5 an “advancing”

indicator, to practical trading — it is not ready for two reasons:
e The result strongly depends on approximation used for HI H see Appendix

e In Fig. 5| we have shown only the interval, where predicted future price is substantially
different from last price. For large intervals of this trading session the difference between
predicted and last price is very small, this means the relation Spur Hp ‘ p J[HH =

Spur ||[ |pJ[HH holds almost exactly in ’1/} IH]> state.

This makes us to conclude that execution flow driven dynamics of Section [V B] while is a
very promising one and is the only one we obtained, that can possibly provide an “advancing”
indicator — it still requires more work for practical applications. These two directions are the

most promising:

1. Select other eigenvalue problem @ that will be determining the time scale. The best
what we found is with the state |1} of maximal eigenvalue A/#]. All other

tried have been worse.

2. Select directional indicator. The best indicator we found so far is the .

VI. ON PRACTICAL SOURCE OF DIRECTIONAL INFORMATION

Whereas our attempts above to obtain an “advancing” indicator were promising but not
ready yet for practical trading, a lagging directional indicator with automatic time—scale
selection of Section , is ready and can be applied to trading. This indicator is the
PUL price plus trend-following factor that is proportional to dp/dt in [H]) state:

1
EQ __ IH IH
P — plH] _ m <¢[ ]

(v = v e i) (49)



22

The formula automatically selects the time scale from the interval [7/n : 7] (in Shifted
Legendre basis) or from the interval [r : n7| (in Laguerre basis). The difference between last
price and PF? determines the trend. Trend “switch” occurs instantly as a “switch” in }@Z)[l H]>
of eigenproblem. In Fig. |8 below the is presented in higher resolution than in Fig.
above. The situation when PP is close to P! corresponds to no information about the

future situation. Typically all the directional signals should be ignored when

(o [ Y > 0.1 (50)

as this corresponds to little information about the future available.

VII. A BRIEF DESCRIPTION OF THE ALGORITHM

Whereas a theory presented is this work may look rather complicated, it’s computer
implementation is very straightforward. It is way simpler than multiple systems of other
people the authors have seen in diversity —~. Technically an implementation of the theory
requires an integration to calculate the moments from timeserie sample , polynomials
multiplication to calculate the matrices from moments, and solving an eigenproblem
for time scale. There is no magic, simple and precise description of an algorithm implementing
the theory is this: On each (Time, Execution Price, Shares Traded) tick coming do the

following;:

1. Have an integrator that on each tick coming recurrently updates an internal states to
calculate the moments: (@), (Qml), (Qmpl), and <QmV%>; see com/polytechnik/

freemoney/CommonlyUsedMoments. java.

2. Using these moments construct the matrices (Q; | Qk), (Q; | I | Qk), (Q; | pI| Qk), and
<Qm%‘/%> by applying multiplication operator 1} then solve generalized eigenvalue
problem to find the state of maximal execution flow ‘w[f H ]> determining the time

scale, see com/polytechnik/freemoney/FreeMoneyForAll. java.

3. Construct a polynomial corresponding to the state “since WU H ]> till now” 1) then
obtain corresponding density matrix ||p J(wirm?) || using Theorem 3 of [7], see com/poly

technik/freemoney/IandDM. java.
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4. Obtain price as directional indicator. Use as non-applicability criterion. See c
om/polytechnik/freemoney/PFuture. java:PEQV_from_M.

5. Optionally. Try , but this calculation requires an approximation for ||I %H and
is much more sensitive to time-scale selection than . The result for “advancing”

directional indicator (36| is not always satisfactory.

See Appendix [C] below with a description of the softwarel implementing the algorithm. This
software reads a sequence of (Time, Execution Price, Shares Traded) ticks (line after line,

one tick per line), and for every tick read prints the results.

VIII. CONCLUSION

An approach to obtain directional information from a sequence of past transactions with
an automatic time-scale selection from execution flow I = dV/dt is presented. Whereas a
regular moving average has a built-in fixed time scale, the approach of this paper uses the
state of maximal execution flow to automatically determine the one. Contrary to regular
moving average the developed approach has n — 1 internal degrees of freedom to adjust
averaging weight according to spikes in execution flow I = dV//dt. These internal degrees of
freedom allow to obtain an immediate “switch”, what is not possible in regular moving average
that always has a 7-proportional time delay, lagging indicator. For a problem of dimension n
in Shifted Legendre basis the system automatically selects the time scale from the interval
[7/n : 7], and in Laguerre basis from the interval [7 : n7]. Among unsolved problem we
would note a selection of optimal H[ %H interpolation to obtain an advancing price from
, see Appendix |A| and studying a possibility to “split” some average value based on some
other operator spectrum, see Appendix , Eq. . The software implementing the theory
is available| from the authors. Among directly applicable to trading results we would note the
price that includes both “switching” and “tending” contributions, see Fig.

A generalization of the developed theory to a multi asset universe creates a number of
new opportunities. Now from a sequence of past transactions [ = 1... M for N, financial

instruments:

(tl,pl(a),dw(“)) a=1...N, (51)


http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
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one can construct N, execution flow operators <Q] |[ (“)| Qk>, each one with it’s own state

lIH] (a)> of maximal I® and corresponding to it pS'II)H In addition to this an operator of

capital-flow index

. X (@ dV©@ Na :
] — a — (a)](a‘ 52

can be constructed to determine market overall activity; it also has it’s own state ’w” H] T>
of maximal . Critically important that all these |¢)) are in the same basis (the one of
(A4])) and their scalar products (¢ | ¢) can be readily calculated. Technically this means
we can independently use N, integrators com/polytechnik/freemoney/CommonlyUsedM
oments. java, where each one calculates the moments <Qm f(“)> of it’s own single asset
a=1...N,, and then, from here, all the cross-asset characteristics can be calculated via
projections! For example: how similar is the state of high execution flow of asset a and the

lIH] (b) >2.

“correlated” assets are not the assets which prices “go together” but the assets with simultaneous

one of asset b 7— it is just a regular scalar product of two wavefunctions <w[1 H) (@)

spikes in execution flow. In addition to simultaneously criterion (projection) a criterion for

“which one came earlier: a spike in ||I(?|| or a spike in [|[I®||” can be written in a similar

w[zH](a) ’ (tnow—t)(@) ’¢[1H](a)> <,¢[1H](b) ) (tnow—t)I®) ‘d}[IH](b) ' ‘
way: — - - obtained from directly sampled
<w[1H](ﬂ) I(a) 7/,[IH]('1)> <¢[IH]() 1) )d)[IH]( )>

moments <Qm(tnow - t>I(a)> and <Qm(tnow - t)[(b)>7 Or as Spur|’pf]LLI)H” - SpuerETbI)HH what

does not require other moments. There are several alternative forms of “distance” to determine
which |¢) happened earlier, see [I], “Appendix A: Time-Distance Between |¢)) States”.

In a multi asset univers complexity of calculations growths linearly with N,, hence the
value of N, can be very high even for realtime processing. Moreover, as every integrator com
/polytechnik/freemoney/CommonlyUsedMoments. java works independently, the problem
can be easily parallelized to run each integrator on a separate core. Then all the cross-asset
characteristics can be obtained from individual asset data (the moments from com/poly
technik/freemoney/CommonlyUsedMoments. java instance) with standard linear algebra
operations such as projection (scalar product), taking the difference between two Spur||p x|

to determine the distance, or considering some other operator (e.g. capital-flow index (52)))

n a state hke ‘¢>, Hp](w?)”, or ‘|pJ(J(w2))H

.\ 2
4 A one of self-evident trading strategies: when current value of I is large <¢0 Pl H]I> = 0.8 select the

I\ 2
assets a with currently low execution flow <¢0 ‘ Pl 1) )> 2 0.5 as “lagging” and soon to follow in the

direction of the market.
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We see an application of this paper theory to multi asset universe as the most promising
direction of future research. The simplest, but really good, indicator is the plast@) _ pEQ(@)
indicator 1} calculated for each a = 1... N, asset then all summed with the \[/Z 1@ weights

for the terms in the sum to have the dimension of capital flow.
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Appendix A: On Calculation of <me%> moments from (Q,,pI) sampled moments.

A theory developed in this paper works primarily with an observable f and corresponding
operator (matrix) (Q; | f|Qk), j,k =0...n — 1 that is obtained by applying multiplication
operator:

J+k
Qij = Z Cjn’me (Al)
m=0
to sampled moments (@, f), m = 0...2n — 2. The moments are defined with @,,(z) being a

polynomial of order m and integration measure w(t) dt having the support ¢ € [—00. ..ty

tTLOU)

(Quf) = / dt(t)Qu(x(1)) £ (1) (A2)

—00
In this paper we use: w(t) is decaying exponent and z(t) is either linear or exponential

function on time:

w(t) = exp (= (tnow — 1)/7) (A3)

t —tnow)/T Laguerre basis
a(t) = ( / (Ad)
exp (—(tpow — t)/7) shifted Legendre basis
These two bases correspond to a more general (also analytically approachable) form z(t) =

exp (—(thow — t)/7*), where w(t) and x(t) are both exponential functions on ¢ but with

different time scales: 7 and 7*. Other forms can also be considered.


https://xn--80akau1alc.xn--p1ai/
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If we want to consider df /dt moments, then put it to (A2)) and do an integration by parts:

tnow

d, d
<@md—{> = F (b0 (0) Qo (0) — / i (1) 2o (t) @ (1) (A5)
if %w(z(t))@m(az(t)) is equal to the same weight multiplied by a polynomial: w(x)P(z) then
the moments of df /dt can be obtained from the moments of f according to (A5). The key
element is an existence of ED(-), a polynomial-to—polynomial mapping function (it is obtained

as a derivative of a polynomial multiplied by the weight):

& (1)) 0(a(0)p((1)) = w(z) [ED(v)g + VED(y)] (A6)
dip(z) |1 :
i + E@D(m) Laguerre basis

ED(y(x)) = (A7)

d 1
m% + 51#(36) shifted Legendre basis

where the time-derivative of a polynomial multiplied by a weight is represented by the same
weight multiplied by other polynomial. The corresponds to ¢ = 1 and ¢ = Q.

For the two bases we consider in this paper it is also possible to obtain (Q,,f) moments
from < m%> moments using integration by parts, see [2], section “Basic Mathematics”, about
J () polynomial-to-polynomial mapping such that for an arbitrary polynomial P(x):

t

/ P(x(t))w(t)dt = w(t)J(P) (AS8)

—0o0

For the bases we use such a polynomial-to-polynomial transform exists:

( T

1
op(@) / P(x')exp(z’)dx’ Laguerre basis
J(P) = z (A9)
1
— / P(z")dz' shifted Legendre basis
T
[0

A remarkable feature of this transform is that since ((f(tpow) — f)P) = <J(P)‘;—’:> and J(P)
is also a polynomial, thus an average with it can be converted to a density matrix average,
any average (Pf) can be represented as the spur from a product of operator ||df /dt|| and a

density matrix [|p||:

(Pf) = Spur

daf
14
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This way any average of an observable f can be calculated as operator ||df /dt|| averaged in
some mixed state p obtained from the polynomial P(z). Note, that J(-) transform can be
applied in chain:

tnow tnow

/ %J(P)W)dt:fxocf(P) L wizo) - / FP(x(t))w(t)dt (A11)

tnow tnow

[ G =4 )+ [ P

—0o0 —00

(A12)

The moments of f are usually obtained from direct sampling of all available observations

{=1...M in a timeserie:
(@) =Y F(t)Qu(w(t)w(ts) [t — tia] (A13)

the moments of a derivative df /dt can also be obtained from direct sampling:

(@nh ) =3 Quleta)et) [7(0) — F(e0) (ALY

See [I], section “Basis Selection”, for one more basis: price basis: Qx(t) = p*(t). It has no
ED(:) and J(-) operators available, but has similar sampling formula. Given a good choice of

basis polynomials:

L, (—x) Laguerre basis

Qm(z) = (AlD)

P,.(2z — 1) shifted Legendre basis
one can calculate (with double precision arithmetic) the moments to a very high order m < 50
(limited by the divergence of ¢/¥ multiplication coefficients ) in Laguerre basis, and
m < 150 (limited by poorly conditioned matrices) in shifted Legendre basis; Chebyshev
polynomials T,,(2z — 1) also provide very stable calculations in shifted Legendre basis
(Chebyshev polynomials have perfectly stable multiplication: all ¢/* = 0 except C;]ik = cj’ik =
0.5, j > k). The result is invariant with respect to basis choice, @Q,,(z) = 2™ and the ones
from give identical results, but numerical stability can be drastically different|3, [10].
Moments calculated from market data timeserie using Egs. and are the

cornerstone of our theory. The most important are the moments of execution flow I = dV/dt,


https://en.wikipedia.org/wiki/Quantum_state#Mixed_states
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they are obtained from by putting the volume as f =V, thus the moments (Q,,I)
are obtained from timeserie sample; the matrix (Q); || Q) is obtained from them using
multiplication operator . The matrix (Q; | Q) is known analytically. These two matrices
are volume- and time- averaged products of two basis functions. A generalized eigenvalue

problem is then formulated:

| 7[p) = At Iw“‘> (A16)
n—1
Q1 1] Qx) e —AMZ (Qi1Qn) (A17)
k=0
n—1
Yi(z) =" o)) Qulx) (A18)
k=0

and solved. Whereas the calculation of the moments (Q,, 1), (Qmpl), <Qm%>, <QmV% ,
(Qmp) create no problem whatsoever, an attempt to go beyond them turned out to be
problematic. For example any second order derivative (e.g. d*p/dt?) cannot be obtained
directly from sample and, in the same time, has singularities when applying an
integration by parts (A5)), not to mention difficulties to formulate a boundary condition at
T = To.

However, some of these characteristics are of great interest. The most important one is
<Qm[ Zp > The price p = f D gt — | dp provides an information of current market state, but
little one about possible trading opportunities. Assume at a given time interval dt we have
some specific constant value of execution flow I = dV/dt and some dp/dt. During this dt
interval dV = Idt shares were traded and the price change was dp = %dt. How much money
we potentially can make during this dt? Buy at the beginning of ¢: dV shares at p. Sell at
the end of t + dt: dV shares at p + dp. Total potential P&L (assuming we can perfectly
frontrun the marketED is then dP&L = Idp. The P&L = [ Idp tells us how much money
can be potentially made (or lost) on market movements taking into account traded volume
capacity. This is the same sum of price changes as for regular price p = [ dp, but not all
dp are created equal. If dp occurred on a large execution flow — it contributes more, if on
a small — it contributes lessﬁ This creates a different way to study opportunities of market

movements, see Fig. [6]

® During every dt we hold dV shares, i.e. we always hold a position S equals to execution flow I = dV/dt,

the P&L = [ S(t)dp, see [3], Section “P&L operator and trading strategy”.
6 The concept of I % = Cfi‘t/ ‘;fz is very different from commonly studied market impact concept that is a price

sensitivity to volume traded: dp/dV .


https://en.wikipedia.org/wiki/Market_impact#Market_impact_cost
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P&L=1dp

FIG. 6. A schematic example of price (the sum of price elementary changes dp) vs. possible P&L
(the sum of price changes multiplied by execution flow Idp). The second curve tells how much money
one can be potentially made (or lost) on market movements taking into account traded volume

capacity.

The value of <QmI %> cannot be calculated directly as well as it cannot be calculated
using integration by parts in a general basis. However, if we change the basis and
vary basis functions in the basis of eigenproblem |I]¢l1) = Al |41} an approximate
solution can be obtained. Consider the basis W,[i]% it is orthogonal , @ as:

S = <¢[J’] |¢[k]> (A19a)
NG5, = (gl | 1|y (A19Db)

what gives (o |1 |9lT) = AT (o |4lT) for an arbitrary |¢). Then taking into account (A5)
and (A6) put f = pI and P"' = p(t,0,). Obtain for matrix elements:

<¢m dpI

dt
These are matrix elements of <1p[j] |%‘ w[’“]>. We are going to modify them to obtain sought

' ¢W> = P (0 Yoo o) (0 ()
— (ED(U) | pI | ™) — (¢l | pT | ED(y 1)) (A20)

matrix elements <¢[ﬂ ‘I %‘ w[’“]>, that should be zero when p = const. For this reason the
average in (A20) should be reduced to an integral of an exact differential to be canceled with
out of integral term. Taking into account (A16]) and (A19) one can see that

<¢m

]%‘ ¢[k]> = Plast/NDIAFw (20)b 1 ()™ ()
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p\Yl

G <ED ¢[J] |p_]{¢k]>

Ab <¢ | pI | ED(41")) (A21)

satisfies exact differential condition. Then practically applicable expression is:
<¢m

This is an expression of operator HI H in the basis of 1) The reason why we were

d L A
fd—f‘w[“>= M,{ <ED P[Pt = p)T[9H) 44/ S (WU (P = p)T [ED(y 1))

(A22)

able to obtain this explicit expression is that we managed to combine differentiation of a
product (A6) with eigenvalues problem (A16)) to write, when p = const, each matrix element
as an exact differential. This approximation can also be viewed as operators multiplication

factoring:
(ol |0 5 ol ) 0 98 = ool )31 az

what gives _

Dij:%@D(@bm)\(Pl“t IW[’“]>+ ]<¢M\ (Pt —p)I |[ED(pl))  (A24)

and two approximations for ||12|:

d, .
(449 1] ) = VATFDE = 2 DP - 7] (A25)
2l d
(49 1) o) ~ P 1) (A20)
Using an approximation H[ﬂ 2| ~ HI ] ][2 | the (A25)) result can be generalized to a

I-power (5, however this result is not very accurate for 5 other than 0 or 1, since it is obtained

from the (Q,,pI) moments:

<¢[J’]

This method of calculation is implemented in com/polytechnik/freemoney/MatricesFro

dp . g
15%‘ w[k]> ~ (/\[J])\[k}) DPj;, = ||If3/2H - |DP]| - “]6/2H (A27)

mPI.java:getbQQIpowdpdtFromQQpi_withLastP; for DP;; see e.g. com/polytechnik/fre
emoney/PFuture. java:bQQ_DP. A matrix obtained in ‘1/)[”> basis can be converted to @);

basis in a regular way:

Q1 F1Qw) = Z Guafl (| £ |4F) ol (A28)

l,i,8,m=0


https://en.wikipedia.org/wiki/Exact_differential
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n—1
W o™y = " all(Qo | f1Qum) olf! (A29)

5,m=0
where Gram matrix G, = (Q; | Qk), and oz,[f} are eigenvectors in (); basis, Eq. ,
see com/polytechnik/utils/EVXData. java. |Z|The expression is an approximation,
similar (and slightly better) approximation is a non—-Hermitian matrix as it has a
single approximate product compared with two in (A25).

Different approximations can be obtained using a general form of (A23]):

gl = WA - llgll (A30)

corresponding to an approximation §(z —y) ~ Zﬁio Q; (z)Gj_lek(y). We can obtain a result
applying it to other moments available directly from sample: <QmV%>, <Qm%> along with
their derivatives <Qm dt> < m%l> <Qm§tV > and <Qm dt2> obtained from integration by
parts formula (A5) with boundary conditions: 1). impact from the future and 2). zero V

at t,ow; traded volume V' is measured relatively t,,,, it is negative for past observations. A

few useful approximations of operator ||I dp ||

dp
—H e (A31)
de

H—npu H H (A32)
d dp d?p
E —I =1V §7o) (A33)

Despite these operators being non-Hermitian this creates no problem as they are used only in
calculation of Spur with Hermitian density matrix such as in . The approximation (A31]
uses directly sampled moments <Qm%>, it is a product of two separately sampled operators
with spikes, nevertheless it gives very similar to (A26]) results, without spurious artifacts;
sometimes, however, there is a difficulty to combine it with || %L || from (3 , as in this case the
moments from two different samplings are used together. The approximation (A32) uses exact
H dpl H and H H operators matrix elements but the result is noisy. The (A33|) also uses exact

values of H dtVdp H and H 7% || (obtained from 1D with zero boundary condition due to V'

TA question arise whether obtained matrix <QJ ’Iﬁ ‘ Qk> 7,k =0...n—1 corresponds to a measure or not: Whether it

can be obtained from some <leﬂ E> moments, m = 0...2n — 2 by applying multiplication operator 1) We have an

algorithm to establish this fact, see Theorem 3 of [7]. Numerical experiments show that this is almost the case. A mismatch
may be caused either by some numerical instability or by some degeneracy in the problem. A numerical instability is very

unlikely because (A10|) holds exactly for both: 1). original <QJ ’Iﬁ ‘Qk> matrix (A25) and 2). the matrix obtained by

applying multiplication operator |j to the moments <QmIﬁE> obtained from Theorem 3 of [7] applied to the original

matrix (A25). A mismatch between these two matrices is observed starting with n > 3; the difference is very small but clearly
established numerically. This degeneracy (if exists) does not create any problem in calculation of the value of any observable
as the density matrix used has the form: a state since |1/1[IH]> spike.
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factor) operators, but it is completely useless due to d?p/dt?* singularities; however without the
last term the operator H dtVdp H gives similar to || dpl H results. Two these operators should prob-
ably be considered together as corresponding to Vdp and pdV'. In sufficiently localizes states
(o5 197) v ol s (0713 ) (1 1) (1 ).

Another possible approach to obtain H[ H that enters into (35| together with H P H is
to consider the operator HET” As above, let us take 0) and, assuming that changes in p
are much smaller than changes in I, modify it to obtain H T || matrix elements:

<¢[j

last

P )
22 o) ~ wauwmewquw

Mi]g (ED(¢pV) | pI | ") — — <zp | pI | ED(¢1)) (A34)
This expression satisfies limit case conditions. When p = const the result exactly equals
to Hj”” when I = const the result exactly equals to H H and when ||pI|| = H[H 1|
the result is a differential of a constant. With If" = A as per , the ( also
satisfies Spur H%HPJJHH = 0, the same as for Spur H%I!,OJIHH = 0. See com/polytechni

k/freemoney/MatricesFromPI. java:getbQQDtpDivIFromQQpi_withLastP for numerical

P Idp/dt—pdI/di
b = ||t

implementation. This approximation H i can be tried as a proxy to

| Idp/dt — pdl/dt|| in , but the result is very poor. The problem is that (A34]) has an
extra common factor 1/I2. Similarly to (A24) we can modify it by AUVIAE factor to remove

I? from the denominator:

Al dp dl
e T P e (A35)
alodp o Al Plast T y
YUl 1= —p—‘ Yl ]> ~ w (o) AINFI YU (220 ) ] (22
< dt  dt () 0)¥* (@)
p\ ,
— a7 (EDV) | pr [ — )\[J] " (w9 pI |[EDWH))  (A36)

but this creates a problem that the condition Spur HI ‘%T}I | p J[HH = 0 no longer holds, thus
it cannot be applied in . One may try to adjust the value of I in to have this
condition satisfied (put p = const and take the Spur with ||pr|| of (A36)), let it equals to zero;
the values of Il" and “adjusted” I are typically very close, adjusted value is often slightly

and ||Idp/dt — pdl/dt|| is that the

larger). An important difference between Hw
first one is an exact differential (thus it’s Spur with p;;y can be reduced to sub-differential
expression in WU i ]> state and the boundary term), and the second one is not, thus it cannot

be reduced to some observable in |//#) state.
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FIG. 7. Averages: T!/H] and regular moving average (dark blue) T for 7 = 256s; the
values are multiplied by 1072 and shifted up to fit the chart). The time-to now calculations with
real volume (green) and surrogate volume (light blue). Real volume V' and surrogate volume A are
also presented (scaled by 1075 and 5 - 1073 respectively) and shifted up to fit the chart). The AAPL

stock on September, 20, 2012. The calculations in shifted Legendre basis with n = 12.

The . ., and (| D are approximations that can be used for operator H[ H,

see com/polytechnik/freemoney/PFuture. java for numerical implementation.

Appendix B: On Surrogate Volume

Another question of interest is whether all the developed theory and software of this work
can be used without trading volume available. For a number of markets (such as: sovereign
CDS, corporate fixed income, crypto exchanges, currency trading, etc.) it is quite common
to have the price to be very accurate and available almost realtime, but the traded volume
is either not available at all or provided incorrectly (sometimes intentionally incorrectly).
In such a case there is an option to use the absolute value of price change as it were the
volume; the calculations are the same — in (A14]) instead of df = V; — V|_; one can use

da = |p; — pi_1|. The only problem with this approach is that market events without price
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change would not be taken into account as for them da = 0, hence the results will be less
accurate. However, our past experiments, see [3|, Fig. 6, show that absolute value of price tick
as a “poor man volume” often provides quite similar results. A feed of “all price ticks” can be
used as a surrogate volume. For a liquid asset it typically takes a few minutes for ) da to
exceed P2t — PY = 5" dp in several orders of magnitude; for the entire trading session in
Fig. [7] a typical maximal price change is about 5, but the sum of all absolute price changes
is about 500; total reported by NASDAQ ITCH [§] trading volume of this session is about
3 - 10° shares. As this da sequence is all positive, we also tried it with the market impact
dp/dV concept (that completely failed with actual price change dp) in a hope that with this
da we may find an identifiable limit for dV//da. The result is also unsatisfactory: The dV/da
is very similar to dV//dt: it fluctuates in orders of magnitude and clearly has no stable limit
at any time scale below 10 minutes (for US equity marker). However the da/dt is similar to
da

dV/dt and for liquid assets can be used as a “poor man volume” I = 2 with the matrices

<Qj % ‘ Qk> and (Q); | Q) in . See com/polytechnik/freemoney/CommonlyUsedMom
ents.java:addObservationNoBasisShift for calculation of surrogate volume moments.
In Fig. [7| we present T4 average (along with regular moving average T7) calculated
for regular volume dV and surrogate volume da = |p; — p;_1|. One can see similar behavior
of localization “switches”. However, surrogate volume states have some “switches” missed and
overall picture is less detailed. In Fig. S| the price P¥¥ from is presented. One can see
similar, but less detailed picture. This makes us to conclude that da = |p; — p;_1]| is a “poor

man volume”.
Appendix C: Software Usage Description
The software is written in java. As with [I] follow the steps:

e Install java 19 or later.

e Download from [IT] NASDAQ ITCH data file 3092012-v41.txt.gz, and the archive
AMuseOfCashFlowAndLiquidityDeficit.zip with the source code. There is also an

alternative location of these files.

e Decompress and recompile the program:


http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
https://disk.yandex.ru/d/AtPJ4a8copmZJ?locale=en
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FIG. 8. The equilibrium price PE? from for real volume PIE ? and surrogate volume PfQ.

unzip AMuseOfCashFlowAndLiquidityDeficit.zip

javac -g com/polytechnik/*/*java

e Run the command to test the program
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java com/polytechnik/algorithms/TestCall_FreeMoneyForAll \
--musein_file=dataexamples/aapl_old.csv.gz \
--musein_cols=9:1:2:3 \
--n=12 \
--tau=256 \
--measure=CommonlyUsedMomentsLegendreShifted \

--museout_file=museout.dat

Program parameters are:

--musein_file=aapl.csv : Input tab—separated file with (time, execution price,

shares traded) triples timeserie. The file is possibly gzip-compressed.

--musein_cols=9:1:2:3: Out of total 9 columns of dataexamples/aapl_old.csv.gz
file, take column #1 as time (nanoseconds since midnight), #2 (execution price),

and #3 (shares traded), column index is base 0.
--museout_file=museout.dat : OQutput file name is set to museout.dat.

--n=12 : Basis dimension. Typical values are: 2 (for testing a concept), or some

value about [4...12] for more advance use.
--tau=256 : Exponent time (in seconds) for the measure used.

--measure=CommonlyUsedMomentsLegendreShifted The measure. The values
CommonlyUsedMomentsLaguerre,CommonlyUsedMomentsMonomials correspond
to Laguerre measure and CommonlyUsedMomentsLegendreShifted corresponds
to shifted Legendre measures. The results of CommonlyUsedMomentsMonomials
(uses Qy(z) = 2*) should be identical to CommonlyUsedMomentsLaguerre (uses
Qr(x) = Ly(—x)), as the measure is the same and all the calculations are Q(z)-
basis invariant (but numerical stability is worse for CommonlyUsedMomentsMonom

ials).

e The results are saved in output file museout.dat. Among the values of interest are the

following;:

pFV.pv_average Regular moving average P™ from (16)).

pFV.Tv_average The moving average 77 from (18).
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pFV.totalVolume Total volume traded up to current tick.
PFV.pv_M The value of PIH1 (135).
PFV.Tv_M The value of T1/#] , an indicator of localization of |1},

pFV.I.wH_squared The value of (1 | ¢l H]>2 , an indicator of applicability

of any prediction.

PFV.PEQV_from_M The value of predicted “lagging price” PF? from that
includes both P/ and trending term, the best directional indicator we managed

to obtain so far, see Fig. [§

The output includes two versions: calculated with “actual” volume (prefixed with pFV.) and

calculated with “surrogate volume” of Appendix |B| (prefixed with pFA.).

1. Software Code Structure

Provided software is located in several directories:

e com/polytechnik/utils/ General basis utilities including my Radon-Nikodym ap-

proach [6] to machine learning.
e com/polytechnik/lapack/ Ported to java LAPACK library.
e com/polytechnik/lapack/ NASDAQ ITCH [8] parsing.

e com/polytechnik/trading/ Both: “scaffolding” for new ideas and a “graveyard” for

old ones. Also contains unit tests. One can run all unit tests (takes >10 hours) as

java com/polytechnik/trading/QVM
or three simple unit test of this paper algorithms:

java com/polytechnik/trading/PnLInPsiHstatelLegendreShifted\$PnLInPsiHstateLegendreShiftedTest
java com/polytechnik/trading/PnLInPsiHstateLaguerre\$PnLInPsiHstateLaguerreTest

java com/polytechnik/trading/PnLInPsiHstateMonomials\$PnLInPsiHstateMonomialsTest

e com/polytechnik/freemoney/ The code implementing the theory of this paper. Most

noticeable are:


http://www.netlib.org/lapack/
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com/polytechnik/freemoney/CommonlyUsedMoments.java Calculate the mo-
ments from (Time, Execution Price, Shares Traded) sequence of transactions

using direct sampling.

com/polytechnik/freemoney/FreeMoneyForAll. java A wrapper to calculate
the matrices (Q; | f| Q) from sampled moments (@, f). Secondary sampling of

Appendix [D]is also included.

com/polytechnik/freemoney/PFuture. java To calculate all the theory of this

paper.

e com/polytechnik/algorithms/ Drivers to call various algorithms.

Appendix D: On Secondary Sampling

When direct sampling of an observable is not available an advanced technique of
“secondary sampling”[2] can be applied to calculate the moments of it. An example. Assume on
every tick a moving average is calculated. Then this calculated value is used as it were a new
observable, and the moving average of this new observable is calculated. For trivial cases this
gives nothing new: a moving average of a moving average is a moving average with different
weight (for exponential moving average it is the moving average with twice lower exponent
time). However, calculated quantity “as it were an observable” can be a characteristic that
describes an immanent property of the system. In [2] we applied this technique to the maximal
eigenvalue A'H] of eigenproblem 1) we treated tick change in A/H] (calculated value, see

Fig. [1)) as it were a change in the observable f; = A/l ‘ | and calculated the moments with
df, = A4 }tz — )‘[IH]‘tl,l as <ng%> = Z;\il Qum(x(t;)g(t;)w(t;)df;. The simplest application

of this “calculated observable” is the sum of price changes corresponding to positive A%
changes what gives the scalp price[2]:

M _ i AL [\l
P=> plt) —p(tia) 3E ATy = AT, >0 (D1)

=1 |0 otherwise

Normalization P(t,,) = P! is typically used for scalp price. Regular price corresponds to
no condition on A/#). Whereas actual computation is performed in a single pass by highly

optimized code using recurrent relation for moments and in-place calculation of the value to
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be used as a “new observable”, for understanding the concept one may think about secondary
sampling as having two-passes for input timeserie: first — scan all timeserie observations
and build a “new observable” for every timeserie point read; second — scan this timeserie
once again treating the value calculated on the first pass as it were a regular observable.
This “secondary sampling” approach greatly extends the types of observable that can be
studied. However, while being very powerful in calculation of moments that otherwise are
not approachable at all, it has difficulties in interpretation of the results.

The implementation of this technique is available in com/polytechnik/freemoney/Comm
onlyUsedMoments. java. The methods updateWithSingleObservation recurrently adjusts
the basis and adds calculated contributions corresponding to regular measures dP, dV, dA
as in . After this call all regular moments become available, and we have an option
to calculate the value of some “secondary” observable from them, such as A/#!. When the
calculation is completed — the method addIHObservationSecondarySampling(double IH
) can be called. It, in addition to the moments already available from updateWithSingle
Observation, calculates, as in , three other moments corresponding to the measure
df; = IH; — IH;_q, specifically: <Qm;l—’;>, <Qmp%>, and <Qm% . The IH can be a calculated
characteristic of various meaning, and the moments of this characteristic are now obtained as
it were a regular observable. This technique is also very convenient for unit tests of moments

calculation by using regular observable as IH.

Appendix E: On Separation of States Based On dI/dt Sign

The value of future execution flow IF allows us to obtain ||dI/dt|| operator’s matrix

elements. Using integration by parts (put p = const in (A20])) obtain:

<¢[ﬂ

This operator’s matrix elements cannot be obtained directly from sample (A14)), however

S = ) ) — (ED( | 7] ) = (91| 7|EDH) (51)

the knowledge of the impact from the future allows us to apply an integration by parts.
Actually this is the only operator for which integration by parts gives exact answer; for other
operators (e.g ||d*p/dt?||) the boundary value at z is not known and matrix elements are
typically obtained “within a boundary term”. Only having determined the exact value of I}’

(that includes both: an “impact from the past” and an “impact from the future”) it is possible



40

to have the ||dI/dt|| matrix elements that are accurate enough to consider an eigenproblem:
dl| i
S|y = A ol (E2)

Other than I = \I/#] values can be used in the boundary term of , see [2] “Appendix

E: On calculation of dI /dt operator matrix elements from operator I” for a list of reasonable
options for 1. The concept introduced in [2] is to treat low I — high I and high I — low I
transitions separately, as they lead to a very different price behavior. These [-transitions
correspond to dI/dt derivative of different signs; corresponding operator ||dI/dt|| always has
eigenvalues )\5}1 of different signs: (/1| 4L | [IH1) = 0. Let us split the entire [¢)) space into

direct sum of two subspacesﬂ Construct two projection operators:

Mol = 3 [wdl) (ol (E3)
il >0

Mol = 3 [wdl) (vl (E4)
i All<o

10 = ML+ || (E5)

This transform can be considered as eigenvalues adjustment technique[I2] where the eigenval-
ues (not the eigenvectors!) are adjusted for an effective identification of weak hydroacoustic
signals. The ||II;;4|| can be viewed as ||dI/dt|| operator with all negative eigenvalues set to 0
and all positive eigenvalues set to 1; the same with ||II;;_|| for opposite sign. This technique
is most easy to implement in basis (where ||dI/dt|| is diagonal), then to convert obtained
projection operators back to the basis used applying . Alternatively one can convert
all the matrices ||I||, |pI|, [V 2], |L||, |2V 2], ||p|| to the basis of eigenproblem
applying . All the results will be identical as the theory is gauge invariant[6]. With
projection operators and any density matrix average can be written in the form:

Spur || f|pll = Spur || f[Mar+|pl| + Spur || f[Ia—|p (E6)

This split allows us to separate an average of f in density matrix ||p|| state to the ones

corresponding to positive and negative dI /dt.

8 Here we use ||dI/dt|| matrix elements (E1)) that are calculated from directly sampled ||I|| moments. An
alternative is to split the states according to dI /dt or dA'H]/dt sign using the “secondary sampling” of [2].
The simplest example of it’s application is the scalp price P (D1) that takes into account only “important”

price changes (regular price is the sum of all price changes).
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First candidates on application of this technique are the terms from Total Lagrangian
action (43)) where the operators are calculated in the state of ||p;;g|| density matrix. Every
Spur that enter into the A expression (44)) can be split into dI/dt contributions of different
signs. There are several implementation of this technique, e.g. com/polytechnik/freemo
ney/SplitdIdt. java and several others. The result, however, is not that great and this
projection operators approach requires more research to be performed.

The property that requires special attention is that while the density matrix ||psrg|| is
obtained from the polynomial 1/ H]Q(x) with J (@/}U H]2> transform , and all the average
relations hold exactly, the density matrix itself may not have all the eigenvalues positive.
This creates no problem with the total Spur but sometimes lead to spurious artifacts when
combined with projection operators; the effect, however, is small. These small but negative
eigenvalues of the density matrix, “‘Hermann Minkowski-style space”, also require additional

research.

1. Execution Flow Based Eigenvalues Adjustment Example

In the Appendix above we considered projection operators to “split” ||| or ||pI||
based on some other operator spectrum, e.g. H%H To demonstrate a simplified example of
this eigenvalues adjustment technique let us apply it to the operator ||I]|. Consider the state
“since ’¢[1H]>
execution flow :‘g—z with and , and sell above it. The P&L position changes dS, see

[3] Section “P&L operator and trading strategy”, is:

till now” ||psri|| and a trading strategy: buy at execution flow below aggregated

dS:(I—Zﬂ>ﬁ (ET)
Trr
Then the constraint 0 = f dS is satisfied:
— il E
0 = Spur gr P (E8)
and, for this dS, the P&L = — [ pdS can be calculated:
dsS
P&L = —Spur pd_t PIIH (E9)

If we want to consider 1) as a superposition of |¢[i]> states, introduce an operator:

H—SW%lJ@i<W| (E10)
- i=0 Tim Al


https://en.wikipedia.org/wiki/Hermann_Minkowski
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n—1
i Vig 1 i
m- Y W>(1‘mm) () (F12)

i: Al > ZLL

Do S ey (1o Vi LY 13
——ZW>_EW<¢| (E13)

)\[i]§¥IH
The operator ||I1]] is actually the operator ||I|| but with the eigenvalues 1 — :‘g—z st instead of
the /\[i]ﬂ. Then (ES) and (E9) become (E14) and (E15) respectively:
0 = Spur |[[|I1|pyra|| = Spur |[I|I1; + II_|psra|| (E14)
P&L = —Spur ||pI || psru|| = —Spur ||[pI |14 + 1 |psra|| (E15)

Spur||pI |y |psrall
Spur|[I[Tt|psrall

and etc. The result is similar to the technique of “extra volume” V and P* of the Appendix

From these operators ||IT || and [|[TI_|| one can obtain “equilibrium prices” P* =

below; no advancing information we managed to obtain from (E10)).

Appendix F: On The States Of Double Integration

The density matrix state pyrg was obtained from the pure state of maximal execution
flow W”H]> by applying J(-) transform l} to the polynomial w[IH]Q(x), a variant of

integration by parts:

Spur |52 psru|| = f|_parn(o)(wo) — (Wl | Flgli) = f| = (ylH £yl (F1)
n—1
ST Qi(20)G par Gt Qu(e) = 1 (F2)
7,k,l,m=0

with 1) due to 1 = <¢[1H} ‘¢[1H]> normalizing and 1 = w(xy) due to basis choice obtain
familiar “integration by parts” relation (A11)). The ||psrg|| density matrix allows us to calculate

“execution-flow”-related values from H % H operator. We already used this relation (a special

case of (A10)) to calculate e.g.
=P — (| p|Y) (F3)

Spur PJIH

dt

9 The operator ||II|| may not correspond to a measure, i.e. it does not necessary correspond to m = 0...2n —2

moments (Q,,II) from which to obtain (Q; |II| Q) using multiplication operator |D
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FIG. 9. Price P, price PU/H] , and P* 1) for AAPL stock on September, 20, 2012. The

calculations in shifted Legendre basis with n = 12 and 7=256sec.

p as
Spur % PIIH|| = P! tfép - <¢[IH] \pl| ¢[1H]> (F4)
Spur o ol = [5 _ <¢[1H] 1] ¢[1H}> (F5)
Spur H[’pJIHH _ ‘/[H — Vlast _ <w[[H] ‘V‘ w[IH]> <F6)
Spur || prall = Trm = T — (U T 1) (F7)

The corresponds to , with boundary condition gives Spur ||%‘PJIHH =0
we used in , and 1) are traded volume and time since |1/1[IH}> spike till “now”;
typically we use normalizing V! = 0 and T"** = 0.

Now consider a density matrix py g obtained from the pure state of maximal
execution flow WUH]> by applying J(-) transform to the polynomial ¢[1H]2(:1:) twice.
This density matrix corresponds to integration by parts performed twice. Obtain from (A12]):

dl

S -
pur dt

PIIIH|| = ]{Spur ||PJIH|| — Spur ||]|10JIH|| = I{TIH —Vin (FS)
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Spur pasrm|| = Iy P*'Spur||psr|| — Spur [[pI]psrm|| (F9)

aps
dt

The ||pssrx density matrix allows us to calculate “volume™related values from || 4 || operator.
One of the major results of this paper is established in Section [[V B|fact that in ||p,rp|| state
the values of operators H 2m H and H[ H are very close and their difference (if exists) gives
future price ([36). Let us consider these operators not in ||p,;|| state, but instead in the state
lpssrml. An important difference from ||p x| state is that the condition of ||%|| being zero

in ||pssrm| state no longer holds, as execution flow I = dV/dt and aggregated execution flow

Vig/Try are different in |zZJ[IH}> state. The 1' requires an “extra volume” V

- 1%
V= (I{ Ti) Tin (F10)

to obtain proper value of operator Hp o || an alternative is to use eigenvalues adjustment

technique of Appendix above. Using (|35 obtain

dl ~
A = Spur [d_f psirH|| — Spur Py (P + VP*
d dpl ~
= 2Spur Id—]t) prrm|| — Spur dL pral +VP* (F11)

The difference from is that there is an extra term V P* caused by the difference between
I and %—5 We can consider |V |¢) = X |T|¢) providing equal execution flow and aggregated
execution flow, see [2]: “Appendix C: The state of maximal aggregated execution flow V/T"”,
but these states gives little improvement. Consider instead a simplistic approach: select the

value of P* that makes A equals to zero:

1

dpl
P*=— = | 2Spur
V[

dp
] =
dt

— Spur
dt PJJIH p PJJIH

] (F12)

In Fig. |§| the P* is presented. We see no “advancing” property as it is for , this is an
indicator of “lagging” type. This makes us to conclude that the state p; 7y while it has a
number of interesting properties to research, does not immediately provide and “advancing”
indicator. The p;rg is probably the only state in which H P H and H[ H operators are very

close and their difference (if exists) gives future price .
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