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A new type of quadrature is developed. The Gaussian quadrature, for a given measure,

finds optimal values of a function’s argument (nodes) and the corresponding weights.

In contrast, the Lebesgue quadrature developed in this paper, finds optimal values

of function (value–nodes) and the corresponding weights. The Gaussian quadrature

groups sums by function argument; it can be viewed as a n–point discrete measure,

producing the Riemann integral. The Lebesgue quadrature groups sums by function

value; it can be viewed as a n–point discrete distribution, producing the Lebesgue

integral. Mathematically, the problem is reduced to a generalized eigenvalue problem:

Lebesgue quadrature value–nodes are the eigenvalues and the corresponding weights

are the square of the averaged eigenvectors. A numerical estimation of an integral

as the Lebesgue integral is especially advantageous when analyzing irregular and

stochastic processes. The approach separates the outcome (value–nodes) and the

probability of the outcome (weight). For this reason, it is especially well–suited for the

study of non–Gaussian processes. The software implementing the theory is available

from the authors.
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I. INTRODUCTION

A Gaussian quadrature is typically considered as “an integral calculation tool”. However,

the quadrature itself can be considered as a discrete measure[1]. The major practical drawback

of Gauss–type quadratures is that they, like a Riemann integral, are finding the nodes in a

function’s argument space. A very attractive idea is to build a quadrature with the nodes in

a function’s value space, a Lebesgue–type quadrature. As with the Lebesgue integral, such a

quadrature can be applied to integration of irregular functions and interpolating sampled

measure by a discrete Lebesgue integral. When implemented numerically such an approach

can give a completely new look toward relaxation type processes analysis. This is the goal of

this paper.

II. MEASURE

Consider a measure dµ, a basis Qk(x), and a function to integrate f(x). An example of the

measure can be: Chebyshev with [−1 : 1] support dµ = dx/
√
1− x2, Laguerre with [0 : ∞]

support dµ = dx exp(−x), experimental data sample (f (l), x(l)) of l = 1 . . .M points (discrete

M–point measure), etc. In this paper Qk(x) basis is a polynomial of the degree k, e.g. xk

or some orthogonal polynomials basis, the results are invariant with respect to basis choice,

Qk(x) = xk and Qk = Tk(x) give identical results, but numerical stability can be drastically

different[2, 3]. Introduce Paul Dirac quantum mechanic bra–ket notation [4] ⟨| and |⟩:

⟨Qkf⟩ =
∫
dµQk(x)f(t) (1)

⟨Qj | f |Qk⟩ =
∫
dµQj(x)Qk(x)f(t) (2)

The problem we study in this paper is to estimate a Lebesgue integral[5] by an optimal

n–point discrete measure (15).

⟨f⟩ =
∫
fdµ (3)

We are going to apply the technique originally developed in Refs. [3, 6, 7], the main idea

is to consider not a traditional interpolation of an observable f as a linear superposition of

https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
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basis functions such as

〈
[f(x)− fLS(x)]

2〉 → min (4)

fLS(x) =
n−1∑
k=0

βkQk(x) (5)

but instead to introduce a wavefunction ψ(x) as a linear superposition of basis functions,

then to average an observable f(x) with the ψ2(x)dµ weight:

ψ(x) =
n−1∑
j=0

αjQj(x) (6)

fψ =
⟨ψ | f |ψ⟩
⟨ψ |ψ⟩

=

n−1∑
j,k=0

αj ⟨Qj | f |Qk⟩αj

n−1∑
j,k=0

αj ⟨Qj |Qk⟩αk
(7)

With a positively definite matrix ⟨Qj |Qk⟩ the generalized eigenvalue problem:

n−1∑
k=0

⟨Qj | f |Qk⟩α[i]
k = λ[i]

n−1∑
k=0

⟨Qj |Qk⟩α[i]
k (8)

ψ[i](x) =
n−1∑
k=0

α
[i]
k Qk(x) (9)

has a unique solution. Found eigenfunctions to be normalized as
〈
ψ[i]

∣∣ψ[j]
〉
= δij. Then〈

ψ[i]
∣∣ f ∣∣ψ[j]

〉
= λ[i]δij ;

∑n−1
l,m=0 α

[i]
l ⟨Ql |Qm⟩α[j]

m = δij ; and λ[i] =
〈[
ψ[i]

]2
f
〉/〈[

ψ[i]
]2〉.

A. The Gaussian quadrature

A n-point Gaussian quadrature (x[i], w[i]); i = 0 . . . n− 1:∫
f(x)dµ = ⟨f⟩ ≈

n−1∑
i=0

f(x[i])w[i] (10)

on the measure dµ is integration formula (10) that is exact if f(x) is a polynomial of a degree

2n− 1 or less, in other cases it can be considered as an approximation of the measure dµ by

a discrete n–point measure (x[i], w[i]). A question about an efficient numerical approach to

(x[i], w[i]) calculation is a subject of extensive work[1, 8]. In our recent work[3] we established,

that the most practical approach to obtain (x[i], w[i]) for an arbitrary measure (often available
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only through data sample) is to put f = x in Eq. (8) and to solve the generalized eigenvalue

problem:
n−1∑
k=0

⟨Qj |x |Qk⟩α[i]
k = λ[i]

n−1∑
k=0

⟨Qj |Qk⟩α[i]
k (11)

x[i] = λ[i] (12)

w[i] =
1

[ψ[i](x[i])]
2 (13)

The n–th order orthogonal polynomial relatively the measure dµ is equal to the πn(x) =

const · (x− x[i])ψ[i](x) = const
∏n−1

j=0 (x− x[j]). The Gaussian quadrature nodes x[i] are (11)

eigenvalues, the weights are equal to inverse square of the eigenfunction at x = x[i] (the

eigenfunctions are normalized as
〈
ψ[i]

∣∣ψ[i]
〉
=

∑n−1
j,k=0 α

[i]
j ⟨Qj |Qk⟩α[i]

k = 1). The (11) is

exactly the threediagonal Jacobi matrix eigenvalue problem (see Ref. [9] and references

therein for a review), but written in the basis of Qk(x), not in the basis of πk(x) as typically

studied. Particularly, this makes it easy to obtain three term recurrence coefficients ak and bk

(xπk = ak+1πk+1 + bkπk + akπk−1) from a sampled data numerically: find the moments ⟨Qm⟩

; m = 0 . . . 2n− 1 and obtain orthogonal polynomials πk ; k = 0 . . . n in Qk(x) basis; then

calculate ak and bk using multiplication operator of Qk(x) basis functions, see the method g

etAB() of provided software. An ability to use Chebyshev or Legendre basis as Qk(x) allows

us to calculate the ak and bk to a very high order (hundreds). The weight expression (13) is

typically more convenient numerically than the one with the Christoffel function K(x):

K(x) =
1∑n−1

j,k=0Qj(x)G
−1
jk Qk(x)

=
1∑n−1

i=0 [ϕ[i](x)]
2 (14)

Here G−1
jk is Gram matrix Gjk = ⟨QjQk⟩ inverse; in (14) the ϕ[i](x) is an arbitrary orthogonal

basis, such that
〈
ϕ[i]

∣∣ϕ[j]
〉
= δij, when ϕ[i](x) = ψ[i](x) obtain (13).

The Gaussian quadrature (10 can be considered as a Riemann integral formula, its nodes

x[i] select optimal positions of a function’s argument, they are ∥x∥ operator eigenvalues

(11), this integration formula assumes that f(x[i]) exist and can be calculated. As with any

Riemann integral it requires the f(x) to be sufficiently regular for the integral to exist.

B. The Lebesgue quadrature

The Riemann integral sums the measure of all [x : x+ dx] intervals. The Lebesgue integral

sums the measure of all x intervals for which the value of a function f(x) is in the interval

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://en.wikipedia.org/wiki/Riemann_integral
https://en.wikipedia.org/wiki/Lebesgue_integration#Intuitive_interpretation
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[f : f + df ], see demonstrating Fig. 1 of Ref. [7]. Consider a n-point Lebesgue quadrature

(f [i], w[i]); i = 0 . . . n− 1: ∫
f(x)dµ = ⟨f⟩ ≈

n−1∑
i=0

f [i]w[i] (15)

Now quadrature nodes f [i] are in function value space, not in function argument space as

in (10). We will call them the value–nodes. To obtain the value–nodes and weights of a

Lebesgue quadrature for the measure dµ and function f consider an arbitrary polynomial

P (x) of a degree n− 1 or less and expand it in (8) eigenfunctions:

P (x) =
n−1∑
i=0

〈
P
∣∣ψ[i]

〉
ψ[i](x) (16)

Taking into account that
〈
P
∣∣ f ∣∣ψ[i]

〉
= λ[i]

〈
P
∣∣ψ[i]

〉
the expression for ⟨P | f |S⟩ can be

written (here P (x) and S(x) are arbitrary polynomials of a degree n− 1 or less):

⟨P | f |S⟩ =
n−1∑
i=0

λ[i]
〈
P
∣∣ψ[i]

〉 〈
S
∣∣ψ[i]

〉
(17)

⟨f⟩ =
n−1∑
i=0

λ[i]
〈
ψ[i]

〉2
(18)

The (18) (the case P = S = 1) is eigenvalues averaged with the weights
〈
ψ[i]

〉2 (note that〈[
ψ[i]

]2〉
= 1). The (18) gives the Lebesgue quadrature value–nodes and weights:

f [i] = λ[i] (19)

w[i] =
〈
ψ[i]

〉2
(20)

The Lebesgue quadrature can be considered as a Lebesgue integral interpolating formula by

a n–point discrete measure (15). The value–nodes f [i] select optimal positions of function

values, they are ∥f∥ operator eigenvalues (8), the weight w[i] is the measure corresponding to

the value f [i]. The weights (20) give

⟨1⟩ =
n−1∑
i=0

w[i] (21)

the same normalizing as for the Gaussian quadrature weights (13). As with the Gaussian

quadrature (10) the Lebesgue quadrature (15 is exact for some class of functions.



6

Theorem 1. If a n–point Lebesgue quadrature (15) is constructed for a measure dµ and a

function f(x), then any integral ⟨P (x)f(x)⟩, where P (x) is a polynomial of a degree 2n− 2

or less, can be evaluated from it exactly.

Proof. When P (x) is of a degree n−1 or less, then apply (17) with S = 1. For a degree above

n − 1 expand P (x) =
∑n−1

j,k=0Qj(x)MjkQk(x). The matrix Mjk is non–unique, but always

exists and can be obtained e.g. by synthetic division P (x) = Qn−1(x)q(x) + r(x), or using

density matrix approach of the Appendix A. The integral ⟨fP (x)⟩ =
∑n−1

j,k=0 ⟨Qj | f |Qk⟩Mjk

then can be evaluated using (17) formula:

⟨fP (x)⟩ =
n−1∑
i=0

λ[i]w
[i]
(P ) =

n−1∑
i=0

λ[i]
〈
ψ[i]

∣∣∣ P̂ ∣∣∣ψ[i]
〉

(22)

w
[i]
(P ) =

〈
ψ[i]

∣∣∣ P̂ ∣∣∣ψ[i]
〉
=

n−1∑
j,k=0

〈
ψ[i]

∣∣Qj

〉
Mjk

〈
Qk

∣∣ψ[i]
〉

(23)

The formula (22) has the same eigenvalues λ[i], but they are now averaged with the weights

w
[i]
(P ), that are not necessary positive as in (20), note that ⟨P (x)⟩ =

∑n−1
i=0 w

[i]
(P ).

Remark. The Gaussian quadrature can be considered as a special case of the Lebesgue

quadrature. If one put f = x, then n–point Lebesgue quadrature gives exact answer for an

integral ⟨fP (x)⟩ with a polynomial P (x) of a degree 2n− 2 or less, is reduced to a quadrature

that is exact for a polynomial xP (x) of a degree 2n− 1 or less, i.e. to a Gaussian quadrature.

When f = x the Lebesgue quadrature value–nodes are equal to the Gaussian nodes. The most

remarkable feature of the Lebesgue quadrature is that it directly estimates the distribution of

f : each w[i] from (20) is the measure of f(x) ≈ f [i] sets. For an application of this feature to

the optimal clustering problem see [10].

Theorem 1 gives an algorithm for ⟨fP (x)⟩ integral calculation: use the same value–nodes

f [i] from (19), but the weights are now from (23). The Lebesgue quadrature allows to obtain

the value of any ⟨fP (x)⟩ integral, adjusting only the weights, value–nodes remain the same,

what provides a range of opportunities in applications.

A question arises about the most convenient way to store and apply a quadrature. As

both Gaussian and Lebesgue quadratures are obtained from (8) generalized eigenvalue

problem, the n pairs (λ[i], ψ[i]) completely define the quadrature. For the Gaussian quadrature

(11) f(x) = x, the eigenvalues are the nodes, the eigenvectors are Lagrange interpolating
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polynomial built on x[i] roots of orthogonal polynomial πn(x) degree n relatively the measure

dµ: ψ[i](x) = const · πn(x)/(x− x[i]). For (11) eigenvectors
〈
xn

∣∣ψ[i]
〉
= (x[i])n

〈
ψ[i]

〉
, the (23)

is then w[i]
(P ) = P (x[i])

〈
ψ[i]

〉2, hence it is more convenient to store a Gaussian quadrature as

(x[i], w[i]) pairs rather than as (x[i], ψ[i]) pairs. For Lebesgue quadrature the w[i]
(P ) dependence

(23) on P (x) is not that simple, it requires an access to eigenvectors ψ[i] to calculate, for this

reason it is more convenient to store a Lebesgue quadrature as (f [i], ψ[i]) pairs rather than

as (f [i], w[i]) pairs. The specific form of quadrature storage is determined by application, in

any case all the results are obtained from defining the quadrature pairs (λ[i], ψ[i]), a unique

solution of (8) problem. This uniqueness makes the basis ψ[i](x) very attractive for principal

components expansion. For example the variation (4) can be PCA expanded:

〈
[f(x)− fLS(x)]

2〉 = 〈
f 2
〉
−

n−1∑
i=0

(
f [i]

)2
w[i] =

〈(
f − f

)2〉−
n−1∑
i=0

(
f [i] − f

)2
w[i] (24)

Here f = ⟨f⟩/⟨1⟩. The difference between (24) and regular principal components is that the

basis ψ[i](x) of the Lebesgue quadrature is unique. This removes the major limitation of a

principal components method: it’s dependence on the attributes scale.

C. Numerical Estimation Of Radon–Nikodym Derivative

Radon–Nikodym derivative[5] is typically considered as a probability density dν/dµ

relatively two Lebesgue measures dν and dµ. Consider f = dν/dµ, then (8) is generalized

eigenvalue problem with
〈
Qj

∣∣∣ dνdµ ∣∣∣Qj

〉
and ⟨Qj |Qj⟩ matrices (basis functions products QjQk

averaged with respect to the measure dν and dµ respectively). If at least one of these two

matrices is positively defined then (8) has a unique solution.

Theorem 2. The eigenvalues λ[i] i = 0 . . . n − 1 are dν/dµ Radon–Nikodym derivative

extremums in the basis of (8).

Proof. Consider the first variation of ⟨ψ | dν
dµ |ψ⟩

⟨ψ |ψ⟩ in the state ψ̃(x) = ψ(x) + δψ, then〈
ψ + δψ

∣∣∣ dνdµ ∣∣∣ψ + δψ
〉

⟨ψ + δψ |ψ + δψ⟩
=

〈
ψ

∣∣∣∣ dνdµ
∣∣∣∣ψ〉

+ 2

[〈
ψ

∣∣∣∣ dνdµ
∣∣∣∣ δψ〉−

〈
ψ

∣∣∣∣ dνdµ
∣∣∣∣ψ〉 ⟨ψ | δψ⟩

]
+ . . . (25)
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when |ψ⟩ is (8) eigenvector, then the first variation (25) (linear in δψ) is zero because of∣∣∣ dνdµ∣∣∣ψ〉 = λ |ψ⟩ relation for (8) eigenvectors. This extremal property was originally obtained

in [11], where Radon–Nikodym derivative approach has been used for execution flow trading

rate study; execution flow extremal states correspond to price singularities.

Remark. If δψ does not belong to the original basis space of (8) problem — then extremal

property no longer holds.

Other estimates of Radon–Nikodym derivative can be easily expressed in terms of (8)

eigenvectors. For example Nevai operator [12] is equal to eigenvalues λ[i] averaged with the[
ψ[i](x)

]2 weights:

dν

dµ
(x) =

n−1∑
i=0

λ[i]
[
ψ[i](x)

]2
n−1∑
i=0

[ψ[i](x)]
2

(26)

Other estimates, such as the ratio of two Christoffel functions[13] for the measures dν and

dµ if both are positive, can also be expressed in a form of λ[i] averaged, but with the other

weights:

dν

dµ
(x) =

n−1∑
i=0

(
λ[i]

)γ [
ψ[i](x)

]2
n−1∑
i=0

(λ[i])
γ−1

[ψ[i](x)]
2

− 1 ≤ γ ≤ 1 (27)

Different estimators converge to each other for n→ ∞. A weighted λ[i] type of expression

preserves the bounds: if original f is [fL : fH ] bounded then (26) is [fL : fH ] bounded as well;

this is an important difference from positive polynomials interpolation[14], where only a low

bound (zero) is preserved. A distinguishing feature of Radon–Nikodym derivative estimate

as (8) spectrum is that it is not linked to the states localized in x–space (such as (26)), but

instead is linked to extremal states of the Radon–Nikodym derivative dν/dµ.

The ψ[i](x) in (26) is ψ[i](x) =
∑n−1

k=0 α
[i]
k Qk(x), i.e. it can be considered as a distribution

with a single support point x: the distribution moments are equal to Qk(x). Now assume

Qk(x) correspond to some actual distribution of x and qk are the moments of this distribution.

Then the dν
dµ
(x) is:

dν

dµ
(x) =

n−1∑
i=0

λ[i]
[
n−1∑
k=0

α
[i]
k qk

]2
n−1∑
i=0

[
n−1∑
k=0

α
[i]
k qk

]2 (28)
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The (28) is averaged eigenvalues λ[i] with positive weights, for qk = Qk(x) it coincides with

x–localized (26). However the (28) is much more general, it allows to obtain a Radon–Nikodym

derivative for non–localized states. The (28) is the value of the Radon–Nikodym derivative for

a distribution with given qk moments. Such “distributed” states naturally arise, for example, in

a distribution regression problem[15, 16], where a bag of x–observations is mapped to a single

f–observation. There is one more generalization, considered in[7, 17]: density matrix mixed

states, that cannot be reduced to a pure state of a ψ(x) form, we are going to discuss this

generalization elsewhere, for a few simple examples see Appendix A, where a density matrix

corresponding to a given polynomial is constructed and Appendix B, where a density matrix

corresponding to the Chrisoffel function (14) is constructed. Our approach can estimate both:

the measure (as a Lebesgue quadrature) and two measures density (as a Radon–Nikodym

derivative), together with provided numerical implementation, this makes the approach

extremely attractive to a number of practical problems, for example to joint probability

estimation[18].

III. NUMERICAL ESTIMATION

The (λ[i], ψ[i]) pairs of (8) eigenproblem (for a Gaussian quadrature with ⟨Qj |x |Qk⟩

and ⟨Qj |Qk⟩ matrices, and for a Lebesgue one with ⟨Qj | f |Qk⟩ and ⟨Qj |Qk⟩ matrices)

are required to calculate a quadrature. A question arise about numerically most stable and

efficient way of doing the calculations. Any ⟨Qj | f |Qk⟩ matrix (j, k = 0 . . . n − 1) can be

calculated from the ⟨Qmf⟩ moments (m = 0 . . . 2n− 2) using multiplication operator:

QjQk =

j+k∑
m=0

cjkmQm (29)

The value of cjkm is analytically known (see numerical implementation in the Appendix A of

Ref. [3]) for four numerically stable Qk(x) bases: Chebyshev, Legendre, Hermite, Laguerre,

and for a basis with given three term recurrence coefficients ak and bk it can be calculated

numerically1 (all the bases give mathematically identical results, because (8) is invariant

with respect to an arbitrary non–degenerated linear transform of the basis, but numerical

stability of the calculations depends greatly on basis choice).

1 See the class com/polytechnik/utils/RecurrenceAB.java of provided software.

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
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Once the matrices ⟨Qj | f |Qk⟩ and ⟨Qj |Qk⟩ are calculated the (8) can be solved using

e.g. generalized eigenvalue problem subroutines from Lapack[19]. With a good basis choice

numerically stable results can be obtained for a 2D problem[20] with up to 100×100 elements

in basis, i.e. for 10, 000 basis functions.

In Appendix A & B of Ref. [3] the description of API and java implementation of polyno-

mial operations in Chebyshev, Legendre, HermiteE, Laguerre, Shifted Legendre, Monomials

bases is presented. The code is available from[21], file code_polynomials_quadratures.z

ip. See the program com/polytechnik/algorithms/ExampleRadonNikodym_F_and_DF.ja

va for usage example. This program reads (x(l), f (l)) pairs from a tab–separated file, then

calculates (19) value–nodes and (20) weights for Lebesgue integral of the functions: f(x),

df/dx with the measure dµ = dx, and 1
f
df/dx with the measure dµ = fdx, see Ref. [6] for a

description, and Appendix D for an example. As a proof–of–concept a simple matlab/octave

implementation com/polytechnik/utils/LebesgueQuadratureWithEVData.m is also pro-

vided, the class calculates the Lebesgue quadrature value–nodes and weights (f [i], w[i]) either

from two matrices, or, second option, given f(x) in an analytic form, calculates two matrices

first and then finds the Lebesgue quadrature. Usage demonstration in available from com/po

lytechnik/utils/LebesgueQuadratures_selftest.m. This unoptimized code calculates

⟨Qj | f |Qk⟩ and ⟨Qj |Qk⟩ matrices in monomials and Chebyshev bases, then builds Gaussian

and Lebesgue quadratures.

IV. CONCLUSION

Obtained Lebesgue quadrature is a new class of quadratures, besides being suitable for

⟨fP (x)⟩ integrals estimation, it can be applied to an estimation of the distribution of f : each

w[i] from (20) is the measure of f(x) ≈ f [i] sets. This is especially important for f(x) of

relaxation type, this approach is superior to typically used approaches based on ⟨f⟩, ⟨f 2⟩,

⟨f 3⟩, ⟨f 3⟩, skewness and kurtosis approaches[22]. In our early works[6, 23] the (8) equation

was obtained, but all the eigenvalues were considered to have equal weights, their distribution

was interpreted as a one related to the distribution of f(x), this is similar to an interpretation

of eigenvalues distribution used in random matrix theory[24].

In this paper an important step forward is made. An eigenvalue λ[i] should have the

Lebesgue quadratures weight (20)
〈
ψ[i]

〉2, not the same weight as in our previous works (first

http://www.netlib.org/lapack/lug/node54.html
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://www.gnu.org/software/octave/
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FIG. 1. Two stage degradation model with the slope on first and second stages −10−4 and −5 · 10−4

per cycle respectively. The stages length is 500:500 for (a), (b), (c) and 800:200 for (d), (e), (f).

The (a) and (d) are C(N) models for which f = dC/dN is put to (8). The (b) and (e) are the

distributions of λ[i] from (8) with equal weights, Ref. [23] results. The (c) and (f) are the distributions

of λ[i] with (20) weights, the peak height corresponds exactly to the stage length because of chosen

measure dµ = dN . The calculations are performed for n = 50 in polynomial basis.

time the Eq. (20) was obtained in Ref. [17] as cluster coverage, formula (20) for C [i] therein,

but it’s importance was not then understood).

To demonstrate the difference in weights accounting take two–stage degradation data

model from Ref. [23]. Li–ion batteries capacity fade with each cycle, the degradation rate per

cycle dC/dN is the characteristics of interest. Consider x = N and the measure dµ = dN

(recent and old cycles are equally important), use f(x) as battery degradation rate f = dC/dN .

As in Ref. [23] consider C(N) for 1000 cycles, the degradation rate for the first and second

stages is 10−4 and 5 · 10−4 per cycle respectively. Two processes with first:second stages ratio

as 500:500 (f = −10−4 for 0 ≤ x ≤ 500 ; f = −5 · 10−4 for 500 ≤ x ≤ 1000) and 800:200

(f = −10−4 for 0 ≤ x ≤ 800 ; f = −5 · 10−4 for 800 ≤ x ≤ 1000) are used as the model
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data, Fig. 1. In our previous works[6, 23] we established, that the distribution of λ[i] from (8)

is related to the distribution of f . In this paper this relation is found, the weights are (20)

Lebesgue quadrature weights. Note, that for the data in Fig. 1, the peaks height for (c) and

(f) correspond exactly to stage length, because of the measure chosen dµ = dN .

A Lebesgue quadrature (f [i], w[i]) can be interpreted as f(x) discrete distribution. The

selection of value–nodes is optimal, such a quadrature performs optimal n–point discretization

of f(x). The approach is applicable to non–Gaussian distributions (e.g. with infinite standard

deviation (but not with infinite mean), burst of many orders of magnitude, etc.). The

situation is similar to the one in quantum mechanics: when a quantum Hamiltonian is known

incorrectly and have some energy state, that is greatly different from the ground state, such

a state does not change system behavior at all, because it has close to zero probability. The

Lebesgue quadrature has similar ideology, it separates the state on: an observable value

f [i] and the probability of it w[i]. Similar path have been successfully tried earlier in our

quantum–mechanics approach to machine learning of Ref. [17], where we separated system

properties (described by the outcomes) and system testing conditions (described by the

coverage).
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Appendix A: Density matrix, corresponding to a given polynomial

In Section II B the integral ⟨P (x)f(x)⟩ with a polynomial P (x) of a degree 2n−2 or less is

considered. The technique of [3] deals mostly with ⟨ψ2(x)f(x)⟩ = ⟨ψ | f |ψ⟩ type of integrals,

and it is of practical value to be able to reduce a state described by an arbitrary polynomial:

P (x) =
2n−2∑
k=0

γkQk(x) (A1)

https://www.researchgate.net/profile/S_Bozhokin
https://iamm.spbstu.ru/person/komarchev_ivan_anatolevich/
http://www.spbstu.ru/
http://www.spbstu.ru/
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to the state described by the density matrix:

ρ(x, y) =
n−1∑
i=0

λ[i]ψ[i](x)ψ[i](y) (A2)

P (x) = ρ(x, x) (A3)

such that P (x) = ρ(x, x), and λ[i];ψ[i](x) are the eigenvalues and the eigenvectors of some

operator ∥ρ∥.

Theorem 3. For a non–degenerated basis Qk(x) relatively the measure dµ such operator

always exists and is generated by a measure with the moments ⟨Qk(x)⟩P .

Proof. To find a measure, such that P (x) =
∑n−1

j,s,t,k=0Qj(x)
[
G−1
js ⟨QsQt⟩P G

−1
tk

]
Qk(x) (here

G−1
jk is Gram matrix Gjk = ⟨QjQk⟩ inverse) apply multiplication operator cjkm from (29) to

obtain:

2n−2∑
m=0

γmQm(x) =
n−1∑

j,s,t,k=0

j+k∑
m=0

s+t∑
l=0

cjkmG
−1
js c

st
l G

−1
tk ⟨Ql⟩P Qm(x) (A4)

Comparing the coefficients by Qm(x) obtain a linear system of 2n− 1 dimension, from which

the ⟨Ql⟩P ; l = 0 . . . 2n− 2 moments can be found:

n−1∑
j,s,t,k=0

s+t∑
l=0

cjkmG
−1
js c

st
l G

−1
tk ⟨Ql⟩P = γm (A5)

Then construct ⟨QjQk⟩P Gram matrix of the measure corresponding to found moments

⟨Ql⟩P , this gives the required P (x) =
∑n−1

j,s,t,k=0Qj(x)G
−1
js ⟨QsQt⟩P G

−1
tk Qk(x). To construct

∥ρ∥ operator, eigenvalues/eigenvectors of which give (A3): solve (8) generalized eigenvalue

problem with the matrices ⟨QjQk⟩P and ⟨QjQk⟩ in (8) left– and right– hand side respectively,

obtained eigenvalues/eigenvectors pairs give (A3) expansion over the states of ∥ρ∥ operator:

n−1∑
k=0

⟨QjQk⟩P α
[i]
k = λ[i]

n−1∑
k=0

⟨QjQk⟩α[i]
k (A6)

ρ(x, y) =
n−1∑
i=0

λ[i]ψ[i](x)ψ[i](y) =
n−1∑
i=0

∣∣ψ[i]
〉
λ[i]

〈
ψ[i]

∣∣ = ∥ρ∥ (A7)

P (x) = ρ(x, x) (A8)
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Remark. The expansion of P (x) =
∑n−1

j,s,t,k=0Qj(x)G
−1
js ⟨QsQt⟩P G

−1
tk Qk(x) with the matrix

⟨QjQk⟩P generated by a measure is unique, the measure moments are (A5) linear system

solution; without a requirement that the matrix to be generated by a measure, the solution

is non–unique. Another non–uniqueness can arise from a degeneracy of ⟨QjQk⟩P matrix,

for example, take Christoffel function (14), 1/K(x) = P (x) =
∑n−1

j,k=0Qj(x)G
−1
jk Qk(x): the

solution (A5) and the matrix ⟨QjQk⟩P are unique, but the (A3) expansion is non–unique due

to (A6) spectrum degeneracy (all the eigenvalues are equal to one), 1/K(x) =
∑n−1

i=0

[
ϕ[i](x)

]2
holds for an arbitrary orthogonal basis

∣∣ϕ[i]
〉
.

Note. This prof is actually an algorithm to construct the density matrix ∥ρ∥, producing a

given polynomial P (x). In provided implementation com/polytechnik/utils/BasisFuncti

onsMultipliable.java the method getMomentsOfMeasureProducingPolynomialInKK_MQ

QM(), for a given P (x), solves the linear system (A5) and obtains the moments ⟨Qm⟩P . The

method getDensityMatrixProducingGivenPolynomial() uses these moments to solve (A6)

and to obtain the ∥ρ∥ from (A7) as a Lebesgue quadrature, the spectrum of which corresponds

to a given polynomial P (x) (A3).

From (A3) it immediately follows that the sum of all ∥ρ∥ eigenvectors is equal to ⟨P (x)⟩ =∑n−1
i=0 λ

[i], particularly for Christoffel function we have: ⟨1/K(x)⟩ =
∑n−1

i=0 λ
[i] = n, and in

general case:

⟨f(x)P (x)⟩ =
n−1∑
i=0

λ[i]
〈
ψ[i]

∣∣ f ∣∣ψ[i]
〉

(A9)

The (A9) is a representation of ⟨f(x)P (x)⟩ integral as a sum of f–moments over the states

of the density matrix ∥ρ∥ operator (A6). This formula is a complementary one to (22), which

is a representation of ⟨f(x)P (x)⟩ integral as a sum of P–moments over the states of ∥f∥

operator (8).

Finally, we want to emphasize, that used all of the above ⟨ψ⟩2 is a special case of a

density matrix. Consider ∥ρ∥ = |1⟩ ⟨1|, then ⟨ψ⟩2 = ⟨ψ | ρ |ψ⟩, and for an operator ∥f∥,

⟨f⟩ = Spur ∥f |ρ∥ Similarly, a spur with a density matrix ∥ρ∥, e.g. corresponding to a

polynomial P (x), can be used instead of all averages:

⟨f⟩ → Spur ∥f |ρ∥ (A10)

This way the approach we developed can be extended not only to polynomial by operator

products study, but also to operator–by–operator products. Then, instead of Spur ∥f |ρ∥,
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which can be written either in (22) or in (A9) representation, a general case of two operators

Spur ∥f |g∥ can be considered. The first attempt to explore this direction is presented in [18].

Appendix B: On The Christoffel Function Spectrum

In the consideration above f was a given function with finite moments ⟨Qj | f |Qk⟩ in

(2). It’s selection depends on the problem approached, for example we used f = x to obtain

Gaussian quadrature (11) and f = dC/dN for Li–ion degradation rate study in Fig. 1. A

question arise what the result we can expect if the Christoffel function (14) is used2 as

f(x) = K(x) = 1
/∑n−1

j,k=0Qj(x)G
−1
jk Qk(x).

Theorem 4. If f(x) is equal to the Christoffel function K(x) the eigenproblem
n−1∑
k=0

⟨Qj |K(x) |Qk⟩α[i]
k = λ

[i]
K

n−1∑
k=0

⟨Qj |Qk⟩α[i]
k (B1)

ψ
[i]
K (x) =

n−1∑
k=0

α
[i]
k Qk(x) (B2)

has the sum of all eigenvalues λ[i]K equals to the total measure:

⟨1⟩ =
∫
dµ =

n−1∑
i=0

λ
[i]
K (B3)

Proof. For a given n Christoffel function K(x) vanishes at large x with 1/x2n−2 asymptotic,

the integrals (2) are finite and (B1) has a solution with eigenvalues λ[i]K (possibly degenerated)

and eigenfunctions ψ[i]
K (x). The Christoffel function (14) can be expressed in any orthogonal

basis, take ϕ[i](x) = ψ
[i]
K (x). From λ

[i]
K =

〈
ψ

[i]
K

∣∣∣K(x)
∣∣∣ψ[i]

K

〉
=

〈[
ψ

[i]
K (x)

]2
K(x)

〉
and K(x) =

1
/∑n−1

i=0

[
ψ

[i]
K (x)

]2
obtain ⟨1⟩ =

∑n−1
i=0 λ

[i]
K .

The eigenfunctions (11) of a Gaussian quadrature correspond to x–localized states, they are

∥x∥ operator eigenfunctions and the total weight is ⟨1⟩ =
∑n−1

i=0 K(x[i]) with w[i] = K(x[i]) =

2 Christoffel function is determined by integration measure and the basis used; it is invariant relatively a

non–degenerated basis linear transform. In this paper a polynomial basis Qk(x) for an arbitrary measure

dµ is considered. Other bases can be also considered; if one chooses the harmonic basis: 1/
√
2, sin(kπx),

cos(kπx), x ∈ [−1 : 1], dµ = dx, k = 1, . . . , n−1 then Chrisoffel function is exactly the constant 1/(n−0.5);

Chrisoffel function study for non–polynomial bases may be an important direction of further research. The

definition (14) can be generalized to a multi–dimensional measure, in [10] it is used for clustering analysis

of an arbitrary data sampled from an arbitrary space.
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〈
ψ[i]

〉2; the ψ[i](x) is (11) eigenproblem solution. The states ψ[i]
K (x) of (B1) eigenproblem satisfy

Theorem 4 and the Lebesgue quadrature weights sum (21): ⟨1⟩ =
∑n−1

i=0

〈
ψ

[i]
K

∣∣∣K(x)
∣∣∣ψ[i]

K

〉
=∑n−1

i=0

〈
ψ

[i]
K

〉2

. However an eigenvalue λ[i]K of (B1) is not equal to the Lebesgue quadrature

weight
〈
ψ

[i]
K (x)

〉2

, see (B7) below. A density matrix operator can be constructed from (B1)

eigenvalues and eigenfunctions:

ρK(x, y) =
n−1∑
i=0

λ
[i]
Kψ

[i]
K (x)ψ

[i]
K (y) =

n−1∑
i=0

∣∣∣ψ[i]
K

〉
λ
[i]
K

〈
ψ

[i]
K

∣∣∣ = ∥ρK∥ (B4)

it is similar to “regular average” density matrix ∥ρ∥ = |1⟩ ⟨1| considered in the Appendix

A, e.g. both have the same Spur (equals to total measure). The (B4) is the same as (A7)

but the eigenvalues/eigenfunctions are (B1) instead of (A6). The density matrix operator

∥ρK∥ corresponds to the Christoffel function K(x). The problem of averaging an operator

∥g∥ with the Christoffel function used as a weight is a difficult problem [15]. The (B4)

allows this problem to be approached directly: take the Spur ∥g|ρK∥. A question arise about

∥ρK∥ ⇔ K(x) mapping: whether it is a one–to–one mapping or not? For 1/K(x), a polynomial

of 2n−2 degree, the mapping is (A7). ForK(x) this requires a separate consideration. Anyway,

built from the Christoffel function density matrix operator (B4) allows us to consider an

operator average with the Christoffel function in a regular “operatorish” way: by taking a

Spur of operators product.

Recent progress[10] in numerical computability of Radon–Nikodym derivative for multi–

dimensional x allows us to demonstrate Theorem 4 numerically. Take a simple dµ = dx

demonstration measure of the Appendix C of [10]:

dµ = dx (B5)

x ∈ [−1 : 1]

The file dataexamples/runge_function.csv is bundled with provided software. It has

10001 rows (the measure support is split to 10000 intervals) and 9 columns. In the first seven

columns there are the powers of x: 1, x, x2, x3, x4, x5, x6. Then, in the next two columns, follow:

Runge function 1/(1 + 25x2) and the (B5) weight. Run the program to obtain Christoffel

function value for all observations in data file (column indexes are base 0):

java com/polytechnik/utils/RN --data_cols=9:0,6:1:8:1 \

--data_file_to_build_model_from=dataexamples/runge_function.csv

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://en.wikipedia.org/wiki/Runge%27s_phenomenon
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Here as f we use the x, the data is in the column with index 1. The Lebesgue quadrature

then produces the Gaussian quadrature for the measure (B5):

x[0] = −0.9491080257215085 w[0] = 0.1294848235792277 w
[0]
K = 0.11746154871932572

x[1] = −0.7415313130354606 w[1] = 0.279705429437816 w
[1]
K = 0.2794795769155739

x[2] = −0.40584522389537203 w[2] = 0.3818301175303132 w
[2]
K = 0.38911964330481996

x[3] = 0 w[3] = 0.41795925890484187 w
[3]
K = 0.42787846212051234

x[4] = 0.405845223895157 w[4] = 0.3818301175306451 w
[4]
K = 0.38911964330486587

x[5] = 0.7415313130353846 w[5] = 0.2797054294378024 w
[5]
K = 0.27947957691558917

x[6] = 0.9491080257213823 w[6] = 0.12948482357916594 w
[6]
K = 0.11746154871930853

(B6)

A small difference between (B6) and exact values of 7-point Gaussian quadrature for the

measure (B5) is due to the fact that the moments calculation is not exact, they are calculated

from 10001 discrete points in the file dataexamples/runge_function.csv. The Christoffel

weights w[i]
K (B9) are close to w[i] in case f = x. Created file runge_function.csv.RN.csv

has 22 columns. First column is the label, next 7 columns are the powers of x (copied from

input), then f = x, weight, Radon–Nikodym derivative (26) of fdµ and dµ (here f = x), and

the Christoffel function K(x) (14) is in the column with index 12; the other columns follow

to total 22. Run the program again using the Christoffel function as f (Christoffel function

is in the column with index 12; an alternative is to use --flag_replace_f_by_christoffe

l_function=true):

java com/polytechnik/utils/RN --data_cols=22:1,7:12:9:0 \

--data_file_to_build_model_from=runge_function.csv.RN.csv

or

java com/polytechnik/utils/RN --data_cols=9:0,6:1:8:1 \

--flag_replace_f_by_christoffel_function=true \

--data_file_to_build_model_from=dataexamples/runge_function.csv

The output file runge_function.csv.RN.csv.RN.csv now contains the eigenvalues λ[i]K and
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the Lebesgue weights w[i] for eigenproblem (B1) with the measure (B5):

λ
[0]
K = 0.10226835684407387 w[0] = 0.16153573777120298 w

[0]
K = 0.10226835684403417

λ
[1]
K = 0.12057295282629424 w[1] = 0 w

[1]
K = 0.12057295282626747

λ
[2]
K = 0.25910242661821975 w[2] = 0.4476418241676696 w

[2]
K = 0.2591024266180915

λ
[3]
K = 0.2924778951810179 w[3] = 0 w

[3]
K = 0.2924778951809419

λ
[4]
K = 0.37696956667653253 w[4] = 0.6388507741017023 w

[4]
K = 0.37696956667633214

λ
[5]
K = 0.4079988698735509 w[5] = 0 w

[5]
K = 0.40799886987353334

λ
[6]
K = 0.44060993198085746 w[6] = 0.751971663959237 w

[6]
K = 0.44060993198079923

(B7)

We see that for f(x) = K(x) both: the eigenvalues sum and the Lebesgue quadrature weights

sum are equal to total measure, it is 2 for (B5). Some of the Lebesgue quadrature weights are

equal to 0; for (B5) measure Christoffel function is even, there are even and odd eigenfunctions,

the average of odd eigenfunctions is zero. All Christoffel weights w[i]
K from (B9) are non–zero

and coincide with λ
[i]
K because f(x) = K(x), they will not coincide if optimal clustering to

D < n is performed with ∥ρ∥ = |1⟩ ⟨1|, see Appendix C below.

For a given f(x) an eigenfunction ψ[i](x) of eigenproblem (8) may possibly produce zero

weight in the Lebesgue quadrature, this can be an inconvenient feature in a practical situation.

The operator ∥ρK∥ (B4) allows us to introduce the “Christoffel weights” w[i]
K , that are always

positive. The operator ∥ρK∥ Spur (B3) is calculated in
∣∣∣ψ[i]

K

〉
basis, it is equal to total measure

⟨1⟩. The Spur is invariant with respect to basis transform, it will be the same when written

in
∣∣ψ[i]

〉
basis, (8) eigenvectors.

⟨1⟩ =
n−1∑
i=0

〈
ψ

[i]
K

∣∣∣ ρK ∣∣∣ψ[i]
K

〉
=

n−1∑
i=0

〈
ψ[i]

∣∣ ρK ∣∣ψ[i]
〉

(B8)

Define “Christoffel weights” w[i]
K as an alternative to the “Lebesgue weights” w[i] =

〈
ψ[i]

〉2 (20)

w
[i]
K =

〈
ψ[i]

∣∣ ρK ∣∣ψ[i]
〉
=

〈
ψ[i]

∣∣K(x)
∣∣ψ[i]

〉
=

〈 [
ψ[i](x)

]2∑n−1
j=0 [ψ

[j](x)]
2

〉
(B9)

The weights w[i]
K satisfy the same normalizing condition (B8) as the Lebesgue weights

normalizing (21). In Fig. 2 the Christoffel weights are compared to (20) weights. One can see

these weights are very close. However, the Christoffel weights w[i]
K have a property of being

always positive and are related to Christoffel function operator ∥ρK∥.
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FIG. 2. The same model as in Fig. 1, but with the Christoffel weights (B9) instead of (20) weights;

(a) corresponds to 1c and (b) corresponds to 1f. As in Fig. 1 the peak height corresponds exactly to

the stage length because of chosen measure dµ = dN . The calculations are performed for n = 50 in

polynomial basis.

The eigenvalues of (8) are the Lebesgue integral (15) value–nodes f [i], the weights are

obtained from eigenfunction
∣∣ψ[i]

〉
average. As we emphasized above in (A10), any average

corresponds to some density matrix. The ∥ρ∥ = |1⟩ ⟨1| corresponds to a “regular” average,

the Lebesgue weights then are: w[i] =
〈
ψ[i]

∣∣ ρ ∣∣ψ[i]
〉
. The ∥ρK∥ corresponds to “Christoffel

function average” with the weights (B9).

The calculation of “Christoffel weights” requires one more matrix ⟨Qj |K(x) |Qk⟩ to be

calculated from the data sample. The cost to pay for the “Christoffel weights” is that the

data sample now should be processed twice:

• Construct ⟨Qj |Qk⟩ and ⟨Qj | f |Qk⟩.

• For every observation calculate Christoffel function K(x) from the matrix ⟨Qj |Qk⟩.

Build the matrix ⟨Qj |K(x) |Qk⟩.

A second pass is required because Christoffel function matrix elements ⟨Qj |K(x) |Qk⟩ go

beyond basis function products and should be evaluated directly. In addition to the matrix

of outcomes ⟨Qj | f |Qk⟩ we now have a matrix of “coverage” ⟨Qj |K(x) |Qk⟩ which is used

to obtain operator ∥ρK∥, corresponding to the Christoffel function K(x). The Christoffel

function can be considered as a “proxy” for coverage[15, 25, 26]: the number of observations

that are “close enough” to a given x; but it can estimate only the coverage of a “localized” at

x state, not the coverage of a given state |ψ⟩. In contradistinction to the Christoffel function
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K(x), the Christoffel function density matrix ∥ρK∥ (B4) can estimate the coverage of any

given state |ψ⟩ as ⟨ψ | ρK |ψ⟩; it is not limited to localized states as the Christoffel function

K(x) is.

A uniqueness of the Lebesgue quadrature makes it a very attractive tool for data analysis.

When a data analysis problem defines some f , for example Li–ion degradation rate f = dC/dN

in Fig. 1, a class label in ML [10], gray intensity in image reconstruction[20], etc. the solution

(λ[i], ψ[i]) of (8) is unique and can be used as a basis for: PCA expansion (24), f distribution

estimation (20) or (B9), optimal clustering of Appendix C, etc. There is a setup where a

function f either cannot be defined or is a multivalued function for which an eigenvalue

problem cannot be formulated. However, we still want to obtain a unique basis that is

constructed from the data sample, for example to avoid PCA dependence on attributes

scale. In this case the most straightforward approach is to take the Christoffel function

as f(x) = K(x). This approach can be easily extended to a multi–dimensional x, see [10].

An issue that often arise in case of a multi–dimensional x is a degeneracy of Gram matrix

Gjk = ⟨QjQk⟩. In the Appendix A of [10] a regularization algorithm is presented, it needs to

be applied to x to obtain a regularized basis X. Then, in the regularized basis, the Christoffel

function (14) can be calculated3, the eigenproblem (B1) solved, and a unique basis ψ[i]
K(x)

obtained!

Appendix C: On The Optimal Clustering Problem With A Density Matrix Average

The most noticeable result of our work [10] is basis reduction algorithm, Section “Optimal

Clustering”. For n input attributes (such as Qk(x) or multi–dimensional x) construct D ≤ n

linear combinations of them ψ
[m]
G (x), m = 0 . . . D − 1, that optimally separate f in terms of

⟨fψ2⟩ / ⟨ψ2⟩. This solution is the key concept of our approach to data overfitting problem. A

sketch of [10] theory:

• Solve (8), obtain n pairs (f [i] = λ[i], ψ[i]). Introduce a measure ⟨·⟩L

⟨g(f)⟩L =
n−1∑
i=0

g(f [i])w[i] (C1)

w[i] =
〈
ψ[i]

〉2
(C2)

3 See the method com/polytechnik/utils/DataRegularized.java:getRNatXoriginal(double[]xorig)

.getChristoffelOatX() of provided software calculating the 1/K(x).

https://en.wikipedia.org/wiki/Multivalued_function
https://en.wikipedia.org/wiki/Principal_component_analysis#Properties_and_limitations_of_PCA
https://en.wikipedia.org/wiki/Principal_component_analysis#Properties_and_limitations_of_PCA
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
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• Construct a D–point Gaussian quadrature in f–space with the measure ⟨·⟩L, obtain

the functions ψ[m]
G (f) in f–space (Eq. (11) of dimension D with f used instead of x).

The optimization problem in f–space is solved only once, all the solutions in x–space

are obtained from the ψ[m]
G (f). This is different from [27] where for every given x

a conditional minimization of the polynomial 1/K(x̃) is required: for a fixed x in

x̃ = (x, f) find the f providing the minimum.

• Convert the optimal clustering solution ψ[m]
G (f) from f–space to x–space, obtain ψ[m]

G (x).

This conversion is possible only because the Lebesgue weights (C2) are used in (C1).

The Lebesgue weights w[i] =
〈
ψ[i]

〉2 correspond to a very specific form of the density

matrix ∥ρ∥ = |1⟩ ⟨1| (a “regular” average), this density matrix operator is a pure state. A

question arise whether the optimal clustering success of Ref. [10] can be repeated with a

more general form of the density matrix, e.g. with the ∥ρK∥ from (B4)? Introduce a measure

⟨·⟩L

⟨g(f)⟩L =
n−1∑
i=0

g(f [i])w[i] (C3)

w[i] =
〈
ψ[i]

∣∣ ρ ∣∣ψ[i]
〉

(C4)

The weights (C4) is the most general form of the Lebesgue weighs; (20) corresponds to

∥ρ∥ = |1⟩ ⟨1|.

As in [10] a D–point Gaussian quadrature can be constructed from (C3) measure, the

eigenfunctions ψ[m]
G (f) are (11) eigenvectors with the replace: n→ D and x→ f . They are

orthogonal as

δms =
〈
ψ

[m]
G (f)

∣∣∣ψ[s]
G (f)

〉
L

(C5a)

λ
[m]
G δms =

〈
ψ

[m]
G (f)

∣∣∣ f ∣∣∣ψ[s]
G (f)

〉
L

(C5b)

w
[m]
G =

〈
ψ

[m]
G

〉2

L
=

1[
ψ

[m]
G (λ

[m]
G )

]2 (C5c)

The problem is to convert obtained optimal clustering solution ψ[m]
G (f) from f to x space; D

eigenvalues are denoted as λ[m]
G in order to not to mistake them with n eigenvalues f [i] of (8).

https://en.wikipedia.org/wiki/Quantum_state#Pure_states
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Introduce D operators ∥Ψ[m]
G ∥, (m = 0 . . . D − 1; i = 0 . . . n− 1):

∥Ψ[m]
G ∥ =

n−1∑
i=0

∣∣ψ[i]
〉
ψ

[m]
G (f [i])

〈
ψ[i]

∣∣ (C6)

⟨A⟩ρ = Spur ∥A|ρ∥ (C7)

In the basis of (8) eigenproblem the operators ∥Ψ[m]
G ∥ are diagonal. With (C7) definition of

average the orthogonality relation for ∥Ψ[m]
G ∥ with respect to ⟨·⟩ρ is the same as (C5) for

ψ
[m]
G (f) with respect to the measure ⟨·⟩L:

δms =
〈
Ψ

[m]
G

∣∣∣Ψ[s]
G

〉
ρ

(C8a)

λ
[m]
G δms =

〈
Ψ

[m]
G

∣∣∣ f ∣∣∣Ψ[s]
G

〉
ρ

(C8b)

w
[m]
G =

〈
Ψ

[m]
G

〉2

ρ
(C8c)

For ∥ρ∥ = |1⟩ ⟨1| the ψ[m]
G (x) of [10] can be expressed via the operators ∥Ψ[m]

G ∥∣∣∣ψ[m]
G

〉
=

∣∣∣Ψ[m]
G

∣∣∣1〉 (C9)

p[m](x) =
[
ψ

[m]
G (x)

]2
(C10)

fRN(x) =

D−1∑
m=0

λ
[m]
G p[m](x)

D−1∑
m=0

p[m](x)

(C11)

fRNW (x) =

D−1∑
m=0

λ
[m]
G p[m](x)w

[m]
G

D−1∑
m=0

p[m](x)w
[m]
G

(C12)

The optimal clustering states ψ[m]
G (f) can only be converted to pure states in x–space ψ[m]

G (x)

when the density matrix ∥ρ∥ is of a pure state form |φ⟩ ⟨φ|, otherwise the conversion to

x–space produces mixed states described by the operators ∥Ψ[m]
G ∥. While the ψ[m]

G (x) does not

exist for a general ∥ρ∥, the p[m](x) weight, required to obtain Radon–Nikodym interpolation

(C11) and classification (C12) solutions, can always be obtained. From (C6) it follows that

p[m](x) =
〈
ψx

∣∣∣Ψ[m]
G

∣∣∣ ρ ∣∣∣Ψ[m]
G

∣∣∣ψx〉 =
n∑

i,j=0

ψ[i](x)ψ[j](x)ψ
[m]
G (f [i])ψ

[m]
G (f [j])

〈
ψ[i]

∣∣ ρ ∣∣ψ[j]
〉

(C13)
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For ∥ρ∥ = |1⟩ ⟨1| (C13) becomes (C10). A very important feature of the Radon–Nikodym

approach (C11) is that it can be generalized to the density matrix states. The
[
ψ

[m]
G (x)

]2
used as an eigenvalue weight needs to be replaced by a more general form (C13). Thus all

the optimal clustering results of Ref. [10] are now generalized from the weights (20) to the

weights
〈
ψ[i]

∣∣ ρ ∣∣ψ[i]
〉
, described by a density matrix ∥ρ∥ of the most general form, e.g. by

the Christoffel function density matrix (B4).

Appendix D: Usage Example of

com/polytechnik/algorithms/ExampleRadonNikodym_F_and_DF.java

The com/polytechnik/algorithms/ExampleRadonNikodym_F_and_DF.java is a pro-

gram processing 1D data. It was used in [6] to obtain relaxation rate distribution. In contrast

with advanced multi–dimensional approach of [10], this program has a rigid interface and

limited functionality. It is bundled with provided software. Usage example to reproduce Fig.

1 data: Create a two–stage linear model of Fig. 1d with 800:200 lengths, save the model to s

lope_800_200.csv.

java com/polytechnik/algorithms/PrintFunTwoLinearStages \

slope_800_200.csv 10000 1000 800 1e-4 5e-4 0

Solve (8) for f = dC/dN (f = C is also calculated). Use n = 50 and the data from slope_8

00_200.csv.

java com/polytechnik/algorithms/ExampleRadonNikodym_F_and_DF \

slope_800_200.csv 50 sampleDX

The files slope_800_200.csv.QQdf_QQ_spectrum.dat and slope_800_200.csv.QQdf_QQ_

spectrum.dat are generated. They correspond to f = dC/dN and to f = C respectively. The

files contain 5 columns: eigenvalue index, eigenvalue λ[i], xψ[i] =
〈
ψ[i]

∣∣x ∣∣ψ[i]
〉
/
〈
ψ[i]

∣∣ψ[i]
〉
,

w[i] weight (20), and w[i]
K weight (B9). The data can be grouped to 25 bins of λ[i] (the column

with index 1) to produce Fig. 1f (the weight is in the column with index 3) and Fig. 2b (the

weight is in the column with index 4).

java com/polytechnik/algorithms/HistogramDistribution \

slope_800_200.csv.QQdf_QQ_spectrum.dat 5:1:3 25 >W_800_200.csv

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
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java com/polytechnik/algorithms/HistogramDistribution \

slope_800_200.csv.QQdf_QQ_spectrum.dat 5:1:4 25 >WK_800_200.csv
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