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A new approach to obtaining market—directional information, based on a non—
stationary solution to the dynamic equation “future price tends to the value that
maximizes the number of shares traded per unit time” [1] is presented. In our previ-
ous work|2], we established that it is the share execution flow (I = dV/dt) and not
the share trading volume (V') that is the driving force of the market, and that asset
prices are much more sensitive to the execution flow I (the dynamic impact) than to
the traded volume V' (the regular impact). In this paper, an important advancement
is achieved: we define the “scalp—price” [P] as the sum of only those price moves that
are relevant to market dynamics; of relevance is a high I. Thus, only
“follow the market” (and not “little bounce”) events are included in P. Changes in
the scalp—price defined this way indicate a market trend change — not a bear market
rally or a bull market sell-off; the approach can be further extended to
price changel The software the scalp-price given market observations

triples (time, execution price, shares traded) is available| from the authors.
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I. INTRODUCTION

Introduced in [3], the ultimate market dynamics problem — finding evidence of existence
(or proof of non—existence) of an automated trading machine consistently making positive
P&L as a result of trading on a free market as an autonomous agent — can be formulated

in its weak and strong forms:

e Weak form: Whether such an automated trading machine can exist at all using only
legally available data. (It can definitely exist in an illegal form — e.g. when a brokerage
uses client order flow information to frontrun their own clients. This type of strategies
typically rely on using proprietary information about clients’ Supply-Demand future

disbalance and on the subsequent monetization of this information.)

e Strong form: Whether such an automated trading machine can exist and be based
solely on transaction sequences — say, the historical time series of (time, execution
price, shares traded) market observations triples. This information has supply and
demand matched for every observation: at time t trader A sold v shares of some
security at price P to trader B and received v - P dollars. Such a strategy can utilize

only information about volume and execution flows.

We have shown in [I 2] that it is share execution flow I = dV/dt, not share trading
volume V, that is the driving force of the market (see the Figs. 2 and 3 of Ref. [2]: the asset
price shows singularity at a high 7, but there is no price singularity at the maximal volume
price, the median of price-volume distribution).

In [1 4], the concept of liquidity deficit trading was introduced: open a position at
low I, then close already opened position at high I; this is the only strategy that avoids
catastrophic P&L losses. This strategy is ideologically similar to a classic volatility trading
strategy: buy astraddle at low volatility, sell it at high volatility, never go short volatility to
avoid catastrophic P&L loss, but is different from it by incorporating asset price directional
contribution: the decision is needed on whether to open a long or a short position at low
I. In [3], the first attempt at finding a non-stationary solution to the dynamic equation by
linking asset price and liquidity deficit via “impact—from—the—future” operator (adding to
execution flow a contribution from not—yet—executed trades) was presented. In this paper,

a different approach is developed.
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Instead of adding not—yet—executed trades (impact—from—the—future), we now consider
removing from consideration already executed trades (impact—from-the—past) corresponding
to high I — low I transitions. A liquidity deficit trading strategy assumes that only low [
— high I transitions will be captured by the trader. The high I — low [ transitions are not
to be used, as they are a major source of catastrophic risk. A typical market behavior after
a liquidity excess (high I) event is to “bounce a little,” then go in the original direction of
the market. This creates an uncertainty of strategy. What does one bet on: “little bounce”
or “follow the market”? In contrast, after a liquidity deficit (low I) event, the market can
only go in the direction of the market trend, eliminating this uncertainty. This shows the
importance of the assymetry of dynamic impact (price sensitivity to I [2]): low I — high
I and high I — low [ transitions are to be considered separately, as they lead to very
different price behaviors. This asymmetry is the topic of this study. The scalp—function
is introduced to comprise only those price moves relevant to market dynamics (high 7),
which allows constructing scalp—price P (Fig. containing only “follow the market” (and
not “little bounce”) events. A change in the scalp—price indicates a market trend change,

not a bear market rally or a bull market sell-off.

II. BASIC MATHEMATICS

The key concept of the dynamic equation “future price tends to the value that maximizes
the number of shares traded per unit time” [1l 3] is to find an averaging weight from the
behavior of a market dynamics operator f (e.g. dV/dt, V/t, or dI/dt), then to estimate
some directional indicator (e.g. price change, signed volume, etc.) using the obtained
weight. Mathematically, the weight is considered in the form of an average depending
on wavefunction () = Y770 arQu(x): ¥ (x(t))w(t)dt, an important generalization of
commonly—used parameter—independent fixed time scale averaging such as the exponential
moving average : w(t)dt. The bases Q,,(x(t))w(t)dt we use in this paper are listed in Section

IT of Ref. [3]). Here w(t) is decaying exponent and x(t) is either linear or exponential function

on time:

w(t) = exp (= (tnow — 1)/7) (1)
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(t — thow)/T Laguerre basis
z(t) = (2)
exp (—(tnow — t)/7) shifted Legendre basis

The problem is then reduced to a generalized eigenvalue problem|/ of operator || f]|:

el = A7 |ul?) 3)
n—1 n—1
Qi1 F1Quy ol = N> 7(Q; 1 Qr) o (4)
k=0 k=0
n—1
P() = aflQu(x) (5)
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The most general form of the averaging weight is a density matrix:

n—1
loll =D [y Al (wf] (6)
=0

n—1 n—1
fp = spur [l f1pl = 3 (i | £ 1w A =37 (ol | o |0) A (7
=0 =0

The most promising result of Refs. [Il 3] is averaging with the weight in the state )wa]>
of the maximum execution rate I = dV/dt on the past sample. This corresponds to the

following density matrix and asset price:

o700 = [ (uf ™ (®)
P = (™ | pr [l /AT (9)

Given a state [¢), a number of values in this state can be calculated. Just a few examples.

Let’s define

Vi(t) = / P (E)dV” (10a)

t

tnow
T~ [ peir (10b)
t
Here, Vi (t) = V(tnow) — V (t) is traded volume, V;(t) is traded capital, V;(t)/Vy(t) is volume—
weighted average price, To(t) = tnow — t, and T1(t)/To(t) is time—weighted average price;
these are the values for the time interval: between ¢ and ¢,0,,. Then py, 4 is {volume,time}-

averaged price in the [¢) state, pry,ry is {volume,time} averaged aggregated price in the
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1) state, calculated using the aggregated moments (L10). If |¢) is localized at some given
t, then, approximately, py, 4 is the price at ¢ and pgy,ry are {volume,time}-weighted price

moving average calculated for the time interval between t and t,,..,:

(W pl]Y)

o= TT0) (11a)

= el (11b)
= (110
pr= % (11d)

Moments (@,,Vs) and (Q,,Ts) can be calculated from moments (Q,, p°I) and (Q,, p®) and,
more generally, moments <Qm‘il—f> can be calculated from moments (Q,, F') using integration
by parts (see the Appendices @ and |[Ef below). In some cases, it is more convenient to

directly integrate the wavefunction rather the individual basis functions as in (D1):

wy(t) = /W(rlf(t’))W(t’)dt’Zw(t)J(W(x(t))) (12)

tnow tnow

/ F(t)y?(z(t))w(t)dt = — / Cii—];w¢(t)dt (13)
F(thow) =0: Boundary condition (14)

For the bases we use w(t) = exp (—(tnow — t)/7) is monotonic, z(t) is a simple function
(linear or exponential), and J(-) in is analytically-known polynomial-to—polynomial
mapping functionﬂ:

1 €T
/ P(x')exp(z’)dx’ Laguerre basis
J(P) = x> (15)
1
— / P(x')da’ shifted Legendre basis
T

Averaging with ¢?(x(t))w(t)dt weight gives the value in a pure state |1), averaging with
J(?(z(t)))w(t)dt weight gives the value in a mixed state: starting since [¢) till “now”.

1 See the classes com/polytechnik/freemoney/{WIntegratorLegendreShifted,WIntegratorLaguerre,

WIntegratorMonomials}.getPsi2WIntegratedDt () for numerical implementations)



This allows simultaneously calculate the values of operator pairs: (||[Vol], IZ]]), (|[Vall, IIpI]]),
etc. in the state of a given ¢ (z). These operators are known explicitely and all their
moments (FQg), s =0...2n—2 can be obtained directly from sample, then matrix elements
(Q;j | F|Qk), j,k = 0...n — 1 are obtained using basis functions multiplication operator
. However, the situation is different when operator’s moments (FQs), s =0...2n — 2
are not explicitly known, often available only through matrix elements (Q; | F'| Qx) that are
obtained from some algebra (e.g. an operator as a product and sum of other operators,
or an operator with it’s eigenvalues adjusted for some reasons, such as the technique of [5]
where the eigenvalues (not the eigenvectors!) are adjusted for an effective identification of
weak hydroacoustic signals). In this case the average ff’;“ F(t)J(¢*(x(t)))w(t)dt cannot be
calculated directly. However, Theorem 3 of [6] establishes a mapping between a polynomial
(such as J(¢*(z))) and a measure, this allows to obtain the moments of a measure that
produces a density matrix providing the same average. This way operator’s average in a
mixed state can be obtained in a regular way as a Spur of the operator with the obtained
density matrix even without explicit knowledge of the operator’s moments (FQs), s =
0...2n —2, see e.g. com/polytechnik/trading/trading/DM_DI. java that uses com/poly
technik/utils/BasisFunctionsMultipliable. java:getMomentsOfMeasureProducingP
olynomialInKK_MQQM to obtain the density matrix?]

What input data is required to obtain all the results of this paper? The n X n matrices

Q| f|Qk) (J, k =[0...n—1]): are calculated from generalized moments (m = [0...2n—2]):

(Qm) (16a)
(Qm ) (16b)
(Qum pI) (16¢)

<Qm%> (16d)

by applying basis functions multiplication operator (Eq. (G1) of Ref. [3]):
j+k

QiQr = Qnm (17)
m=0

2 Note that while integration density J(¥?(z(t)))w(t) from is always positive monotonically in-
creasing with ¢ on measure support (the J(1?(z)) is a positive polynomial on z interval matching to
t € (—00...tyow| interval), the eigenvalues of the density matrix corresponding to this positive polyno-

mial is not necessary all positive. This means that J(¢?(x)) is not always a sum of squares.
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All the are calculated from (Time, Price, Shares traded) transaction sequence.

IIT. P&L AND OPTIMAL POSITION CHANGE

Given a directional density matrix ||p||, how we do apply it? A naive answer is to average

a directional attribute with it, for example:

e Use price change operator || f|| = H%H (or ||f]] = H%H with some boundary condition
from the Appendix [E|), calculate Spur||f|p||; in a pure state ||p| = [¢) (¢|, hereof
Spur || flpll = (¥ ] f|). Other directional attributes (signed volume, spread multi-

plied by signed volume, time difference spent in the order book, etc.) can be also

considered[4].

e The state determining the dynamics often corresponds to a large dI/dt. Because
dl = I(t+dt)—1(t) > 0, I = dV/dt is larger at the end of the interval. The asset price
difference p, — p;, with volume dV and time dt averaged in a state with such an asym-
metry, is proportional to the directional component, where p, = (¢ |pI |¥) / (¢ | I |v),
and p; = (¢ |p| ) /(¢ ]¢). Note that such a difference between volume— and time-
averaged attribute p, — p; carries directional information only in a state of large dI/dt,
which makes an asymmetry of price averaging with dV and dt correspond to dp. This
is not the case in other states, e.g. trying to use the difference between volume— and
time—averaged price in the ’¢BIH}> state was fruitless in [3]|, see Appendix |A| for a
demonstration. It is now clear why: only the states with large dI/dt provide weight

asymmetry required to obtain directional information using dV vs. dt averaging.

In [I] a P&L operator has been introduced in the Section IL.E “P&L operator and trading
strategy”. Given a position change dS, the amount of shares bought (dS > 0) or sold
(dS < 0) during time interval dt, the P&L i}

P& = — / pdS (18)

0 = /dS (19)

3 While the P&L is — [ pdS, Eq. , the [ IdS, can be tried as a directional indicator.



The constraint means: total asset position should be zero in the beginning and in the

end of a trading period. Formally,

ds = C‘; (w( )‘th’) dt (20)

where w(t) is an arbitrary positive function, provides positive P&L in (integrate by
parts and assume %2 = 0 at the boundary to satisfy (1 ) Position increment dS of optimal
P&L trading has a symmetry of the second derivative of price. Note that in other
than dp/dt attributes can be used, designate it as F, for example: weighted price change
F = 5V% (price change multiplied by the volume traded at this price), signed volume,
signed volume multiplied by spread, etc.

There is a dS answer of integral type:

dS = w(t) /dt/ /t/ dt"w(t")p(t") (21)

but it’s non—local nature and the difficulty to choose integration limits to satisfy the con-
straint make such an approach more difficult to implement. In the simplest form this
approach is equivalent to buying below the median and selling above the median strategy
considered in the Appendix E of Ref. [3].

A very promising idea is a “local trading strategy” for dS : in ‘wa]> state buy at prices
below the pl/fl from @, sell above the pl/#l. Corresponding ||dS/dt|| operator is then:

ds = — (p —p") dv (22)
1% =-le- A1 )
PEL = — < o 'w“H > (" | (0 = P 1 | 0l (24)

For this dS, in the ’¢BIH}> state, the condition is satisfied, and the P&L has a meaning
of price standard deviation .

IV. DIRECTIONAL INFORMATION: BEYOND THE WAVEFUNCTION

As we have discussed in [I, 2] the most interesting market behavior is observed at large

@114)
@ 1)

I, optimization problem I = 7 max can be reduced to a generalized eigenvalue

problem (4)) for ||| operator:
i)

v’y (25)



While the enter/exit conditions can be easily obtained from as in (B1]), the directional
information is a much trickier problem|3]. In [4], the importance of P&L dynamics was
emphasized. In Section above, several trading strategies (d.S), retrospectively providing

positive P&L are presented. The goal, however, is to build a strategy providing future

positive P&L. Consider p; (11b]) in the ‘wa]> state:

IH IH
18] <£ WPW ]>

Dy <wa] ‘wa]> (26)
d
plast _ pEIH] — /dtd—zzwwym (t) 27

[1H]

The 1) is just dp/dt integration with the weigh for |; >: the sum of the derivative

values with the proper weights give the last price minus the average. The can be

expressed via the <Qm%> moments using an integration by parts of the Appendix @ The
problem is reduced to calculation of the moments (m = [0...2n — 2]) from observation]
sample [ = [1... M]:
dp -
(@) = 3 0(t) ~ plt-2)] Qu(altota) (28)

=1
Then can be substituted for and the best directional answer of Ref. [1]: the last

price minus the price in the ’¢EIH]> state is obtained (the ([11a]) and (11b)) are almost identical

in the ’¢B1H1> state). These answers are the most general form that can be obtained using
the “pure wavefunction approach” all the answers are two quadratic forms ratio, possibly
incoherently superposed to a density matrix . However, as we have discussed above, “not
all observations are equal”: only the events with a high I are important for market dynamics.

Consider the expression for a general attribute F:

DIR _scalped = /dtf(t)w¢[zg] (1) (29a)

(@uF) = _(tr = tim1) FiQu (x(t))w(ty) (29b)

=1
For

_dp _ p(t) — p(ti—1)

F=
Tt t—t 4

(30)

4 Here the “right” sum is selected to simplify the recurrence by preserving the invariance of the time-grid.
One can possibly use the “middle” sum with the (¢; — ¢;—1)/2 in the weight w(t) and the basis @, (z(t))

functions argument.
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the is exactly the and . Consider

) = Ls) (31)

(11— ti)Fi = (1) — pl0) S = (01— 12) L, (32)
S(t) : 0...1] bounded function (33)

S = <w}”” ‘¢0>2: For t € [—cc...t)] interval (34)

Now price change is multiplied by a [0...1] bounded scalp—function S(t) to select “the
relevance to market dynamics” of any single observation moment ¢;. This way, we can
remove from consideration all “irrelevant” observations, as discussed in the introduction; the
relevance is determined by estimating whether the current execution flow I is extremely
large. The answer obtained in [1l [7] is: for every ¢; observation solve the problem for
the interval [—oco...t;] and consider the projection for time-shifted (¢,,,, = t;) problem
([25). The calculations are straightforward. At time “now,” look back at all [1... M] market
observations, calculate the sum ; for every term at t; also “look back” to construct a
separate set of matrices (Q); | Q) and (Q; | I | Q) for the interval I’ = [1...[] and calculate
the scalp—function S from (34)). This is a problem of O(M?) complexity when approached
directly, but it can be optimized using recurrence relation for the moments calculated for
different observation intervals I’ = [0...1], | = [0...M]. The major difference with the
(27) is that the averaging can no longer be written in the density-matrix form
with the original <Qm%> moments. The integration weight in is obtained from the
integration of . Using Theorem 3 from the Appendix A of Ref. [0], any polynomial P(z)
of 2n — 2 degree can be isomorphly mapped to a linear operator of the dimension n, thus the
density matrix, corresponding to the w ST averaging , can be readily obtained. This
is no longer the case for averaging. The scalp—function S, while is easy to calculate
numerically, does not allow to reduce averaging to a density matrix averaging
of the original moments ; we now need the scalp-moments to average them with
the w U This is similar to Bloch wavefunction in quantum mechanics, where the “true”
wavefunction is considered as a product of slow and fast oscillating terms. Now we have a
product of slow wy(t) and fast S(t) changing weights in (29al). The greatest advantage of
such a transition from regular to scalp-moments, is that the averaging weight can be very

sharp. Compare the Iy in Fig. (1| with, calculated from the input at fixed t,,,, the
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“interpolated” I(y(—oo < t < tuny)) in Fig. [6] of the Appendix [A} even for the dimension
n = 12 obtained wavefunction states are not sufficiently localized to select the sharp spikes
in price changes at high I. In the same time the dimension n = 12 is perfectly OK for the
execution flow /. The scalp—function is a practical way to unify price and execution—flow
dynamics within a single framework.

In the Fig. the <1/}£IH} ‘ ¢0>2 projection along with I, and )\[IIH] are presented. One
can clearly see that the is a very good indicator of market activity, the effect we have
noticed back in [1, [7]. Now, however, we know how to apply this knowledge: the criterion of
current execution flow being extremely high (such as <@/J[1H] ‘ 1/)0>2) can be used as a scalp—
function S when calculating the dp/dt moments in (29b)): multiply each p(t;) — p(ti—1) by
the scalp—function. This way only the relevant (high /) market moves will be accounted in
the scalp-moments (Q,,F) = <Qm8 dp > Typical scalping is price spikes (relatively some
“average’like level) identification technique along with a set of rules to enter a trade and
to take a profit/stoploss. As we have shown|2] the spikes in the execution flow, not in the
price, are responsible for market dynamics.

The main idea is to accumulate, with the @Q,,(x(t))w(t)dt weight, a directional
attribute, such as p(t;) — p(t;—1), (Ref. [I] result) multiplied by a scalp—function, such
as (this paper result); in practice this is just a directional attribute transform .
Algorithmically, we need to listen for all trading events, and, for each coming event in
sequence, obtain a directional attribute F; from the regular moments, then calculate
scalp-moments (recurrent optimization make it very efficient computationally) to obtain the
directional information . Important, that the value of F; is calculated from already
sampled moments and recent observations. This calculated value is now used to calculate
it’s moments “as it were directly observed from sample” (e.g. as it were a regular price
change). This sampling technique, using calculated value as it were a new observable, can

be called the “secondary sampling”. It can be implemented in several ways:

e Tick trading. As a transaction sequence consider every tick (execution or limit order

book event). For every tick [ calculatd’]

) w

> Most of D; = p(t;) — p(t;—1) = 0 as most trading occur at the same price. Also note that pys — pp_1 =

Zl]‘im D,. For a different weight in the sum obtain .
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FIG. 1. The AAPL stock price on September, 20, 2012. The calculations in Shifted Legendre

2
] ¢0> projection are

presented. The execution flow [ is scaled and shifted to 693, the projection is shifted to 695 to fit

basis with n = 12 and 7=128sec. The I, )\[IIL}, /\[IIH], and <¢BIH

the chart. In between [9.92...9.94] the execution flow Ij is small and the <2/)E!H] ‘ ¢0>2 is close to
zero, thus make this interval non—contributing to scalp-moments. What will happen to them, when
the Inp = (o | I'| 1) is used as a scalp—function instead of the < [IIH} ‘¢0>2? In the [9.92...9.94]
interval the Iy, while being small, is not particularly zero and the contributions from this interval
will propagate to ; moreover the I — I + const transform makes these contributions even
larger. In the same time the is almost zero in irrelevant to market dynamics intervals and is
invariant with respect to I — I + const transform. Effectively the < L7H] ‘ w0> is the definition of

scalp: the condition of Iy being high[7].

to obtain the “filtered by relevance” moments in (29b)).

e Assuming we have all the ticks dataEl , instead of the price difference some average

6 In practice, for US equity market, a sub-millisecond data can be obtained at reasonable cost. For other

markets, such as fixed income, every tick data cannot be practically obtained. Even for currency trading
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multiplied by the scalp—function can be used:

ﬁ=<wo o wo>< 11| ) (36)

The (36 uses the |1)) for the interval ¢ € [—oo...t] with ¢, = t. The ¢y from

(A1) has an internal time scale 1/12(zo) (which is determined by the basis dimension
n and scale 7), thus in the dp/dt is averaged over the time 1/13(zo). The result
is very similar to price tick approach, see the Fig. [7|below. A quite similar result

can also be obtained with
<¢o|p1|¢o>_<¢o|p|%}< [IH]‘¢> (37)

Fo=00l0) [T 00y~ i [

this corresponds to described above approach of the difference between volume and

time averaged price.

e The and are calculated in the [t¢)g) state. One can consider other states, the
‘wa]> is of special interest

fl—< Rk ‘w””> | ) (38a)
7i=2( E””\pI\ED ) = (el pr | o) (o™ | ED@ )] (3sb)
]_-l:< EIH] ;; ]‘< BIH]>>

2| P <w£”” D)) = (" | b ED@B’H])}] (350)

An important feature of (38)) is that some of these F; expressions and ( - are

calculated from ||pI|| operator variation and have: 1. the dimension of capltal 2. the

2
<1/}y H] ‘ 1/10> factor entering due to the identity

()" =2 (0 [EDEA™)) = (7 | ) v3(z0) (39)

e An ability to use an expression, calculated from the regular moments (-), such as is

a very important generalization of price change directional attribute (30]). The minimal

the fragmentation of the markets along with prohibitively high prices on sub—millisecond data, make any
tick—trading approach practically unfeasible. However, as we have discussed in Ref. [3], the time scale
of market opportunities (along with liquidity available!) expand well beyond sub—millisecond time scale,
maximal scale is determined by the availability of high enough fluctuations in the execution flow I, at

least an order of magnitude in )\ L1H] / )\[IL]
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time-scale of such an attribute is 1/t¢2(xg), and the experiment shows that and
(36) produce very similar results. This makes promising to consider a directional
attributes of more general form in the |¢)y) state: calculate the F;, and use it as it
were a regular price change. All the previously considered F; were some kind a price
change analogue. In Ref. [3] two new directional attributes have been introduced:
skewness and probability correlation. Consider the skewness (Eq. (66) of Ref. [3])

calculated out of four input moments:

ms = (Yo | p°1 | o) (40)
s=0,1,2,3
= 2p — in 7 Mmax
Pmin — Pmax

The idea is to build two—point Gauss quadrature (the puyin, Pmax are min/max nodes
of the quadrature, Eq. (64) of Ref. [3], and p = m /7o) then to consider it’s weight
asymmetry as the asymmetry of the distribution. The weigh asymmetry is actu-
ally proportional to the difference between the median estimator (pmin + Pmax)/2 and

the average p. One can use the skewness

Fi = [ — o] T (0 [ ) (42)

as a directional attribute instead of price change. The is calculated from the
regular moments (Qy), (IQx), (pIQy), (P*IQ4), and (p3IQy), then the F; is used as
it were observed at t = t;. This way we substitute price change by the skewness
calculated at 1/12(zo) scale. The scalp-function < BIH} ‘¢0>2 makes only relevant to

market dynamics observations to contribute.

e Variate the ||pI|| in the ’1/J£—IH]> stat with [tg):

7i=2 (" ot [vo) = (o™ [ [w") (o™ i) | (™ [ ) (a9
If |)g) is the )1/J[IH]> then is zero and no directional information is available.

The factor < [IH] ’ ¢0> which does not enter the , is included in as a scalp—

function; this factor also provides proper sign invariance for ¢ — w transform:

7 The expression has the meaning of capital change due to identity. For single asset consideration it is

convenient to divide by )\[IIH].
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<¢}1H} ‘¢0> is not squared as it is in 1D One can also use a higher degree of
< ¢EIH} ‘ ¢0> factor in to make the peaks sharper.

o Similar to , but with ) and [o)

wolpt gy (1™ [T [0f™)

Fi =g (zo)

(Yo [ T]40)

(0] w0) @)

(1377

can be considered. This is price difference in |1g) and ‘1/)ng1> states. Were it not for

2
the scalp-function < BIH] ’1/)0> this would be almost Ref. [I] answer: the difference

between the last price and pl/#] @ The scalp—function makes this difference to be
accumulated only for the events of extremeny high I,. The and are zero for

wa]> being equal to |¢)g), thus satisfy Ref. [3] Eq. (48) condition of “no directional

information about the future available”.

e All the F; considered above are some kind of price change. Tick trading is last

price minus previous price, the other (e.g. (36), (37), etc.)

are calculated from the

regular moments. It is a promising path to combine tick and moments approaches.

«7'_1:[291

I

Estimating the p; as (EI), or in the state [ig) or

—pi] (w}" ‘ wo>2

: calculated from (/Qy) and (p/Qy) moments

(45)

(46)

¢¥H1> will not provide a good

answer, the is a demonstration. A promising approach is to consider skweness like
answer . Take but consider it in a different basis of dimension two, replace
the basis 1, p(t) by |¢o), M”“} as these are the states that are localized and relevant

to market dynamics:

¢0 P1|¢0

(v “‘”IPIW

Yo
[IH]

IH]

I‘wBIH]> Qéo,1] -
]‘¢51H]> a[lo,u
dolIlwo)  (wo| |0\ [ afo

o) (sl 1w !

a[lo,l]

The /\[ ) and )\[* eigenvalues give the min/max price estimates, that can be obtained

in a state of o) and ‘wl > superposition. An answer similar to the skewness 1)
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can be used as an estimator of p; being low/high:

2
Fi= =D, (" | o) (48)
2p — A 4 Al
Dy = U\ (49)
p* — 'p*
4
lp(t)—p(ti—1)|
t—ti—1
V(tl)—V(tl_l)
ti—t1—1
T (1] [0]
Ap* - )\p*
=

The F; is proportional to the difference between p;, and % [/\][3(1] + /\Ej] is similar to

Eq. (95) of Ref. [3]. This is an approach generalizing tick and moments approaches.
However, now the is no longer [—1 : 1] bounded (it would be if one replaces p;
by (o | pI | o) / (Yo | I'|1ho)). A moments—only answer (without the last price used

explicitly) can be also obtained:

2
Fi= 2Dy (0 0o ) (50)
2 2
D — [<Z5[1](5U0)] - [Qb[o] (370)} (51)
g [Pl (g ]2 + [¢[0](1'0)]2
o (2) = af Mo() + o (a) (52)
( p(t)—p(ti_y)|
Li—ti—1
V(t)=V(ti—1)
o — ti—t; 1
(1] [0]
AL Al
-

The sign of is determined by which one of eigenfunctions ¢! (x) is greater
61 (20)]” ~[¢%) (o))

- > can be
[¢11 (o) +[¢1%) (o)
considered as probability correlation (Appendix C of Ref. [3]) between price and

“distance to now”. In and the scale factor [)\][01*] — )\gﬂ by D, is replaced by

more general form z, what makes the scalp—price to preserve the singularities for a

at zg, (A6) distance from Ref. [3]. The directional factor

variety of D, used.

As we have discussed in [I], 4], price and price changes are secondary to execution flow and

cannot be used to determine market direction for the reason of insufficient information. The
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main idea behind the scalp-moments is to replace in the sum ([28))

p(t) —p(ti1) = (b —ti1)Fy (53)

M

Plty) => (i —ti1) (54)

=1

DIR_ scalped = Pt — <wa] ‘ P ‘ wa]> = /dt]:(t)ww[m] (t) (55)

I

where F; contains not only price changes, but also execution flow information. A good F;
selection allows us to accumulate much more directional information in the scalp-moments
(QmF) compared to the information in the regular moments <Qm2—7;>. If one sum all the F;
terms, the P, a generalized price can be obtained . The P is defined within a constant
(it is convenient to take the last “price” P! equals to zero). The transition from price p
to the scalp—price P makes all directional singularities expressed much more clearly. The
directional information now take the form, that is identical to , but instead
of price p the scalp—price P is used. If a trader wants to watch the prices — he should
be watching the scalp—price P, a much more informative characteristic in terms or market

trend, than the regular price p.

A. A Demonstration of Scalp—Price P Behavior

Before we go any further, let us demonstrate scalp—price P(t) for a given F;. The
results with 7 from (37)), (36), and (38a]) are very similar to each other, so we present only
the scalp—price calculated from (36)) terms; .dp_to_use=F_dpdtO_SCALP in|ScalpedMaxIPr|

lojection.javal The regular price is a sum of all price changes , the scalp—price is a sum

of relevant to market dynamics (high I') price changes . In Fig. [2|regular and scalp—price
are presented. One can clearly see, that while the regular price has an erratic behavior due
to whatever market moves, the scalp—price P has a more regular type of behavior. If scalp—
price changes it’s trend — the trend actually changes. The scalp—price P is defined
within a constant, and it is typically not a good idea to compare regular and scalp—price.
However, if one takes an event in the past, where the price is equal to the last price, the
change in the scalp—price gives marker direction, i.e. instead of comparing price and scalp—
price, one needs to identify a situation of zero price change, then scalp—price change gives

market directional information. From a market practitioner’s perspective, plain observation
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2
FIG. 2. Price and scalp—price P for F; from are presented. The <2,[)¥H] ‘¢0> is used as a
scalp—function S(t) (33). Scalp—price is shifted to fit the chart. See Appendix for data fields

T, p_last, shares, p_IH, I.wH_squared, and getSumFdt() corresponding to: time, price, shares

traded, pl/H] (EI), scalp—function , and scalp—price P .

of the scalp—price is a good source of directional information. As we have discussed above, a
typical price behavior after liquidity excess (high I') event is to bounce a little, then go in the
original direction of the market. This gives a risk of on what to bet: “little bounce” or “follow
the market”. The P, obtained from (36| F;, has no “little bounce” contributions; watching
the P is actually watching pure market trend. If the price moves, and the scalp—price stays
— this typically indicates a bear market rally or a bull market sell-off. The P is an integral
attribute. The F = dP/dt is a local attribute. One can try the

(o 7| wlm) = (ol | 57 o) (5)

attribute (not show in Fig. , see .F_IH field of|[ScalpedMaxIProjection. javaloutput), but

the result is worse compared to the P result, no clear bear/bull market switch is observed.

The situation is similar to the one in Fig. 2 of Ref. [3|: dp/dt chart in the ¢BIH]> state.
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B. A Demonstration of the Directional Information

The directional information should be accumulated over an interval of a substantial du-
ration for the reason of low information available in a single price change. However, the
strategies as the last price minus the average will never work for the reasons of fixed time
77Z}BIH}>, was
introduced and the answer was obtained. In this paper, the next critically-important

scale of price averaging. In [I], the time—scale of the state of maximal past I, the

step is made: instead of regular price p, the scalp—price P (it includes only high I events:
only relevant to market dynamics price moves) is introduced and the answer is obtained.
In the Fig. |3| (bottom) two directional answers are presented. In the top chart moving aver-
age % and pyH} are presented. In the bottom chart the (.dp_to_use=F_SAMPLE_DP_N
OSCALP), and (.dp_to_use=F_dpdt0_SCALP), they are normalized to the same integral

taken with all F; positive in and . One can clearly see that:

e When divided by the absolute variation, the non—scalped answer is pretty small,
and the scalped one (55)) is much larger. This means that the price can be moved due
to a variety of reasons, and only scalped price changes are relevant to the market

dynamics. Moreover, high I market moves are much more consistent.

e Look at t € [9.9...9.95]h interval. The price bounce around pEIH], what make it

difficult to trade the direction as P!t — pyH]. In the same time the scalp—price 1)
stays in the same sign, the scalp function S(t) is about zero in this interval, see

Fig.

e Look around £ = 10h. The scalped answers captured all the relevant price changes and

switched from bear to bull market. The execution flow I defines market sentiment.

C. On the Selection of F;

The selection of F; to be summed to the scalp price P is the most important question
for directional attribute selection. Consider two choices. In Fig. || top F; = (¢ | dp/dt | 1))
from is presented. One can see that dp/dt (green) has rather erratic behavior, that
is caused by a variety of market moves, the sum of these moves gives the regular price p.

2
But when each price move is multiplied by the scalp—function § = <1Z)EIH] ‘ ¢0> from 1}



20

o D D A
698.5 o
698 |
697.5
697
696.5
696
695.5
695
694.5
694
693.5

603 A SRS SN SN DN SN N NN S SR
9.7 975 9.8 985 99 995 10 10.05 10.1 10.15 10.2 10.25 10.3

699 T T T T T T I I
! ! ! ! ! ! <W[1Hj| llfo>2

698.5 Fyj I S p B

698 |-l Nty DIR/DIRa ——— -
697.5 - scalped DIR/DIRa
b N
ool AT
696 — O
695.5
695
694.5
694
693.5
693

11nw| 'nu A
M.| ffffff

9.7 975 9.8 9.85 9.9 995 10 10.05 10.1 10.15 10.2 10.25 10.3

FIG. 3. Top: @ (moving average), and p][tIH] 11b). Bottom:The DIR = Plast — <¢[IH]‘ ‘¢[1H1>

and DIR _ scalped = Plast — < ‘ P ) ¢[1H1> , both DIRs are normalized to all F; taken

~

positive (normalized to total variation).



699

698.5 F

698
697.5
697
696.5
696
695.5
695
694.5
694
693.5
693

699

698.5 7

698
697.5
697
696.5
696
695.5
695
694.5
694
693.5
693

FIG. 4.

21

| <‘I’[mj|llfo>2
p
<Yoldp/dilyy>
<‘V[IH]|FV0>2<?V0|dP/ dilyy>

9.7 975 98 985 99 995 10

10.05 10.1 10.15 10.2 10.25

Wm

i

<lI’[IHjPl’o>2

p
[IH]

RARL AN ey

9.7 975 98 985 99 995 10

10.05 10.1 10.15 10.2 10.25 10.3

Top: the scalp—function S ([34), (o |dp/dt|vo), and F; from (36, Bottom: same S

, F from for z = )\1[)1*] — /\I[fl] with (pink) and without (green) scalp function multiplied; the

p — pl!H] (vellow) is also presented. The values are shifted to 694, 695, and 696 levels and scaled to

fit the chart.
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this selects only high I market moves, what makes the directional behavior much more clear
(pink), the sum now gives the scalp price P from the Fig. 2| But even in this simplistic case
the scalp—price selects only “relevant” market moves.
A much more interesting behavior can be observed with F; from . Selecting [ty),
BIH]> basis, solving , then obtaining — this accumulates much more directional
information in ;. When )@DEIH]> and |1¢g) are not close to each other, the for z =
)\1[71*] — )\g)j is approximately equals to last price and p!*l difference multiplied by the scalp—
BIH]> and [t¢g) are close to each other the does
not Vanis i.e. the (50) does not vanish (like p — p!’’l, yellow) when I is extremely high.
However, the F; enters into the integral , and the selection of the z is a non—trivial task.

function (that is close to zero). When

The most important feature of the charts in Fig. is that once we got a spike in the )@/}EIH]>
state — the trend is going to continue. These spikes are much greater in values (because
of non-local price difference) compared to local price difference p(t;) — p(t;—1) of Eq. .
This allows to collect much more directional information, than can can be typically obtained
from price changes.

We can generalize this non—local price change approach. Consider pEIH] in Fig. 3] (p!' is
very close to it). A typical behavior for p/f! is to jump from some past value to last price
when the execution flow Iy becomes large, is the criteria of Iy largeness. How often
these jumps occur is the criteria to determine market direction, see Fig. [4] These non-local

structural changes in ’ng””> can be included to scalp—price, for every tick [ calculate:

p[IH] (tl) (57&)
AL 1) (57b)
S(t) = (v | ¢o>2 (57¢)

All values are calculated from the sequence: (¢, p(tm), V(tm));m=1...1

These are just Eq. solution performed for every observation tick [ using m = 1...1
previous ticks as input data. This is the result we had obtained back in Ref. [I]. The new
idea is to consider the pl/fl(¢;) as if it were the last price p(¢;). This way one tick price

change becomes non—local:

p(tr) — p(tiey) = p"(ty) — p"(t,y) (58)

8 In this case F; from is almost zero, but F; from does not vanish, while providing a much smaller

response than
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Depending on the execution flow, the ‘w}””> may (or may not) change drastically at every
tick. One tick non-local difference pl/#l(t;) — pl'fl(¢;,_1) can be much greater than one tick
local price difference p(t;) — p(t;—1), see Fig. |3l As we discussed in the introduction only low
I — high I to be considered:

1 i A ) > A g,
0r. (1) = ! ! (59)

0 otherwise
(ti—tia)Fi=z2 [p[IH] (t1) — p"" (ti1)] 01+ (1) (60)

With a number of possible options for z:

z=1 (61a)
=S V() — V()] (61b)
2= dtS(t) [A[IIH] (#) — A (tl_l)] (61c)

This is the F; to be used in . The considers every low I — high I jump in p!/fl ()
(not in p(¢;)) as the source of the directional information.

In Fig. 5| a demonstration of non-local price change is presented. Only pl/fl(t;) —
PA(t,_y) with positive AP(¢) — AP(1,_1) are presented (the Eq. (60) with z = 1 and

dt = 1). On can clearly see that the non-local directional information is:
e Much greater than the local price change p(t;) — p(t;_1).

e The bull/bear market trend switch can be much better identified. The pl/fl(t;) —
pH(t,_1) with constaint preserves the sign during extended intervals.

e The “bounce back” interval ¢ € [9.9...9.95]h is clearly identified: it has no I spikes,
the ‘wym> does not change, and the pl/#l(¢;) — pl’Hl(#,_,) is close to zero even without

S multiplied!

This makes us to conclude, that non—local price change taken with the constraint
provides a very promising possible directional indicator. Fig. [5| presents a non-local price
answer (58)) obtained from one tick pl/f! price change pl'f1(¢;) — pl"1(¢,_,) as it were one tick

regular price change p(t;) — p(t;_1). This answer is similar (but much better) than Fig.
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(bottom) answer, that is obtained from the regular moments by solving d = 2 eigenvalue
problem. The is the directional indicator. However, because it enters the integral ,
the selection of proper integration weight z is required. This to be a subject of a separate
study. In the simplest form a non—local answer can be obtained from solution of

problem, then consider:

o Only A () > M\, 1) events: 6, (1) > 0, Eq. (59), field (B2t).

e For such events consider pl/fl(t;) — pl'Hl(¢,_,) as it were one tick price change p(t;) —

p(ti_1), Eq. (5§), field (B2u)). In Fig. [5 an example of such a non-local price changes

is presented.
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V. ON THE DIRECTIONAL INFORMATION CALCULATION

Given very interesting results of the previous section, let us formulate all the components,
required to obtain directional information from (time, execution price, shares traded) market

observations triples, and how these components can be improved.

e The state important for market dynamics. The answer we have is . Other states

(such as considered in the Appendix |C]) can be also tried. In any case such a state

is obtained from regular moments (16a)) and (16b|), solving some kind of 7 max

problem. The solution gives us open/close position signals and the scale for directional

calculations.

e The problem to obtain the direction is way more complex, it requires scalp—moments
(55). For the scalp-function S the best[7] answer is (34). For JF; several answers (35),
, , and produce good results, that are very similar to each other, the
non—local answer is of special interest. The “varied” answers , and are
worse with and without scalp—function multiplied. The simplest practical abswer is
the scalp—moments directional answer , as a scale one can use absolute variation:

take all F; positive in (55)). However, a number of non—local answers of type can
be obtained utilizing and .

VI. SPECULATIONS

The scalp—-moments are price change moments filtered by high I events: [ is the driving
force of the market. The question arises whether a directional information can be obtained
from the regular moments ? We are inclined to say no. A number of constrained
(see Appendices [F| and |G| below) and unconstrained optimization problems have been tried

(among many others) without any success at obtaining market directional information:

ax<¢ | (p— p"M)21 | )

m DynHPnL. java (62a)
(1)
_ Plast 2[
max G ‘ (p ) | v) DynPnL. java, PnLSensitivity. java (62b)
v (@ 19)
2
)2
max min Wl —p.)"I1¥) DynYp.java, DIminP2maxI. java (62c)

P (W 19)
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ARAED)

max max DynYp. java, DIminP2tmaxI. java 62d
S W - pe P T 020
2 2
- — )2
max min Wl =p)"(p—p2) T ]¥) Ref. [3] Section IXF, PnLdIV4. java (62e)
v pLp2 ([ )
2
— 1
max G ‘ (p<¢ |p;)> ‘ v) MaxPtPv2I.java, MinMaxPnLratioNorm. java (62f)

L =P T]0)
¥ <¢| (p_pt)2‘¢>
O @ —p) T ]v)

MaxPnLratio.java ; flag_swap_PtPv=false (62g)

m 5 MaxPnlratio.java ; flag_swap_PtPv=true (62h)
4 <¢ ‘ (p - pv) ‘ 1/}>
1|1
max WIL %) MaxPP12I. java, MaxPP12Iinbasis. java (621)

o (| (p— Plet)2 T )

The regular moments answers are: 1. not “sufficiently sharp”, see Appendix [A] and 2. price
changes sum is small relatively total variation, see Fig. 3| In the same time, when we go to
the scalp-moments these problems get solved.

When, in September 1997, I joined Columbus Advisors LLC (Greenwich CT), the fund
had been doing Emerging Market sovereign fixed income convergence-divergence relative
value spread trades. The following year, I studied a classic technical analysis book with
the goal to program some of the rules algorithmically. However, I was not able to program
even a single rule from the book. The reason was simple: any rule required a time scale
to apply. Time scale selection is the main criterion separating good traders from bad, and
the criterion which defines a trader’s talent. The state (8) is an algorithmic criterion, that
automatically determines the time scale. This criterion is actually very simple ideologically:
look back to find an event of trading with maximal I. The time between this event and
“now” is the time scale. The typical market practitioner’s activity is to watch the difference
between the last price and moving average calculated on the time scale obtained his feel.
With a proper time scale, any strategy (like return to the moving average) would work, and
Ref. [I] answer of last price minus pl/#! @ was my first successful attempt.

Besides the time scale, the most important result of this paper is that “not all price moves
are equal”. We need to select only the high I price movesﬂ High execution rate requirement
is the condition creating an asymmetry to separate the “bounce a little, then to go in the
original direction of the market” and “go in the original direction of the market straight

away’ scenarios, such as to identify a bear market rally on steroids. The answer we obtained

9T think that the market impact concept is a dead end.


https://en.wikipedia.org/wiki/Dead_cat_bounce
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is the scalp—price . It does not have any “internal averaging”, but in the same time it has
all low I price changes removed! This way, the scalp—price has no “bounce a little” behavior.
Only hardcore. Only directional. See the Fig. . The software is available[8] under the
GPLv3| license.
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Appendix A: A demonstration of the difference between time and volume weighted

price.

To demonstrate the difference consider localized at = = y the wavefunction v, (z) (A1),
producing Radon—Nikodym interpolating answer, Eq. (7) of Ref. [9], Different attributes

(price, execution flow, etc.) are interpolated using the ws(x)w(a:)dw weight:

S Q)65 Q)
() = 2= (A1)
.kE:O Q;(y)G Qr(y)
1= <¢y ’ ¢y> (A2)
I(y) = Wy 1 1) [ () (A3)
pily) = (W p 1) [ (e w) (A4)
Poly) = {0y [ PL10y) [ (1 T18) (A5)

One can see that:

e For a large n (we use n = 12) the p, and p, are very similar.


http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
https://www.gnu.org/licenses/gpl-3.0.en.html
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FIG. 6. The AAPL stock price on September, 20, 2012. Interpolation answers are calculated
in Shifted Legendre basis with n = 12 and 7=128sec, for 0 < t < tp0 = 9.98045 hrs, y =
exp ((t = tnow)/7), y = [0...1]. Execution flow (A3), time (Ad)), and volume (AF)) weighted prices
are presented. One can clearly see the p,(y) — pi(y) changes the sight at y, corresponding to a
high I. The maximal eigenstate [H, (#11=n — 1), <1/Jy(a:) ‘ w[IIH}>2, pink, is typically a localized
state. The projections <¢y(a:) ‘¢y]>2 on four other eigenstates (#0, #8, #9, and #10), yellow, are

presented as an example of delocalized states. The execution flow I and the projection are shifted

to 693 to fit the chart.

2
e The projection <¢y(a:) ’wEIH]> is close to 1 for large I, i.e. the @/JBIH] (x) is typically
a localized function, this is not the case for other states. See four other eigenstates

projections (yellow).

e The p, — p; changes the sign at large I. Only the states with a large dI/dt pro-
vide weight asymmetry required to obtain directional information using dV vs. dt

averaging.
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Appendix B: Computer Implementation

The codebase architecture is described in the Appendix G 3 of Ref. [3]. Relevant to this

paper functionality consists of:

e Conversion of the transaction sequence of an observable f to a vector of moments
(fQm), m = [0...2n — 2|, several bases Qi(z) are implemented (x = ¢, =z =
exp (—(tnow — t)/7), and & = p(t), see the Section II of Ref. [3]), the integration
measure is always exponential decay: du = exp (—(tnow — t)/7) dt. See the classes co

m/polytechnik/trading/{QVMDatal,QVMDataP,QVMData}. java

e Using basis functions multiplication operator (Eq. (G1) of Ref. [3]), obtain the
(Qj | f|Qk)s g,k =1[0...n — 1] matrix from the moments (fQ.,), m =[0...2n — 2].

e There are a number of observables f possibly to consider (price, price change, execution
flow, etc.). Depending on the approach used, a different set of observables is required.
All the (Q; | f | Qr) matrices we possibly use in this paper are stored in the class com

/polytechnik/trading/SMomentsData. java.

e If/When, in addition to a (Q; | f | Q) matrix, the matrix corresponding to the deriva-
tive df /dt (or to the integral [ " F(#)dt'), is required, then, for a basis with infinitesimal
time-shift operator ED(Q(z)) (E3)), the result can be obtained using integration by
parts, see Appendices [D] and [E]

As aresult of these preliminary steps the nxn matrices are obtained: (Q; | Qx), <Qj ‘ % ‘ Qk>,
(Qj 1P Q). (Qs [ 7?1 Qu), (Qs [P | Qu), (Qs [ T Qn), (Qs | PI | Qr), (Qs [ P*1 | Qi) and (Q; [ P°1 | Q).
These are plain exponential moving—average of: an observable f multiplied by two basis
functions product Q;(z)Qx(x); for example if f = p, then (Qo | p| Qo) is exponential moving

average of price.

1. The EVXData. java implementation

The class com/polytechnik/utils/EVXData.java takes two matrices (Q;|f|Qk).
(Q; | Qr) and basis functions operations class (extending the com/polytechnik/utils/Or

thogonalPolynomialsBasisFunctionsCalculatable. java), solves generalized eigenvalue


https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
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problem, such as for || f|| = |||, and stores the result. The fields are:

sL =AM (Bla)
s = A/ (B1b)
80 = (tho | T [ ¢o) (Blc)
st = (v | o) (B1d)
WH = <¢}”ﬂ ‘ ¢0> (Ble)

The squares .wL? and .wH? are bounded to [0 : 1], and are very good indicators of whether
the I “now”, the Iy = (Yo | |10), is large or small. Alternative estimator as the number
of the eigenvalues above the I can also be used|7]. The key concept of liquidity deficit
w0>2, then to close already opened

trading[T], 4] is to open a position at low Iy, large <w¥”

2
position at high Iy, large <w¥H] ’ w0> , the .wL? and .wH? are the indicators of these actions.

The question is: whether to open a long or a short position at high .wL2?

2. The ScalpedMaxIProjection. java implementation

The class com/polytechnik/trading/ScalpedMaxIProjection. java converts a trans-
action sequences to a set of (f(Q),,) vectors, then to a set of (Q; | f | Qk) matrices, stored in

the object of com/polytechnik/trading/SMomentsData.java type. Then it calls the

lom/polytechnik/utils/EVXData. javal class that solves eigenvalue problem. Having
the ‘@/}EIH]> and [1o) states the scalp—function 1) and the F; are obtained. Which one F;
to be used depends on the parameter .dp_to_use. The values F_SAMPLE_DP_NOSCALP,F

_SAMPLE_DP_SCALP,F_dpdtO_SCALP,F_varpIH_0_divI_SCALP,F_SKEWNESS_at_P1_SCALP
,F_PROBABILITYCORRELATION_SCALP correspond to (30), (35), (36), (43), (8], and
respectively; there are several other options for .dp_to_use. The class ScalpedMaxIPro
jection is assumed to be called on every tick, and the internal state is preserved in the
object of com/polytechnik/trading/StateWIScalpMomentsSaver. java class. The in-
ternal state contains an object of com/polytechnik/freemoney/WIntegrator. java type,
that calculates the moments of the observable F; (recurrent shift of the basis offset (t,0u)
for previously calculated moments allows the calculations to be performed extremely fast).

The WIntegrator is called on every tick with the .Fdt = (¢, — t;_1) F; (the choice of the
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JF; depends on the .dp_to_use value) to accumulate scalped data. The scalp-moments are
obtained by taking the .Fdt instead of the p(¢;) — p(t;_1) when calculating the (29bf) sum.
The directional information is then obtained as (29a)). The fields are:

.p_offset Price offset. All prices are relatively this offset (B2a)
.pi_average Volume-weighted price exponential moving average %
(B2b)
.pt_average Time-weighted price exponential moving average %
(B2c¢)
I An object of [EVXData. javal type, solution (B2d)
p_0 The (Yo | pI |1o) / (o] I | 0) (B2e)
pt_0 The (Yo |p|v0o) / (Yo | o) (B2f)
.dpdt 0 The <¢0 % ¢0> (B2g)
p_ IH The (11a)) in the @/JEIH]> state %I) (B2h)
pt IH The (11b)) in the wa]> state %I) (B2i)
.pV_IH The (|11c) in the ‘ BIH]> state (B2j)
pT IH The (|11d)) in the wa]> state %I) (B2k)
.varlpIl IH The (38b) (B2I)
varlpl IH 00 The (B2m)
pmin O IH pmax O IH The eigenvalues )\L(l’l] of (B2n)
Skewness 0 IH The “skewness” (B20)

ProbabilityCorrelation O IH Directional factor

[P0~ [90)]” [ ]
601 ()] + [0 (0] (51) (B2p)

I.wH When squared .I.wH? gives the scalp function (34])
(B2q)
.getF1FromRegularMoments|() J; when it is from the moments, NaN otherwise (B2r)
.sst.getSumFdt() The scalp—price (54) with an arbitrary offset  (B2s)
.dIH The )\[I[H] (t) — )\[I[H] (t;—1) difference (B2t)
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dp IH The p!/#(t)) — pHl(t,_1) difference (B2u)
.DIR The (129al) (B2v)
.aDIR The (29a)) with all F; taken positive (B2w)

The liquidity deficit indicator (B2d)) defines whether to open or to close a position. The
directional indicator (B2v|) from (29a)) defines, when opening a position, whether to open a

long or a short.

3. The CallAMuseOfCashFlowAndLiquidityDeficitWithScalp.java implementation

The class com/polytechnik/algorithms/CallAMuseOfCashFlowAndLiquidityDefici

tWithScalp. java is “an interface” between transactions sequence input (a tab—separated

file), liquidity deficit trading of the class [com/polytechnik/trading/ScalpedMaxIProject|
[ion.javal and data output, saved as a tab-separated file. The parameters are read by the

class com/polytechnik/algorithms/MuseConfig. java. This is an example of how to run

the code:

java com/polytechnik/algorithms/CallAMuseOfCashFlowAndLiquidityDeficitWithScalp \
--musein_file=aapl.csv \
--musein_cols=15:1:4:5 \
--museout_file=museout.dat \
--n=12 \
--tau=128 \

--measure=ScalpedMaxIProjectionlLegendreShifted
The parameters are:

e --musein_file=aapl.csv : Specify input tab-separated file with (time, execution
price, shares traded) triples time series. If the file is gzip—ed and has the . gz extension,

then internal decompression is performed.

e —-musein_cols=15:1:4:5 : Out of total 15 columns in the specified --musein_f£
ile=aapl.csv file, take the column #1 as time (nanoseconds since midnight), #4

(execution price), and #b5 (shares traded), column index is base 0.


https://www.gzip.org/
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e --museout_file=museout.dat : Output file name.

e --n=12 : Basis dimension. Typical values are: n € [4...16]. The m € [0...2n — 2]

moments (in @Q),,(z) basis) are calculated to obtain n x n matrices.
e --tau=128 : Exponent time (in seconds) for the measure used.

e --measure=ScalpedMaxIProjectionLegendreShifted : The measure. Possible val-
ues are: {ScalpedMaxIProjectionlLegendreShifted,ScalpedMaxIProjectionLagu
erre,ScalpedMaxIProjectionMonomials}, they correspond to the measures (11) and
(4) of Ref. [3]. The ScalpedMaxIProjectionLaguerre and ScalpedMaxIProjectio
nMonomials use the same measure, but different basis Qx(z) = Li(z), v = —t/7 and
Qr(r) = 2%, © = t/7 respectively. These two results should be identical, as the mea-
sure is the same, and all the calculations are Qy(x)-basis invariant (but the numerical

stability can be drastically different).

Output file is a tab-separated file with the columns (35 columns total), corresponding to
the results of this paper. Field names are printed in the first line of the output file. The
data can be processed by any common plotting software (such as gnuplot or matlab). Below

is the description of the most noticeable fields:

e T : Time in nanoseconds since midnight (copied from input).
e shares : Shares traded (copied from input).
e P_last : Last execution price (copied from input).

e {pi_average,pt_average} : Regular exponential moving average of price with the

given --tau=128, using volume/time as the weight.

e I.{s0,sL,wL_squared,sH,wH_squared,GammaO} : Correspond to fields of
|I|¢) = A|4) eigenvalue problem (25), the solution with the given --n=12; the I.wL
and I.wH are squared in the output, GammaO = (2]0 - )\[I]L} - )\[IIH]) / ()\[I]L} - )\[]IH])
is the TO skewness of I, Eq. (95) of Ref. [3]. The I.wH_squared is the scalp—function
s(t) @),

e {p_IH,pt_IH,pV_IH,pT_IH} Correspond to 1) prices, calculated in the state )wa]>

([®), the (B2) fields.
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FIG. 7. The comparison of scalp—price P obtained from F;: from  (36))

(green: .dp_to_use=F_dpdtO_SCALP) from (blue: .dp_to_use=F_SAMPLE_DP_SCALP). The

< EIH]

they are defined within a constant. If one use .dp_to_use=F_SAMPLE_DP_NOSCALP the

2
¢0> is used as a scalp—function S(t) 1j The scalp—prices are shifted to fit the chart;

result will be exactly the price P, shifted by some initial level.

e getFlFromRegularMoments() The F; when it is calculated from regular moments, N

aN otherwise, the field (B2r).

o getSumFdt () The scalp-—price P , corresponding to given dp_to_use, the field
(B29). See the Fig. [7] to compare the results for .dp_to_use=F_dpdt0_SCALP
and .dp_to_use=F_SAMPLE_DP_SCALP ([35).

e dIH,dp_IH The )\[IIH] and pl'#) change per tick, the fields (IBZtI) and (IBQuI). This is the
starting point of non—local price change study, Fig.

e {DIR,DIRa} and etc. Correspond to (B2|) fields of an object of [ScalpedMaxIProject|

[fon javal type.
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4. Installation and usage example

Install java 1.8 or later.

Download from [8] the archive AMuseOfCashFlowAndLiquidityDeficit.zip with the

source code.

Decompress and recompile the program:

unzip AMuseOfCashFlowAndLiquidityDeficit.zip

javac -g com/polytechnik/*/*java

Run the test with the bundled file dataexamples/aapl_old.csv.gz data of Ref.
[2]. The file contains only execution events, the (time, execution price, shares traded)
market observations triples are in the 1:2:3 columns, column index is base 0; 28492

lines, 9 columns total.

java com/polytechnik/algorithms/CallAMuse0fCashFlowAndLiquidityDeficitWithScalp \
--musein_file=dataexamples/aapl_old.csv.gz \
--musein_cols=9:1:2:3 \
--museout_file=museout.dat \
--n=12 \
--tau=128 \

--measure=ScalpedMaxIProjectionlegendreShifted

The code is run under 16 seconds, the output fields of the museout.dat are described in
the Appendix B3] The I.wH_squared, getSumFdt (), and p_IH are the scalp—function
, scalp—price (has an arbitrary offset), and pl/#l from @ The default .dp_t
o_use=F_PROBABILITYCORRELATION_SCALP corresponds to (50)).

Download NASDAQ ITCH data file S092012-v41.txt.gz from [§], extract triples
(time, execution price, shares traded) from NASDAQ ITCH data file:

java com/polytechnik/itch/DumpData2Trader \
S5092012-v41.txt.gz AAPL >aapl.csv


http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
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Execution data and limit order book edges are now saved to tab—separated file
aapl.csv of 15 columns. The (time, execution price, shares traded) market ob-
servations triples are in the 1:4:5 columns, column index is base 0; 634205 lines, 15

columns total.

e Run the java command of the Appendix to obtain the museout.dat file of 634206
lines with: scalp—function , scalp—price and pl' from @I) and |com/polytech|

mik/trading/ScalpedMaxIProjection. javalfields is created. The code is run under

5 minutes, much longer than that of previous run. The --musein_file=aapl.csv
input file now contains much more events than the file --musein_file=dataexample

s/aapl_old.csv.gz.

Appendix C: The state of maximal aggregated execution flow V/t

In our previous work[1l 3] the extremal state of I = dV/dt operator have been considered.

This answer has two critically important features:
e Uses execution flow [, as it is the driving force of the market.

e Has automatic time-scale selection (eigenvalue problem), huge advantage compared

to any fixed time scale approachI].

While this result is very promising, it has an issue of zero first variation of I. Consider the
same approach, but with the operator V/t. Here V' and ¢ are measured since t,,,, they are
volume/time between t and t,,,,,. The V/t is aggregated execution flow, the dV//dt is local
execution flow. Put f = V/t into and obtain generalized eigenvalue problem to find the

state ’w[max]> of maximal A\,

V/t V/t
‘V‘w@/t> - )\@/t t)w@/» (C1)
n—1 n—1
(Qi1V1Qi) i) = A0, D (@5 11 Qw) oy (C2)
k=0 k=0
Pp(@) =D e Qu(w) (C3)
k=0

The calculation of (Q; | V' | Q) and (Q; | t | Qk) matrix elements is described in the Appendix
@. In (C2) the V' and ¢ have the sign changed to have positively definite right-hand-side
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matrix (Q; || Qk), V =V, (10d), t = Tp . The multiplication by V' and ¢ create, for t <
tnow, two Radau-like measures: (V (tnow) — V(t)) w(t)dt and (tpew — t) w(t)dt. The problem
finds the state Q,Dgr;? ]( ), corresponding to the maximal Radon—Nikodym derivative
relatively two these measures, the maximal aggregated execution flow V/t. Previously [1]
we have been considering the state wa] (x), corresponding to the maximal Radon-Nikodym

derivative relatively the measures w(t)dV and w(t)dt, the maximal local execution flow

dV/dt. The eigenvectors ’zﬁv /t> of ||V/t|| operator have the following remarkable features:

Normalized to Radau-like measure (t,,,,, — t) w(t)dt:

_ [yl
1= (ol

In the ‘wV/t> states aggregated V/t and local dV/dt execution flows are equal:

tlolh,) (C4)

)\@t B < Eﬁ]/t V’¢@/t> _ < Yy ]’¢V/t> (C5)
/ < v/t t‘wV/t> <wV/t z/}V/t>

For infinitesimal time-shift di) = ED(Q/JV /1) the second variation l) of V/t is equal to the
first variation (H3)) of dV/dt:

G0V 1) = A, Gultev) = (50| T efl,) = A, (ov [ull)  (Co)

Lemma. In the state of mazimal aggregated execution flow the dI/dt is positive.

Proof. In the state of maximal V/t the second variation (H4]) is negative. Because the first [
variation 1) with 0y = ED(@Z)@#) corresponds to —d[ /dt, this provides positive dI /dt. [

[max]

This lemma makes the state )@/Jv/t

> of maximal aggregated execution flow (the eigen-
vector of , corresponding to the maximal )\V/t ), a very promising one for the market
dynamics to consider. The “aggregated” attributes (| have been originally introduced in
the Section (IXD) “Measure: The Period After Maximal Future I” of Ref. [3], but their

application to skewness study was not a very successful back then.


https://www.encyclopediaofmath.org/index.php/Radau_quadrature_formula
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Appendix D: On calculation of (V@Q,,) moments from (I/Q,,) moments

The (VQ,,) and (tQ,,), m = [0...2n — 2], moments, required to construct ||V and
|t|] operators in (CI)), can be calculated directly from the sample. However, in practical
application it is more convenient to calculate the (/Q),,,) moments first, then to obtain the
(VQ,,) moments using an integration by parts. For Shifted Legendre and Laguerre bases
the integration by parts gives:

tnow tnow
/Oo VQu(x(t))w(t)dt =V (tnow)Qm (% (tnow)) — /Oo J(Qm(x(t)))w(t)Idt  (D1)
where J(-) is a polynomial to polynomial transforming function (12)). The (VQ,,) then
can be expressed as (IQ;), s = [0...m], linear combination. This is possible only for the
bases in question, in general case an integration by parts ffoo Qum(z(t'))w(t')dt’ cannot be
reduced to a J(Q,(z(t)))w(t) form, and the (VQ,,) moments cannot be expressed via a
linear combination of the (/@) moments.

The boundary condition is straightforward, consider V(t) — V (tn00), that is zero at t =
tnow- Use current volume V(t,.,) as the starting value, then out—of-integral term in (D1I))
vanish, and past/future volume correspond to negative/positive volume Values{T_U]. See the
method setFMoments of com/polytechnik/trading/{QVMDatalDirectAccess,QVMData
PDirectAccess,QVMDataDirectAccess}.java, that calculates the (V@Q,,) moments as a

linear combination of the (IQ;), s = [0...m] moments.

Appendix E: On calculation of ||dI/dt|| operator matrix elements from operator ||I||.

When we study an operators of execution rate change ||dI/dt||, it’s matrix elements
cannot be calculated directly from sample. In general case the %Qm> moments can be
calculated from (/@,,) moments using integration by parts of the Appendix D] see the
method setDFMoments of com/polytechnik/trading/{QVMDatalDirectAccess,QVMData
PDirectAccess,QVMDataDirectAccess}. java, that, for zero boundary condition, obtains
(LQ,,) as a linear combination of (IQ,), s = [0...m]. However, for ||dI/dt||, the boundary

condition may take a variety of forms, and direct operator approach is often more convenient.

10 Tt is sometimes convenient to change the sign of time and volume V (¢) =V (,0,) as in (L0}, then past time

and volume correspond to positive values and the right hand side matrix in 1D is positively definite.
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Consider e.g. generalized eigenvalue problem ({) for ||dI/dt| operator:

) =g [oll) (E)
where the <Q] | ‘ Qk matrlx cannot be calculated directly from sample. For a Q(x) basis
with infinitesimal time-shift operator ED(Q(x)),

d
0 @@®)P((t)e(x(t)) = w(z) [ED(Y)p + YED(p)] (E2)
di(z) + 1w(:lc) Laguerre basis
dx 2
ED(y(x)) = (E3)
(@)

g T w( ) shifted Legendre basis
providing time-derivative of a polynomial multlphed by a weight is represented by the same
weight multiplied by other polynomial, the matrix can be obtained from the (Q; || Q)
matrix using integration by partﬂ Eq. (35) of Ref. [3]:

(@ |% | @) = FQuten@utan) - (ED@) 11101 - (@) T1ED@Qu)  (E4)

This problem is an inverse one to considered in Appendix [D] and requires a non—trivial

boundary condition I7. There are several options for I/, that can be reasonably considered:
[IH]> 0:

I =\l (E5)

e The zero of ||dI/dt|| in the ‘zDEIH}> state, < BIH]

dt

e The zero of ||dI/dt| in the |¢) state, (1 | % |1o) = O:
{0 [ T ED(40))

U= ) (0
e The I, value:

17 = (o | I | o) (E7)
e Zero value:

I"'=0 (ES)

11 See java classes for Shifted Legendre and Laguerre Q(z) bases implementation of infinitesimal time-shift
operator ED(Q(z)): the method getEDPsi of com/polytechnik/freemoney/{WIntegratorLegendre
Shifted,WIntegratorLaguerre,WIntegratorMonomials}. java. Also see the com/polytechnik/tra
ding/QQdidtMatrix. java class, implementing the calculation of matrix for the , , ,
and , boundary conditions. This class uses com/polytechnik/utils/VolMatrix.java to calculate

(ED(Q;) | I|Qr) +(Q; | I|ED(Q4)), then adds boundary condition term IfQj(xo)Qk(;vo).


http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
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Regardless the I/ selection, the ||I|| and ||dI/dt|| operators have no common eigenvectors
unless the |¢p) is the ||| eigenvector, this degeneracy case was considered in Ref. [3].
The most critical degeneracy arise in the situation, when the state “now” and the state of

“maximal past I” are the same:

o) = ") (E9)

An example of such a degeneracy can be the situation of huge volume traded “now” (at

T = o).

Appendix F: Directional Information: [ 7 max Subject To the Constraint

(¥1Cly) = 0.

Consider market dynamics split in two operators: ||I|| (execution flow dynamics) and

|C|| (price dynamics). The constrained I — max problem is:

@l
=" vm™ (Fl2)
subject to: 0= (¥ |C'|v) (F1b)

The constraint (F1b)) is a requirement on price in the [¢)) state. There are a number of

choices for the constraint operator ||C|| selection:

Cll = — plast) 1 Price (11a)) in the state is equal to Pt F2a

I p q

1O = ||[Vi — PV Moving average price (11c) is equal to P (F2b)
d

I1C = - [(p— P*") 1] H Price—execution flow changes match (F2c)
dp .

IC) = pr Price extremum (F2d)
d*p

IC| = ) dp/dt extremum (F2e)

The maximization problem (F1la)) with the quadratic constraint can no longer be
reduced to a regular eigenvalue problem such as (25). The solution exists only if ||C/|
operator has both: positive and negative eigenvalues. Ideologically the constraint
facilitates taking into account a typical market practitioner activity: look how the market

used to behave in the past at prices near some level. Our previous paper [3] has been mostly
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devoted to skewness and probability correlation study in the unconstrained I — max state

§”ﬂ>. The (F1b]) constraint allows us, within the framework of a single formalism of

constrained optimization, take into account the driving force of the market I — max ([F1al)
and the reaction of the market participants on it (F'1bf). For mathematical properties and
numerical solution of (F1)) problem see Appendices and (F 2| below. Here we assume

that the solution does exist, we denote it as ‘¢EM1>, and name: the state of price-matching

maximal execution flow. The found state ‘wEM] (it is just a pure state averaging weight

2
< EM] (w(t))) w(t)dt, not even a density matrix (6])) is the state to obtain market directional

information.

1. The IstatesConditional.java implementation

The optimization problem ([Fla) with quadratic constraint (F1b|) can be solved using

Lagrange multipliers technique:

max (v [T]¢) =A@ [¥) = 1)+ p @ [Cl9) (F3a)
1= (¥[¥) (F3b)
0= ([C[) (F3c)
10) = [T1) = M) + 1 |Cl) (F3d)

Were the constraint (F3c]) to be of a linear type, instead of a quadratic one, the constrained
optimization problem ([F3al) can be reduced to a regular eigenvalue problem in a transformed
basis[10]. However, for the quadratic constraint (F3c|), such a one—step transform is not

possible, and self-concordant procedure of iterational type is the simplest option:

e For an initial |¢)) find the coefficient «, such that:

b) = [C|) (Fda)
0= (b +ab|C |+ ab) (F4b)

The (F4b) is a quadratic equation with respect to «, if no real solution exist — itera-

tional process failed. If a success — obtain the solution, satisfying the (F'3c|) constraint:

@) = 1) + o) (F5)
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From two « solutions select the one with the maximal <1Z ’ 1 ‘ J> / <zZ ‘ 1;> There are
exist several good alternatives to (F'4l), see com/polytechnik/utils/FindPsiConstr

ainedSingleQuadraticO. java implementation for details.

e Put , obtain the Lagrange

J> to (F3d)), then left—-multiply it by the vector <J ’C

multiplier iteration p:

wlefr]?)
p=—7= = (F6)
wlefels)
e Construct an operator ||Z|| and find all it’s eigenvectors:
IZIF = W21+ pllCl (F7)
’I‘w[il> = Al | (FS)

e Among all the |[¢1) found select the |¢), providing the maximal (1| I | ).

e Repeat the process of above for this new [¢). If a solution exists, iterational procedure
converges quickly (typically 5-7 iterations), unless ||| and ||C|| operators have several
eigenvectors in commonH. The result of this iterational process is the state of price—

matching maximal execution flow ’wBM]>, the 1) solution.

The class com/polytechnik/utils/IstatesConditional. java implements this pro-
cedure. It takes three matrices (Q;|Qk), (Q;|1|Qk), (Q;|C|Qk), and basis functions
operations class (extending the com/polytechnik/utils/OrthogonalPolynomialsBasis

FunctionsCalculatable. java), as constructor’s arguments. Then it solves generalized

eigenvalue problem using the [EVXData. javal class to obtain an initial |¢)) and to repro-

duce the [I] results. Then ten iterations of above are performed to obtain the solution of

: ‘¢EM]> and p. The fields are:

I An object of [EVXData. javal type, solution (F9a)

flag solution exists Whether the (F'1]) solution exists for the input data (F9b)

12-Assume ||I| and ||C|| operators have identical eigenvectors. Then the (F8) always produce the same
eigenvectors, and the maximization problem (F1f) is reduced to a linear programming| problem relatively

the projections squares.


https://en.wikipedia.org/wiki/Linear_programming
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psi M ‘Q/JEM]> the solution; equals to 0 on failure (Fac)
LagrangeMultiplier M Lagrange multiplier u, Eq. (Foad)
i M <¢EM] ‘ I ) ¢BM]> execution flow in the ‘¢BM]> state  (F9e)
wr0 M <wEM] ‘ ¢0>2 a kind of “distance to now” (Fof)

2. The IstatesConditionalLocalized. java implementation

When the global maximum of constrained I — max problem is not required, and localized
answer with [¢) in (A1) form is considered as good enough, optimization problem (F'1a)) with
quadratic constraint (F'1bf) can be easily solved. Substitute (Al)) to (F3c) and obtain:

_ Wy [1]Yy)
I= <Zy|¢y>y Tmax (F10a)
n—1
0= 3 QWG Q] C10.)GHu) (F10b)
7,k,s,t=0

The (F10b)) constraint is a polynomial of 2n — 2 degree, it has exactly 2n — 2 root, possibly
complex. The classes extending the com/polytechnik/trading/OrthogonalPolynomialsB
asisFunctionsCalculatable. java (see Appendix G 3 of Ref. [3]) provide an implementa-
tion for solving P(y) = 0 equation with a P(y) in a given Q(y) basis P(y) = 3272 Qm(),
the is a polynomial of this form. Among 2n — 2 roots found select only the real roots,
then among them select the state ‘1/)£M]>, that provides the maximal <¢E~M] ’ I ‘ ¢£~M]>. The
situation is similar to the one of Appendix |G| below, with the difference that ‘¢EM> is now
selected among states with y from real roots (2n — 2 maximal number), not
among n eigenvalues of some operator ||C]].

The class com/polytechnik/utils/IstatesConditionallocalized. java implements
this procedure. It takes three matrices (Q; | Qx), (Q; | 1| Qk), (Q;]C | Qx), and basis func-
tions operations class (extending the com/polytechnik/utils/OrthogonalPolynomialsB
asisFunctionsCalculatable.java), as constructor’s arguments. Then it solves P(y) =0
polynomial roots problem using com/polytechnik/trading/0OrthogonalPolynomi
alsBasisFunctionsCalculatable<T>:getPolynomialRootsFinderInBasis () .findRoot
s(-) method to obtain a set of y,, that are the roots of (F10b]). Then corresponding |¢y,,)
are constructed, and the one with the maximal (¢,,, | I |1,,.) is selected: this is the
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“localized” BM}> solution. The fields are:

psi M ‘1/1£M1> the localized solution of 1} form; equals to 0 on failure (F1la)
y_M The “localization” point in (A1) of maximal I (F10a)), (F10b]) root (F11b)

i M The execution flow <7,ZJEM] ‘ I ‘ @ZJEM]> (Fllc)
n_roots The number of real roots of (F10b)) (F11d)

Appendix G: Directional Information: [ T max in the States of Constraint Operator

IC]]-

The constrained optimization of the Appendix [F' IJabove, while been very nice mathemat-
ically, does not provide a clear cut answer. There are two reasons: the difficulty to select an
operator ||C/| and the difficulty with Lagrange multiplier convergence, as ||I|| and
|C|| operators often have common eigenvectors. Consider a different, much more simplistic,

constrained optimization approach:

I= % T max (Gla)
|1) : is subject to being an eigenvector of |C|¢) = A¢ [¢)) (G1b)

Here we also split the market dynamics in two operators: ||/]| (execution flow dynamics) and
IC|| (price dynamics). But now we consider the ||I|| only in the eigenstates of the operator
IC||. The operator ||C]| is selected in a way that it’s derivative gives the constraint operator
|C||, thus the [¢)) state of extremal ||C|| give zero of constraint operator ||C||. Mathematically
the problem is simple: find all n eigenvectors of ||C|| first, then select the one,
providing the maximal ||/|| (Gla). The state of price-matching maximal execution flow

)¢BM]> is now plain (G1b|) eigenvector, providing the maximal (Glaf). There are a number

of choices for the operator ||C||, selecting the states [¢):

IpI|)y = e |I|Y) Price min/max (G2a)
Vi|v) = Ae [Vo|v) Moving average price (11¢d)) is equal to the price (11a)) (G2b)

The optimization with the constraint (G2al) is actually the pure dynamic impact approx-

imation of Ref. [3]: price and execution flow operators are assumed to have the same
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eigenvectors. The (G2b)) states, same as for the aggregated execution flow (C5)) below, se-
lects the states with the moving average price equals the price, a typical market practitioner

point of attention. The problem (G1|) uses the same input data moments as the problem
D).

Appendix H: The ‘1/)ng1> variation approach to positive and negative dI/dt states

separation.

The separation of the states with positive and negative dI/dt can be developed based on

@ZJBIH]> variation. For example, in the Eq. (F3) of Ref. [3], the variation of I have been
considered™}
(Y + 09| T]Y+ 64

Lovso = =5 To r o)~ DO+ DL+ D2+ (H1)
DO = W (H2)
With 60 = —ED(!"(2)) variation (such a variation can be considered as a boundary

condition alternative to , , , or ) obtain A, P from the Eq. (31) of Ref.
[3]. Any first variation 1’ in a

y]> state is zero, any second variation 1’ in the state

1/J£~IH]> is negative. The first variation of the ‘¢BIH]> state can be written as P(x) polynomial

average:
P(x) = 20{"(z) [ED@{ () - (o™ | ED@]™)) o} ()] (115)
D1 =(IP(x))=0 (H6)
In [6], we have have proved, that any polynomial P(x) of 2n — 2 degree can be isomorphly

mapped to a linear operator of the dimension n, the algorithm is presented in the Appendix

A of Ref. [6]:

Z)\[l]w[ll () (y) (H7)

13 See the class com/polytechnik/utils/RayleighQuotient.java of provided software, implementing the

calculation of 0-th, 1-st, and 2-nd variations of two quadratic forms ratio.


http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip

P(z) = p(z, v) (H8)
Then the D1 can be presented as a superposition of positive and negative terms:
0= DL= 3 ARG 1y 3 A (b |10 o)
:All>0 Al <0
This way the P(z) average can be split in positive and negative contributions. Despite being

a ‘¢EIH]> projection, the eigenvalues of 1) are typically all non-zero, and corresponding

density matrix is a mixed state:

ot = oty AF (ol (H10%)
i:A[d>0

oIl = oty AF (ol (H10b)
:Alil<0

For computer implementation see the class com/polytechnik/trading/DIselDM. java of

provided software.
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