Class AdjustToOrthogonalKraus
java.lang.Object
com.polytechnik.kgo.AdjustToOrthogonalKraus
Adjust Kraus operators to orthogonal form
\(
\delta_{jj^{\prime}}=
\sum\limits_{s=0}^{nS-1}
\sum\limits_{k=0}^{nX-1}b_{s,jk}b_{s,j^{\prime}k}
\).
-
Nested Class Summary
Nested Classes -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionadjustToOrthogonalWithEigenproblem
(int nS, int nC, int nX, double[] b) Adjustb
such that they become orthogonal, a trabsform may decrese the \(\mathcal{F}\).(package private) static double
evaluateAMatrB
(int nS, int nC, int nX, double[] a, double[] b, double[] SK) (package private) static double
evaluateF
(int nS, int nC, int nX, double[] SK, double[] b) (package private) static double[]
getGramMatrixJJ
(int nS, int nC, int nX, double[] b) Calculate \( G_{jj^{\prime}}= \sum\limits_{s=0}^{nS-1} \sum\limits_{k=0}^{nX-1}b_{s,jk}b_{s,j^{\prime}k} \) for a given unorthogonalized \( b_{s,jk} \).static void
A unit test.(package private) static void
runMultiTest
(String name, int nTest, Random r, double eps) (package private) static double[]
scaleByKrausIndex
(int nS, int nC, int nX, double[] b, double[] scalesKraus) (package private) static void
One solution test.
-
Constructor Details
-
AdjustToOrthogonalKraus
public AdjustToOrthogonalKraus()
-
-
Method Details
-
getGramMatrixJJ
static double[] getGramMatrixJJ(int nS, int nC, int nX, double[] b) Calculate \( G_{jj^{\prime}}= \sum\limits_{s=0}^{nS-1} \sum\limits_{k=0}^{nX-1}b_{s,jk}b_{s,j^{\prime}k} \) for a given unorthogonalized \( b_{s,jk} \). -
evaluateF
static double evaluateF(int nS, int nC, int nX, double[] SK, double[] b) -
evaluateAMatrB
static double evaluateAMatrB(int nS, int nC, int nX, double[] a, double[] b, double[] SK) -
scaleByKrausIndex
static double[] scaleByKrausIndex(int nS, int nC, int nX, double[] b, double[] scalesKraus) -
adjustToOrthogonalWithEigenproblem
public static AdjustToOrthogonalKraus.UAdjustmentJJ adjustToOrthogonalWithEigenproblem(int nS, int nC, int nX, double[] b) Adjustb
such that they become orthogonal, a trabsform may decrese the \(\mathcal{F}\). -
testBasic
One solution test. -
runMultiTest
-
main
A unit test.
-