*

On The Radon—Nikodym Spectral Approach With Optimal

Clustering

Vladislav Gennadievich Malyshkinf]
loffe Institute, Politekhnicheskaya 26, St Petersburg, 194021, Russia
(Dated: May, 31, 2019)

$Id: RNSpectralMachineLearning.tex,v 1.749 2025/01/03 17:31:18 mal Exp $

Problems of interpolation, classification, and clustering are considered. In the tenets
of Radon—Nikodym approach < f (x)1/12> / <1/}2>, where the ¥(x) is a linear function
on input attributes, all the answers are obtained from a generalized eigenproblem
‘ f]w[i]> = Al ‘w[i]>. The solution to the problem is a regular Radon—

Nikodym derivative. The solution to the problem requires and
probabilities that are obtained using the Lebesgue quadrature[I] technique.

Whereas in a Bayesian approach new observations change only outcome probabilities, in
the Radon—Nikodym approach not only outcome probabilities but also the probability
space |w[i]> change with new observations. This is a remarkable feature of the approach:

both the probabilities and the probability space are constructed from the data. The

Lebesgue quadrature technique can be also applied to the joptimal clustering| problem.

The problem is solved by constructing a Gaussian quadrature on the Lebesgue
measure. A distinguishing feature of the Radon—Nikodym approach is the knowledge
of the invariant group: all the answers are invariant relatively any non—degenerated
linear transform of input vector x components. A software product implementing the
algorithms of interpolation, classification, and optimal clustering |is available from the

authors.

malyshki@ton.ioffe.ru

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
mailto:malyshki@ton.ioffe.ru

I. INTRODUCTION

In our previous work[I] the concept of Lebesgue Integral Quadrature was introduced
and subsequently applied to the problem of joint probability estimation|2]. In this paper a
different application of the Lebesgue Integral Quadrature is developed. Consider a problem
where attributes vector x of n components is mapped to a single outcome f (class label in

ML) for I = [1... M] observations:
(20,15 - Thy vy Tpeg) D — fO weight w® (1)

The data of this format is commonly available in practice. There is a number of problems of

interest, e.g.:

e For a continuous attribute f build optimal /\[m]; m =0...D — 1 discretization levels, a

discretization of continuous features problem.

e For a discrete f: construct a f—predictor for a given x input vector, statistical classifi-
cation problem) that arise in ML, statistics, etc. For a continuous f: predict it’s value

for a given x.

e For a given x estimate the support of the measure in problem, in the simplistic
formulation it is: find the number of observations that are “close enough” to a given
x. Find the Coverage(x). The Christoffel function is often used as a proxy for the

coverage[3-5], however a genuine Coverage(x) is a very important characteristics in

ML.

e Cluster the dataset according to f separability (allocate D < n linear combinations
[Gm] (x) = Z;é a,&m]xk, m = 0...D — 1, that optimally separate the f in terms of
(f1?) / (4*)). For a given x construct the probability distribution of f to fall into the

found D clusters.

Currently used techniques typically construct a norm, loss function, penalty function, metric,
distance function, etc. on f, then perform an optimization minimizing the f-error according
to the norm chosen, a typical example is the backpropagation. The simplest approach of this

type is linear regression, L? norm minimization:

{([f(x) = frs(x)]*) — min (2)

https://en.wikipedia.org/wiki/Discretization_of_continuous_features
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Backpropagation

frs(x Z B (3)

As we have shown in [0l [7] the major drawback of an approach of this type is a difficulty to

select a “good” norm, this is especially the case for non—Gaussian data with spikes|8|, @].

II. RADON-NIKODYM SPECTRAL APPROACH

The Lebesgue integral quadrature[I] is an extension of Radon—Nikodym concept of con-
structing a classifier of (fv?) /(%) form, where the ¢(x) is a linear function on input
attributes, to build the support weight as a quadratic function on x;. It allows to approach
many ML problems in a completely new, norm—free way, this greatly increases practical
applicability. The main idea is to convert , a sample of M observations, to a set of n

eigenvalue/eigenvector pairs, subject to generalized eigenvalue problem:

’f)¢[i1> —\li |¢m> (4)

i
L

(2] flag)ap = AU Z x| zp) (5)

0

B
Il

1[)[” Z Qg T (6)

Here and below the () is M observations sample averaging, for observations with equal

weights w® = 1. This is a plain sum:

M
= Z w® (7a)
=1

M

Fye = {aj | [1) = Y) O (7h)
=1

Gjr = (x| xx) Zx Z)xk (7c)

Here and below we assume that Gram matrix G, is a non-singular. In case of a degenerated
Gk, e.g. in case of data redundancy in , for example a situation when two input attributes
are identical x; = x4y for all [, a regularization procedure is required. A regularization
algorithm is presented in the Appendix [A] Below we consider the matrix G, to be positively

definite (a regularization is already applied).

Familiar L? least squares minimization ([2]) regression answer to is a linear system

solution:
frs(x) = 2G5! (fa) (8)
§,k=0

The Radon—Nikodym answer|[7] is:

n—1

Z .TJG]k Fle T,
3k, l;m=0
frn(x) = — (9)
> $jGj_k1xk
§,k=0
1/K(x Z ;G (10)
7,k=0

Here G,;jl is Gram matrix inverse, the K(x) is a Christoffel-like function. In case x; = Qi(x),
where z is a continuous attribute and Qx(z) is a polynomial of the degree k, the G;;, and
F), matrices from are the (Q; | Qr) and (Q; | f | Qx) matrices of Refs. [I], [7], and the
Christoffel function is 1/K(z) = Zﬁio Q;(z)G 5 Qr(x). The (1) is a more general form, the
x, now can be of arbitrary origin, an important generalization of previously considered a
polynomial function of a continuous attribute.

The () solution is n pairs (A, 1[0(x)). For positively definite G5, = (x; | 74) the solution

exists and is unique. For normalized 9 we have:

n—1
— <w[ﬂ ‘ zp[j]> = Z ol (2 |) ag] (11a)
m,k=0
n—1
= @O 1oy = 3 all @y, | £l o (11b)
m,k=0

Familiar L? least squares minimization regression answer and Radon—Nikodym answers
can be written in [basis. The , , and ([14)) are the , @, and written in the
Yl basis:

frs(x) = Z BT () bl (x (12)
1=0

)\l [l (X)]2

frv(x) == (13)

W’]()’

HM? ©

3
,_.

1/K(x) = W’](ik (14)

i

Il
=)

The main result of [I] is the construction of the Lebesgue integral quadrature:

fH =\l (15a)
Wl — <¢m>2 (15b)
= ”Z_: w!’ (15¢)
= i ([v¥]*) (15d)

The Gaussian quadrature groups sums by function argument; it can be viewed as a n—point
discrete measure, producing the Riemann integral. The Lebesgue quadrature groups sums
by function value; it can be viewed as a n-point discrete distribution with fl support
points and the weights w!? , producing the Lebesgue integral. Obtained discrete
distribution has the number of support points equals to the rank of (r;|z;) matrix, for
non-degenerated basis it is equal to the dimension n of vector x. The Lebesgue quadrature is
unique, hence the principal component spectral decomposition is also unique when written

in the Lebesgue quadrature basis. Substituting (12)) to obtain PCA variation expansion:

([f(x) = frs(x > (f?) —i(f[i])2w[i]—< — > if[z f) wh (16)

Here f = (f)/(1). The difference between (16 and regular principal components is that the
basis |1/1[i]> H of the Lebesgue quadrature is unique. This removes the major limitation of the
principal components method: it’s dependence on the scale of x attributes. The does not
require scaling and normalizing of input x, e.g. if z; attribute is a temperature in Fahrenheit,
when it is converted to Celsius or Kelvin — the expansion will be identical. Due to (/)
invariance the variation expansion will be the same for arbitrary non—degenerated linear
transform of x components: x; = ZZ;S Tirxy.

In the basis of the Lebesgue quadrature Radon—Nikodym derivative expression is the
eigenvalues weighted with weights. Such a solution is natural for interpolation type of

problem, however for a classification problem different weights should be used.

https://en.wikipedia.org/wiki/Principal_component_analysis#Properties_and_limitations_of_PCA

A. Prior and Posterior Probabilities

Assume that in for some x only a single eigenfunction 1[!(x) is non-zero, then (13))
gives the corresponding f! regardless the weigh w®. This is the proper approach to an
interpolation problem, where the f is known to be a deterministic function on x. When
considering f as random variable, a more reasonable approach is to classify the outcomes
according to overall weight. Assume no information on x is available, what is the best answer
for estimation of outcomes probabilities of f 7 The answer is given by the prior probabilities

(17a) that correspond to unconditional distribution of f according to (15b]) weights.

Prior weight for f: ! (17a)
(A [v (X)f
n—1
2, [()]

Posterior weight for f: wProjd(x) = w (17b)

The posterior| distribution uses the same [w[i} (x)} 2 probability as adjusted to fl¥ outcome

prior weight w!l. The corresponding average

n—1 . n—1)))
> AlwllProjil(x) 3 Al [yl (X)f
=0

Trww (%) = 55 =T (18)
> wilProfi(x) 3wl [l (x)
1=0 i=0

is similar to , but uses the posterior weights (17b). There are two distinctive cases of f

on x inference:

e If f is a deterministic function on x, such as in an interpolation problem, then the
probabilities of f outcomes are not important, the only important characteristic is:
how large is ‘¢[i}> eigenvector at given x; the weight is the 1—th eigenvector projection
. The best interpolation answer is then frn(X): the eigenvalues A weighted
with the projections Projl’l(x) as the weights.

e If f (or some zy) is a random variable, then inference answer depends on the distribution
of f. The classification answer should include not only what the outcome A corresponds
to a given x, but also how often the outcome MY occurs; this is determined by the prior

weights w!l. The best answer is then fryvw (x): the eigenvalues A weighted with

https://en.wikipedia.org/wiki/Prior_probability
https://en.wikipedia.org/wiki/Posterior_probability

the posterior weights w(1Projl!(x). An important characteristic is

n—1
Coverage(x) = Z wlProjl’(x) (19)

i=0
that is equals to Lebesgue quadrature weights w!! weighted with projections. For ([15)
the probability space is n vectors ‘w[i]> with the probabilities wl!. The coverage is a
characteristic of how often given x occurs in the observations (here we assume that
total sample space is projected to }1/J[i]> states). Entropy Sy of a random variable f

can be estimated from prior probabilities:

nel G gl
Sr=-2 gyt () (20)

It can be used as a measure of statistical dispersion of f. Similarly, conditional entropy

S| can be obtained from prior and posterior probabilities :

ol Prosd [Pro;ill
wProj(x) w!Proj(x)
= o (A 21
Stle — (1) " (Coverage(x) (21)

The fryw can be interpreted as a Bayes style of answer. An observation x changes outcome
probabilities from (17a]) to (17h)). Despite all the similarity there is a very important difference
between Bayesian inference and Radon—Nikodym approach. In the Bayesian inference[10)]
the probability space is fixed, new observations can adjust only the probabilities of pre—set
states. In the Radon—Nikodym approach, the probability space is the Lebesgue quadrature
1) states ‘w[ﬂ% the solution to 1) eigenproblem. This problem is determined by two
matrices (z; | f | zx) and (x; | zy), that depend on the observation sample themselves. The key
difference is that new observations coming to change not only outcome probabilities, but
also the probability space |1/)[i]>. This is a remarkable feature of the approach: both the
probabilities and the probability space are constructed from the data. For probability space
of the Lebesgue quadrature this flexibility allows us to solve the problem of optimal

clustering.

IIT. OPTIMAL CLUSTERING

Considered in previous section two inference answers ((13) and (18 use vector x of n

components as input attributes x;. In a typical ML setup the number of attributes can grow

https://en.wikipedia.org/wiki/Probability_space
https://en.wikipedia.org/wiki/Entropy_(information_theory)#Definition
https://en.wikipedia.org/wiki/Bayesian_inference

quite substantially, and for a large enough n the problem of data overfitting is starting to
rise. This is especially the case for norm—minimization approaches such as , and is much
less so for Radon—Nikodym type of answer (13|, where the answer is a linear superposition of
the observed f with positive weight 1?(x) (the least squares answer is also a superposition
of the observed f, but the weight is not always positive). However, for large enough n the
overfitting problem also arises in fgry. The Lebesgue quadrature builds n cluster centers,
for large enough n the finds the closest cluster in terms of x to ¥[! distance, this is the
projection Projll(y) = <¢y } ¢[i]>2 to localized at x =y state 1y (x):

[i]
[yl (x)]?
j=0
n—1 n—1
1= Projfl(x) = >~ (| vy’ (23)
1=0 =0
n— n—1
i) X yCin
Wy (x) = =0 (24)

n—1 - n—1
YDRCLICY) YD DR e
=0 7,k=0

and then uses corresponding fl as the result. Such a special cluster always exists for large
enough n, with n increase the Lebesgue quadrature separates the x space on smaller
and smaller clusters in terms of distance as the square of wavefunction projection.

In practical applications a hierarchy of dimensions is required. The number of sample
observations M is typically in a 1,000 — 100, 000 range. The dimension n of attributes vector
X is at least ten times lower than the M, n is typically 5 — 100. The number of clusters D,
required to identify the data is several times lower than the n, D is typically 2 — 10; the
D < n < M hierarchy must be always held.

The Lebesgue quadrature gives us n cluster centers, the number of input attributes.
We need to construct D < n clusters out of them, that provide “the best” classification for a
given D. Even the attributes selection problem (select D “best” attributes out of n available
xy) is of combinatorial complexity[11], and can be solved only heuristically with a various
degree of success. The problem to construct D attributes out of n is even more complex.
The problem is typically reduced to some optimization problem, but the difficulty to chose a

norm and computational complexity makes it impractical.

https://en.wikipedia.org/wiki/Overfitting

In this paper an original approach is developed. The reason for our success is the very

specific form of the Lebesgue quadrature weights (15b)) wl! = <¢[i1>2 that allows us to

construct a D-point Gaussian quadrature in f— space, it provides the best D-dimensional
separation of f, and then to convert obtained solution to x space!

A Gaussian quadrature constructs a set of nodes f[Gm] and weights w[gl I such that

W)~ S gl (25)

is exact for g being a polynomial of a degree 2D — 1 or less. The Gaussian quadrature can
be considered as the optimal approximation of the distribution of f by a D—point discrete
measure. With the measure (-) in the form of M terms sample sum no inference of f on
x can be obtained, we can only estimate the distribution of f (prior probabilities).

Now consider D—point Gaussian quadrature built on n point discrete measure of the

Lebesgue quadrature , D < n. Introduce the measure (-);

n—1

(9(f), = Zg(f["])wm (26)
() =(1) (27)

and build Gaussian quadrature on the Lebesgue measure (-);. Select some polynomials
Qx(f), providing sufficient numerical stability, the result is invariant with respect to basis
choice, Q,,(f) = f™ and Q,, = T,,(f) give identical results, but numerical stability can be
drastically different|12] I3]. Then construct two matrices Fg and G (in and the
f and wl are and), solve generalized eigenvalue problem ([28c|), the D nodes

]

are fc[;m} =)\[gﬂ eigenvalues, the weights w[g;n ,m=0...D—1, are:

n—1
Fa=(Qs| F1Q0), =Y Qu(fMQu(f1) flwl (28a)
i=0
n—1
G = (Qs1 Q) = > Qu(MQu(fM)wl! (28b)
=0
7, =]k, 250
D—1 D—1
ST Faa™ = 20G S Gaa™ (284)
t=0 . t=0
v () =" a"Qu(f) (28¢)

t=0

https://en.wikipedia.org/wiki/Gaussian_quadrature

10

flml . \lm) (28f)
m 1
T ase)
et
D—-1 n—1
(D, = (1) => w =" wl (28h)
m=0 =0

The eigenfunctions %”] (f) are polynomials of D — 1 degree that are equal (within a constant)
to Lagrange interpolating polynomials LI (f)

[m] if f— £l
()~ Ve RS (29)

eGED o itr= s £m

Obtained D clusters in f-space are optimal in a sense they, as the Gaussian quadrature,
optimally approximate the distribution of f among all D—points discrete distributions. The
greatest advantage of this approach is that attributes selection problem of combinatorial
complexity is now reduced to generalized eigenvalue problem of dimension D! Obtained
solution is more generic than typically used disjunctive conjunction or conjunctive dis-
junction forms|I1] because it is invariant with respect to arbitrary non—degenerated linear
transform of the input attribute components xy.

The eigenfunctions ¢g”](f) 1) are obtained in f-space. Because the measure (-),
was chosen with the Lebesgue quadratures weights wl! = <wm>2, the wgn](f) (28¢) can be

converted to x basis, m,s=0...D — 1:

v (x) = ilwg”}(fm) (W) ol (x) (30)
s = (W) | w0 (31)
Ao = (VB0 | £ | 0 0) (32)

wl = (0160) = (vn). (3)

The wgﬂ } (x) is a function on x, it is obtained from ¢gn } (f) basis conversion 1) This became
possible only because the Lebesgue quadratures weights wl? = <¢[i}>2 have been used to
construct the w[Gm](f) in . The wg’”‘] (x) satisfies the same orthogonality conditions 1}
and for the measure (-) as the wgﬂ }(f) for the measure (). Lebesgue quadrature weight
for w[Gm] (x) is the same as Gaussian quadrature weight for 1/1[Gm](f), Eq. .

11

The is the solution to |clustering problem. This solution optimally separates f—
space relatively D linear combinations of x to constructﬂ the separation weights 1?(x)
of (fv?) / (4?) form. In the Appendix |[A| a regularization procedure is described, and the
1+ dim S? linear combinations of z;, were constructed to have a non-degenerated G,;, matrix.
No information on f have been used for that regularization. In contrast, the functions
select D < n linear combinations of xj, that optimally partition the f-space. The
partitioning is performed according to the distribution of f, the eigenvalue problem of
the dimension D has been solved to obtain the optimal clustering. Obtained wgﬂ) (x) (they
are linear combination of xy) should be used as input attributes in the approach considered
in the Section [[I| above, Eq. is directly applicable, the sum now contains D terms, the
number of clusterﬂ Familiar variation expansion (16| is also applicable, total variation
(% — Dz_:l (A[é”])Q wgn] is the same when clustering to any D in the range 2 < D < n and is
equal t: Ec?ast square norm {|[f(x) — fLS(X)]2> calculated in original attributes basis x of the

dimension n, Eq. .

A. Optimal Clustering For Unsupervised Learning

Obtained optimal clustering solution assumes that there is a scalar function f, which
can be put to to obtain }@D["]% then to construct the (-), measure and to obtain optimal
clusters . For unsupervised learning a function f does not exist and the best what we

can do is to put the Christoffel function as f(x) = K(x):

n—1 n—1
() | K(x) |2 o = Mg D (| a) a (34)
k=0 k=0
= Z ocZ]xk (35)
HpKH— W> N (36)

L The defines D clusters. If 1) D =n, 2) all Lebesgue quadrature nodes f? are distinct and 3) no weigh

wl’ is equal to zero, then /\ = " and w[m]() = ¢Im(x).

2 One can also consider a “hierarchical” clustering similar to “hidden layers” of the neural networks. The
simplest approach is to take n input z; and cluster them to Dy, then cluster obtained result to Dy, then to
D3, etc., n < Dy < Dy < Dj3.... Another option is to initially group the zj attributes (e.g. by temporal
or spatial closeness), perform Section [[II] optimal clustering for every group to some (possibly different for

different groups) D, then use obtained w[Gm } (x) for all groups as input attributes for the “next layer”.

https://en.wikipedia.org/wiki/Cluster_analysis

12

-1 -08 -06 -04 -02 O 02 04 06 08 1

FIG. 1. The Christoffel function K (x) for the measures du = dz (blue), du = dx/v/1 — 22 (green),
and du = dav/1 — 22 (olive) with n = 7 and n = 25 (thin). The 1/K (z) is a polynomial on z of the
degree 2n — 2. Christoffel function is determined by integration measure and the basis used. If one
chooses the harmonic basis: 1/v2, sin(knz), cos(knz), v € [-1:1], du=dx, k=1,...,n — 1 then,
in contradistinction to the blue line of this chart for du = dx in a polynomial basis, the Christoffel
function is exactly the constant 1/(n —0.5). Christoffel function study for non—polynomial bases may
be an important direction of further research. The first step in this direction is numerical experiments:
from polynomial bases (where an extra degree gives one more basis function) to harmonic basis
(where an extra degree gives two more basis functions), following a transition to “product” attributes

, where the number of basis functions growths with a degree as (56]).

The sum of all eigenvalues is equal to total measure, see Theorem 4 of [I]. The (38])
is an entropy of the distribution of x®, it is similar to , but the weights are now

obtained only from x®. In Fig. |1| a demonstration of the Christoffel function in 1D case is

13

presented for the measures: du = dz and Chebyshev first and second kind du = da/+/1 — 22
and dy = day/1—22. One can see from the figure that K(z) for Chebyshev measure
dp = dx/+/1 — 22 is close to a constant, this follows from the fact that all Gaussian quadrature
weights are the same for Chebyshev measure. The operator ||pk|| allows us to construct a

Chebyshev-like measure for a multi-dimensional basis:

—1
lorcll = Z) W) A (vl

0

(39)

~.

i =

(40)

s |

The operator ||prx|| has the same eigenvectors as the ||pk||, but different eigenvalues; all the
eigenvalues are now the same , this is a generalization from 1D Chebyshev measure. For
a large enough n density matrix operator has similar to Chebyshev measure properties.
Note that the entropy is maximal for distribution (all weights are equal). One may
also consider to put entropy density s(x) = —K(x)In (K(x)/ (1)) to Eq. instead of
K (x) from Eq. to obtain a “spectral decomposition of the entropy” as S = nz_:l)\g ! But it

i=0
would be less convenient than the entropy , where we construct a discrete distribution)\[;J

and the entropy is then calculated in a usual way. For a large enough n these two approaches
produce similar results.

The technique of an operator’s eigenvalues adjustment was originally developed in [14]
and applied to hydroacoustic signals processing: first a covariation matrix is obtained and
diagonalized, second the eigenvalues (not the eigenvectors!) are adjusted for an effective
identification of weak hydroacoustic signals. The (39)) is a transform of this type.

Before we go further let us take advantage of the basis ’w%> uniqueness to obtain a
familiar PCA variation expansion but with the Christoffel function operator , the

average is defined as matrix Spur:

Spur(HpKn——nlu) (” —)2 (a1)

The (41)) is invariant with respect to an arbitrary non-degenerated linear transform of x
components, no scaling and normalizing is required, the same as for . One can select a
few eigenvectors with a large)\[;(] — (1) /n difference to capture “most of variation”. However,

our goal is not to capture “most of variation” but to construct a basis of the dimension D < n

14

that optimally separates the dataset. Note that when the ||prx|| operator is used in the
variation is minimal (zero).

We are interested not in variance expansion, but in coverage expansion. If we sort eigen-

values in

(1) = 3= D (ol o |) (42)

is a sum of continuously decreasing terms, by selecting a few eigenvectors we can create
a projected state, that covers a large portion of observations. This portion is minimal for
Chebyshev density matrix (39)), where it is equal to the ratio of the number of taken/total
eigenvalues. As in the previous section we are going to obtain D < n states that optimally
separate the ||px|| by constructing a Gaussian quadrature of the dimension D. However, in
it’s original form there is an issue with the measure .

For f(x) = K(x) a different separation criteria is required. Consider the measure “all
eigenvalues are equal”, a typical one used in random matrix theory, it is actually the Chebyshev

density matrix (39).

()= Y90 (1
(1) =n (a4

The measure takes all eigenvectors of (5) with equal weight, the nodes are)\[;(], the weight
is 1 for every node. If we now construct the Gaussian quadrature on the measure (-)

instead of the (-),, the quadrature nodes

o (], WO

gt = <¢£T]‘¢[£ﬂ>E = g{gﬂ}(@)r m=0...D—1 (45)

have a meaning of a weight per original eigenvalueﬂ. Then m = 0...D — 1 eigenfunctions
QZJ[CT;L } (f) of 1) optimally cluster the weight per eigenvalue, a “density” like function required
for unsupervised learning. The measure does not allow to convert obtained optimal

clustering solution 10[6?1](f), a pure state in f-space, to a pure state in x—space @Z)[Gm] (x),

3 If to use the Christoffel function average (g(f))x = Z?;Ol)\[Ii(] g()\[;(]) the meaning of the nodes is unclear

5 () [old]" /S A [ulo]

=0

15

however it can be converted to a density matrix state H\I/gn |, see Appendix C of [1]. While
2

the wgﬂ] (x) does not exist for a mixed state, the pl™(x), an analogue of [wg” } (x)} that enters

to the solutions of Radon-Nikodym type, can always be obtained. For the measure the

conversion 1s:

—

n—

P = 3 (el eous] m=0...D-1 (46)

()

Il
o

for a general case see Appendix C of [I].

This theory is based on using the eigenproblem to obtain invariant (with respect
to input transform) basis in which data analysis can be performed. A question arises
about an existence of other such bases. One of them can be obtained from consideration of a

localization factor

and the problem

n—1 n—1 [z]:|4 n—1

o [4

Pl LM> — 2 V= < Pl K(x)> — max (50)
) S} 5o

is of finding an orthogonal basis ¢! maximizing the functional. From definition
it follows that the maximal possible value of is n; note that for any orthogonal basis
(| 1) = 6;; we have

(1) =3 ([K 0) (51)
5o

The problem has the 4—th power of 1, formally it can be considered as a multiplication
of non—averaged terms from and and then taking common average. The problem
cannot be reduced to an eigenvalue problem and a different technique needs to be applied,

see [15].

16

In this section a completely new look to unsupervised learning PCA expansion is presented.
Whereas a “regular” PCA expansion is attributes variation expansion, which is scale-dependent
and often does not have a clear domain problem meaninﬂ, the Christoffel function density
matrix expansion is coverage expansion: every eigenvector covers some observations,
total sum of the eigenvalues is equal to total measure (1), the answer is invariant relatively
any non—degenerated linear transform of input vector x components. In the simplistic form
one can select a few eigenvectors with a large)x[;(]) (e.g. use --flag_replace_f_by_chris
toffel_function=true with the Appendix [B|software). In a more advanced form D <n
optimal clusters can be obtained by constructing a Gaussian quadrature with the measure

and then converting the result back to x—space with projections.

IV. SELECTION OF THE ANSWER: fry VS. fenw

For a given input attributes vector we now have two answers: interpolation fry and
classification fryw (L8). Both are the answers of Radon-Nikodym (f4?) / (¢?) form, that
can be reduced to weighted eigenvalues with Proj? and w!?Projl” weights respectively. A
question arise which one to apply.

For a deterministic function f(x), the Proj weights from construct the state in
}@DM> basis that is the most close to a given observation x. The fry is a regular Radon—
Nikodym derivative of the measures fdu and du, see Section II.C of [I]. This is a solution of
interpolatory type, see Appendix [C] below for a demonstration.

For a probabilistic f the wl!Proj¥ weights, that include prior probability of f outcomes,
is a preferable form of outcome probabilities estimation, see Appendix [B2] below for a
demonstration. The w?Proj¥ posterior weights typically produce a good classification even
without optimal clustering algorithm of Section [[II} For a given scalar f the solution to
supervised learning problem is obtained in the form of (outcome,weight) posterior distribution
(17b)).

For junsupervised learning the function f does not exist, thus the eigenvalue problem
cannot be formulated. However, we still want to obtain a unique basis that is constructed

from the data, for example to avoid PCA dependence on attributes scale. For unsupervised

4 There is a situation|[14] where the variation has a meaning of total energy E = Z?;io x; Bk, the energy

matrix Ej;, is determined by antenna design.

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning

17

learning the Christoffel function should be used as f(x) = K(x), then PCA expansion of

coverage can be obtained, this is an approach of Section [[ITA] to unsupervised learning.

V. A FIRST ORDER LOGIC ANSWER TO THE CLASSIFICATION PROBLEM.
PRODUCT ATTRIBUTES.

Obtained solutions to interpolation and classification problems are more general
than a propositional logic type of answer. A regular basis function expansion is a local
function of arguments, thus it can be considered as a “propositional logic” type of answer.
Consider formulas including a quantor operator, e.g. for a binary x; and f in expressions

like these:

if dzp =1 then f =1
ifVop, =0 then f =1

Similar expressions can be written for continuous x; and f, the difference from the proposi-
tional logic is that these expressions include a quantor—like operator that is a function of
several xj, attributes. The 1?(x) expansion includes the products of z;zy, thus the Radon-
Nikodym representation can be viewed as a more general form than a propositional logic. The
most straightforward approach to obtain a “true” first order logicl answer from a propositional
logic model is to add all possible Qg, (z0)Qk, (z1) - .. Qk,_,(x,_1) products to the list of input
attributes. For a large enough D we obtain a model with properties that are very similar
to a first order logic model. The attributes x are now polynomials of n variables with
multi-index k of a degree D; they are constructed from initial attributes x; with regular
index k. Multi-index degree is invariant relatively any linear transform of the attributes:
T = ZZ;S Tjrxy. Because in the Radon-Nikodym approach all the answers are invariant
relatively any non—degenerated linear transform of the basis, we can construct similar to
the first order logic knowledge representation with known invariant group! The situation is
different with logical formulas of disjunctive conjunction or conjunctive disjunction, where
a basis transform change formula index[I1], and the invariant group is either completely
unknown or poorly understood; a typical solution in this situation is to introduce a “formula

complexity” concept to limit the formulas to be considered, a mutli-index constraint

https://en.wikipedia.org/wiki/Propositional_calculus#Terminology
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Multi-index_notation#Definition_and_basic_properties

18

can be viewed as a complexity of the formulas allowed. The terms

zy = afoxk | gk (53)
k: (k07k17--'7kn—1) (54)

n—1
D=k (55)

=0
N(n,D)=CPip, (56)

are now identified by a multi-index k and added to as attributesﬂ We will call the set of
all possible terms used as ML attributes in — the “product” attributes. An individual
(53) is called “term”, see [18-20]. The number N (n, D) of “product” attributes is the number
of possible polynomial distinct terms with multi-index not higher than D, it is equal to (56]).
A few values: N(n,1) =n, N(n,2) = (n+ 1)n/2, N(7,7) = 1716, N'(8,7) = 3432, etc. In a

typical ML setup such a transform to “product” attributes is not a good idea because of:

e A linear transform of input attributes produces a different solution, no gauge invariance.
e Attributes offset and normalizing difficulty.

e Data overfitting (curse of dimensionality), as we now have a much bigger number
of input attributes M(n,D). A second complexity criteria (the first one is maximal
multi-index (55])) of constructed attributes is typically introduced to limit the number
of input attributes. For example, a neural network topology can be considered as a

variant of a complexity criteria.

The approach developed in this paper has these difficulties solved. The invariant group
is a non-degenerated linear transform 7Tj; of input attributes components, the z;z; and
Z;‘l’,_kl/:o T2y Ty attributes produce identical solutions; for the same reason the terms
Qo (70)Qr, (z1) ... Qn,_, (7,1) are Qi invariant, e.g. Qr(z) = 2* and Qn(z) = Ti(7)

produce identical solutions. The attributes offset and normalizing are not important since

is invariant relatively any non—degenerated linear transform of x components. The problem

® Note, that since the constant does always present in the original x;, attributes (1)) linear combinations,
the x;z;, (and high order) products always include the z; (lower order products), what may produce a
degenerated basis. The degeneracy can be removed either manually or by applying any regularization
algorithm, such as the one from Appendix [A] Unlike polynomials in a single variable, multidimensional

polynomials cannot, in general, be factored[16, [I7].

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks

19

of data overfitting is not an issue since Section optimal clustering solution allows
to reduce N(n, D) input attributes to a given number D of their linear combinations that
optimally separate the f. The only cost to pay is that the Lebesgue quadrature now requires a
generalized eigenproblem of V' (n, D) dimension to be solved, but this is purely a computational
complexity issue. Critically important, that we are now limited not by the data overfitting, but
by the computational complexity. Regardless input attributes number the optimal clustering
solution selects given number D < N (n, D) of input attributes linear combinations that
optimally separate f in terms of (f?) / (1?).

In the Appendix [C] a simple example of usage of polynomial function of a single attribute
x as input attributes was demonstrated . Similarly, a polynomial of several variables
identified by the multi-index can be used to construct input attributesﬂ. An increase
of attributes number from n to N(n, D) using “product” attributes combined with
subsequent attributes number decrease to D by the clustering solution is a path to ML
answers of the first order logic type: n original attributes — N (n, D) “product” attributes

— D cluster attributes .

A. Lenna Image Interpolation Example. Multi—-index Constraints Comparison.

In [21] a two—dimensional image interpolation problem was considered with multi-index j

constraint
(z,)V — fO weight w® =1 (57)
i = (e, Jy) (58)
0<j, <n,—1 (59)

6 See numerical implementation of multi-index recursive processing in com/polytechnik/utils/At
tributesProductsMultilndexed. java. Due to invariant group of the Radon—Nikodym approach
the “product” attributes can be calculated in any basis. For example these two solutions are
identical:

e Take original basis, perform basis regularization of Appendix [A] obtain “product” attributes
from X}, then solve of N(n,D) dimension. Obtain the Lebesgue quadrature ((15)).

e In the previous step, after X calculation, solve of dimension n to find ¢! (x) @, obtain
“product” attributes from these 1[%(x), then solve (5) of N'(n, D) dimension. Obtain .

See com/polytechnik/utils/TestRN. java:testAttributesProducts() for unit test example.
This result is also invariant to input attributes ordering method.

For highly degenerated input attributes a direct application of com/polytechnik/utils/Attri
butesProductsMultiIndexed. java algorithm to create N (n,D) “product attributes” and then
regularize them all at once may not be the best approach from computational stability point
of view. In this case it may be a better option to perform basis regularization incrementally,
simultaneously with product attributes construction: obtain original basis regularized attributes

20

0<j,<n,—1 (60)

basis : 277y dim(basis) = n,n, (61)

of each multi-index component being in the [0...n ,y — 1] range; total number of basis
functions is then n,n, (61). This is different from the constraint , where the sum of all
multi-index components is equal to D; total number of basis functions is then . Different
basis functions produce different interpolation, let us compare the interpolation in these two
bases. Transform d, x d, image pixel coordinates (z,y) (x =0...d, —1;y=0...d, — 1)

and gray intensity f to the data of form:

(z,y, NV — O weight w® =1 62

j = (jxy.jya.jc) 63

(62)
(63)
(64)
basis : 277 ylv = glvglv1Ie dim(basis) = N (n, D) (65)

Input attributes vector x is of the dimension n = 3: two pixel coordinates and const, this
way the “product” attributes with the constraint include all z7=y’» terms with lower
than D degree j, + j, < D. Observation index [runs from 1 to the total number of pixels
M =d, x d,,.

Let us compare [2I] n, = n, = 50;dim(basis) = n,n, = 2500 of basis with n =
3;D = 69; dim(basis) = N (n, D) = 2485 of basis (65). The value of D = 69 is selected to
have approximately the same total number of basis functions. The bases are different: 2°7y2,
2%0y?, etc. are among “product” attributes (65]), but they are not among the where the
maximal degree for z and y is 49; similarly the 2%%y*° is in (61), but it is not in (65). As in

[21] we choose 512x512 Lenna grayscale image as a testbed. If you have scala installed run

scala com.polytechnik.algorithms.ExampleImageInterpolation \
file:dataexamples/lena512.bmp 50 50 chebyshev

to reproduce [21] results using and @D for least squares and Radon-Nikodym. Then run

(note: this code is unoptimized and slow):

java com/polytechnik/algorithms/ExampleImageInterpolation2 \
file:dataexamples/lenab12.bmp 50 50 69

https://en.wikipedia.org/wiki/Lenna
https://www.scala-lang.org/

21

To obtain 4 files. The files 1ena512.bmp.LS.50.50.bs2500.png and lena512.bmp.RN.50.
50.bs2500.png are obtained as and using basis with n, = n, = 50, the result
is identical to [21]. The files 1ena512.bmp.LS.D.69.bs2485.png and lena512.bmp.RN.D.6
9.bs2485.png are obtained from and using basis with D = 69. The images
are presented in Fig. [2l It was shown in [2I] that the Radon-Nikodym interpolation produces
a sfumato type of picture because it averages with always positive weight 1?(x); the
preserves the bounds of f: if original gray intensity is [0 : 1] bounded then interpolated
gray intensity is [0 : 1] bounded as well; this is an important difference from positive
polynomials interpolation[22] where only a low bound (zero) is preserved. In contradistinction
to Radon—Nikodym the least squares interpolation strongly oscillates near image edges and
may not preserve the bounds of gray intensity f. In this section we compare not least squares
vs. Radon—Nikodym as we did in [2I] but the bases: Vs. as they have different

multi-index constraints. We observe that:

e The bases produce similar results. Basis differences in LS are more pronounced, than

in RN; always positive weight makes the RN less sensitive to basis choice.

e In RN a small difference is observed near image edges. With RN still has small
oscillations near edges, and with RN has oscillations completely suppressed.

e The multi-index constraint is not invariant relatively a linear transform of input
attributes, for example 2" ~ly™~! relatively x = 2’ — 3/, y = 2’ + %/, but the is

mvariant.

This make us to conclude that the specific multi-index constraint is not very important,
the results are similar. Whereas in an interpolation problem an explosion of basis functions
number increases interpolation precision, in a classification problem an explosion of basis
functions number leads to data overfitting. The optimal clustering solution reduces the
number of basis functions to a given D thus it solves the problem of data overfitting. This
reduction makes multi-index constraint used for initial basis construction even less important

for a classification problem than for an interpolation problem.

https://en.wikipedia.org/wiki/Sfumato

22

4

F 4
) 8
FIG. 2. Top: original image. Middle: least squares in basis (left) and basis (right). Bottom:

Radon—Nikodym in basis (left) and basis (right). The bases and are of 2500
elements (n, = ny = 50) and 2485 elements (n = 3, D = 69) respectively.

B. On The Christoffel Function Conditional Optimization

All the solutions obtained in this paper have a distribution of f as the answer: the

distribution with posterior weights (17b), optimal clustering , etc. Recently, a promising

23

approach to interpolation problem has been developed [23]. In this subsection we consider
a modification of it to obtain, for a given x, not a single outcome of f, but a distribution.
Obtained weights can be considered as an alternative to the posterior weights . A sketch
of [23] theory:

e Introduce a vector z = (x, f) of the dimension n + 1.

e Construct “product” attributes (53)) out of z components with the degree equals to D;
because a constant always presents in x;, it is sufficient to consider the degree equals
to D, lower order terms are obtained automatically as in (65). There are N'(n + 1,D)

“product” attributes obtained from n + 1 components of z.

e Construct Christoffel function from obtained “product” attributes K (z) = K(x, f).
Now the 1/K(z), for a given x, is a positive polynomial on f of the degree 2D.

e For a given x, the interpolation [23] of f is the value providing the minimum of the

polynomial 1/K(x, f); the value of x is fixed:

X

K(x,f) 7) max (66)

As an extension of this approach consider Christoffel function average, Appendix B of [I],

but use the K(z) = K(x, f) to calculate the moments of f:

— (M)
X> =27 JK(x, f(l))w(l) (67)

=1

<fm>K(x,.) = <me(Z)

When one uses x = x() as Christoffel function argument in the right hand side of , the
average is the Christoffel function average of Ref. [I] with the properties similar to regular
average ; the Gaussian quadrature built from the moments obtained with the Christoffel
function average is similar to the one built from the regular moments (f), and to the one
built from moments with g = f™. However, if to consider a fixed value of x, then the
solution becomes similar to the approach of Ref. [23], the K(x, f) is now used as a proxy to
joint distribution p(x, f). Because 1/K(x, f) at fixed x is a positive polynomial on f of the
degree 2D, the moments (f™) K(x,) do exist for at least m = 0...2D. A D—point Gaussian

quadrature can be built from them, exactly as 1) but with the measure (-) K(x.) instead of

X,-)

(-);- The result is D nodes (281)) and weights (28g|). The major difference from [23] is that

24

(4] (1])

instead of single f we now obtained i =0...D — 1 (outcome,weight) pairs (K(x) W (x.)

of the distribution of f conditional to a given x. The most close to [23] interpolation answer
is to find the fl[?(x) corresponding to the maximal wg(x) However, in ML the distribution
of outcomes, not a single “answer”, is of most interest. From the Gaussian quadrature built

on the (-)x(, ., measure conditional distribution characteristics can be obtained:

e The (1) K(x,) 1s an analogue of Coverage(x) from : how many observations are “close

enough” to a given x.

e The Gaussian quadrature nodes and weights (f][?(x 3y wg(x ,)) are an analogue of the

posterior distribution (17b)). However, in approach both: the outcomes f[[?(x) and

(1]
K(x,

the weights w

) depend on x. In (|17b|) approach the outcomes are always the same

£l and only posterior weights depend on x as w!?Proj (x). This distinction is similar

to [3] with x—dependent outcomes vs. [24] with x—-independent outcomes.

e The approach cannot provide an optimal clustering solution of type. Ide-
ologically, x—dependent outcomes make optimal clustering difficult. Technically, the
m = 0...2D moments (f™) K(x,) cannot be reduced to a density matrix average of

Appendix C of [I] or to a simple pure state average (15b]).

VI. A SUPERVISED CLASSIFICATION PROBLEM WITH VECTOR-VALUED
CLASS LABEL

In the ML problem the class label f is considered to be a scalar. A problem with

vector—valued class label

(‘T07x17 ey Ly e e 7xn—1)(l) — (f07f17 .. '7fj7 s 7fm—1)(l) Welght w(l) (68)

where an attributes vector x of the dimension n is mapped to a class label vector f of
the dimension m is a much more interesting case. For a vector class label f, the most
straightforward approach is to build an individual model for every f; component. However,
constructed models are often completely different and obtained model set cannot be viewed
as a probability space. In addition, the invariant group of f (what transform of f; components
does not change the prediction) may become unknown and basis-dependent. The situation is

similar to the one of our previous works[3, 24], where the distribution regression problem

25

can be directly approached by the Radon—Nikodym technique, however the distribution to
distribution regression problem is a much more difficult case.

Whereas the Christoffel function maximization approach of Ref. [23] is interesting
for a scalar f, it becomes extremely promising for a vector class label f. Consider a vector z

of the dimension n + m:

7= (L0, T1, -, Ty s Tty foo F1yeoos fiy oo os o) ® weight w® (69)

The vector z mixes input attributes x with class label vector f. The N (n + m, D) “product”
attributes Z; can be obtained out of n+m z components as in . The “product” attributes Z;
with the constraint are the ones with the simplest invariant group: the answer is invariant
relatively any non-degenerated linear transform of z components: z, = ZZ,J:Z;_I Tz,
s, =0...n+m— l|Z| The invariant group can be viewed as a gauge transformations and is
a critical insight into the ML model built.

From (69) z data construct N'(n + m, D) “product” attributes Z; according to (5] (if
necessary perform regularization of the Appendix , then, finally, construct the Christoffel
function K (z) according to (L0). Classification problem is to find f-prediction for a given x.
When one puts zx, k = 0...n — 1 part of vector z equal to a given x the K(x,f), for a fixed

x, can be viewed as a proxy to joint distribution p(x, f). Find it’s maximum over the vector f:

K(x,f)

— max (70)

to obtain Ref. [23] solution. The solution is exactly (66), but with a vector class label f!
For a fixed x and a degree D the 1/K(x, f)’ is a polynomial on f; of the degree 2D,
there are total N/ (m, D) distinct terms. In applica)fcions it may be convenient to minimize the
polynomial 1/K(x, f)’ instead of maximizing the Christoffel function , but these are
implementation details;.c
Critically important, that, for a given x, we now obtained a probability distribution of f
as K(x,f) ‘x. When a specific value of f is required, it can be estimated from the distribution

as:

7 In practical applications, it is often convenient to consider different degree D for x and f, e.g. to consider
D > 1 only for x to obtain A (n, D) “product” attributes and, for the class label, consider D = 1. There are
will be m = N (m, 1) attributes f;, total N'(n, D) + m attributes Z;. Below we consider only the case of
the constraint , providing N'(n + m, D) attributes Z;. The transition to “product” attributes extends

the basis space, but the |¢) still form a linear space [25].

https://en.wikipedia.org/wiki/Introduction_to_gauge_theory

26
e Christoffel function maximum ([70).
e The distribution of Christoffel function eigenvalues

e The simplest one is to average f with K (x,f)

instead of f™: <fK(z)

, the same as but with the vector f
X

> and similar generalizations.
X

The most remarkable feature is that the K (x, f)‘ approach is trivially applicable to a vector

class label f, and the constructed model has a known “gauge group”.

A. A Vector—Valued Class Label: Selecting Solution Type

While the idea [23] to combine input attributes x with class label vector f into a single
vector z with subsequent construction of “product” attributes Z and finally to
obtain Gram matrix (Z;Z;) and Christoffel function K(z) is a very promising one, it
still has some limitations.

Consider a D = 1 example: let a datasample has fo =xg forall [=1... M. Then
Gram matrix (2;z;) is degenerated. When attributes regularization is applied — it will remove
either fy or xy from z, thus the resulting K (z)) depends on attributes regularization: a
polynomial 1/K(z)| on f is different, thus <fK (z)‘ > produces the result depending on the
regularization. An Jltimate example of this situatizn is: for k=0...n—1, let fr =z for
all [=1... M with n = m. In this case Gram matrix has two copies of exactly the same
attributes and what combination of them propagate to the final set of attributes depends on

regularization. For example if x; are selected and f; are dropped then K (z)‘ is a constant
X

and <fK(z)

> is x—independent. Such a regularization—-dependent answer cannot be a solid

X

foundation to ML classification problem, a regularization—-independent solution is required.
Consider two Gram matrices (x,x) and (f;f;) with attributes possibly “producted”

to D, and Dy. It’s “gauge transformation” is:
n—1
I;c = Z Tkk/ZL‘k/ (71&)
k'=0

m—1
£=> Ty (71b)
J'=0

27

There are no x < z “cross” terms as when we were working with the combined z, this makes
the solution regularization—independent.

Consider the simplest practical solution. Let xj, attributes being regularized and “producted”
to a degree D. The f attributes are untransformed. The Radon—Nikodym interpolation
solution @ is directly applicable:

n—1
> Gy (o | £ a) Gile
1,j,ki=0
fRN<X) = ! 1 (72)
> x]'Gj_klxk
5k=0

This “vector” type of solution to distribution to distribution regression problem (that was
obtained back in [24]) is just (9) applied to every component of f. As we discussed in Section
[and demonstrated in the Appendix [B2] such a solution, while being a good one to an
interpolation problem, leads to data overfitting when applied to a classification problem. We
need to use the posterior distribution weights to obtain an analogue of fryw (X) ,
but without generalized eigenvalue problem on f, as the f is now a vector. This is feasible
if we go from “regular” average to Christoffel function average of Section [[ITA] All density
matrix averages posses the duality property[I]:

o) = S (ol

n—1
spur | ol = M (]
=0

pic | Uf) (73)

Thus, for a vector f, where the pairs ()\Bf];

w¥]>) do not exist, obtain in M’Q> basis:
ES\CR PN R NP
;} Ak [K(X)} <¢K f ‘ @Z’K>
n—1 . . 2
>N [0
This is the simplest practical solutionﬂ to a classification problem with vector class label f. It

¢g> of generalized eigenvalue problem to solve the

problem with a vector class label f. The solution assumes every component of vector

fRNW(X) = (74)

uses unsupervised learning basis

f is diagonal in the basis ‘?/)EZ(]> This is not generally the case, but allows to build a single
classificator for a vector class label f instead of constructing an individual classificator for

every f; component. The option --flag_assume_f_is_diagonal_in_christoffel_funct

8 One can also try the fry(x) from with (z; | K(x)|z,) and (z;|f(x)K(x)|zk) used instead of

Gjr = (zj|vx) and (z; [f|2).

28

ion_basis=true of the provided software (see Appendix |B|below) builds such a classifier.

This “same

EZ(]> basis for all f;” classifier typically has worse quality that the one built in

WJM> basis corresponding to an individual scalar class label f;

The approach of two Gram matrices (zyxy), k, k' =0...n—1and (f;f;7),j,7 =0...m—1
without “mixed” terms (zjf;) in basis allows to obtain a “relative frequency” characteristic, a

density of state type of solution. Consider R, the ratio of two Christoffel functions:

nil ag (zp | K(£(X)) | 2pr) g
R = k,kn:_ol .
kaZO ay (i | K(x) [@) ap

which is an estimator of Radon—Nikodym derivative[26]. The R is a dimensionless “relative
frequency”: how often a given realization of vector f corresponds to a given realization of
vector X in sample. The K (x) and K (f) are Christoffel functions calculated on x and
f portion of data, possibly regularized and “producted”. The 1/K(x) and 1/K(f) are

positive polynomials on z; and f; components respectively.

To obtain the distribution of R multiply left- and right- hand side of by 1?(x) and
integrate it over all [= 1... M observations of datasample, obtain . The calculation
of (x| K(f(x)) | zs) matrix elements is no different from the one performed in (34)): use

expression, but now in f—space. A familiar generalized eigenvalue problem is then:

n—1 n—1
> (k| K(E(x) [aw) og) = A > (an | K(x) | 210) o) (77)
k’'=0 k’=0

n—1
) =D o (78)
k=0

Obtained)\%} is a spectrum of “relative frequency”. In ‘¢;§> state there are /\%] time more f
observations than x observations. The matrices (xy | K(f(x)) | zx) and (x| K(X) | zx) are
n X n matrices calculated from a training datasample. The knowledge is accumulated in their
spectrum. When evaluating a testing dataset the simplest usage of is this: for a given

. . . —1 —
x, how often/seldom we see an f? The answer is 1) with localized oy, = > 1, Gbaw or,

29

when written in basis

S o]’
R(x) = S (79)
> [He0]

While the ((74)) is f—value predictor, the R is “relative frequency” estimator, an important

characteristic when considering a vector-to—vector type of mapping.

B. A Vector—Valued Class Label: Error Estimation
The vector—value estimators and are an estimation of f by averaging class label
D= (fo, fis-os fiveeos frno1)® from with a x— dependent positive weight W (x"):

S0 (xO) 0
f(x) = = (80)
> Wi(x®)
=1

Dy, = D Walx) (81)

What is the best way to estimate an error of a solution of this type? A “traditional” approach

would be to consider a standard deviation type of answer <(f —7)2>, a variation of f
components relatively their average value. This solution can be obtained from Gram matrix

in f-space (with some complications because of vector class label f):

Gir = {fifu)w ZW Jk=0...m—1 (82)

As we discussed in [8] and then earher in this paper all standard deviation error estimators
cannot be applied to non—Gaussian data, thus they have a limited applicability domain. A
much better estimator can be constructed from the Christoffel function. Consider Christoffel
function in f-space Ky, (f), obtained from Gram matrix as 1/Kw, (f) = 27— ! fk,
exactly as we did in in X—spaceﬂ Consider the best possible situation when (80| has no

9 To calculate Christoffel function properly there always should be a constant present in the
(fos f1,---5 fjs- -+, fm—1) basis space, if it does not have one — add an attribute f,, = 1 to the basis.
If G, is degenerated the vector (fo, fi,..., fj,..., fm—1) should be regularized according to Appendix
with the replacement x; — f;. Described there regularization algorithms always add a constant to the

basis if it does not have one.

30

variation, i.e. the averaging gives exact values. The support of this measure is then a single
point f from (compare with a Gaussian quadrature in case when a single node has a
dominantly large weight). When a prediction is not perfect we have a variation of f) around
average. Exactly as we did above, instead of considering a variation in f—space, consider the
support of a measure, a “Lebesgue” style approach. The total measure is <1>Wx> the support

of f-localized state is Ky, (f), their difference gives error estimation:

Error = (1)y, — Kw,(f) (83)
or — Error Kw, (f)
B T, T -

Error estimator has a dimension of weight (number of observations). It has the meaning
of the difference between total measure and the measure of f-localized state. It is gauge
invariant relatively .

Even when a predictor (in a form of x— dependent positive weight Wy (x)) does not exist
we can still obtain an information of how well a vector in f-space can be recovered from
x-space. In scalar case f = f the simplistic solution to the problem is the aforementioned L?
norm ([2)): if standard deviation is zero then f can be completely recovered from the value of
x. However, this solution, besides depending on the scale of f, is problematically to generalize
to a vector f.

We can construct an original solution to vector f from three matrices: (fj fir) (the (82))

with Wy = 1), (zjzx), and (z;fir). The first two are Gram matrices in f- and x- space

respectively:
G = (fyfw) K =0...m-1 (85)
G, = (xjwp) jk=0...n—1 (86)
X = (i fw) j=0..n—1LK=0...m—1 (87)

In scalar f case we have m = 2 or greater:

f=(1,f) fo=1f=fim=2 (88)
f= (1,711 fo=Lifi=fifo=f5m=3
f=(,f1 1 fo=Lh=fHA=f=lm=4

a constant should always present in the basis (both in f and x). A criterion of how well f can

be recovered from x is to compare the matrices (f; fir) and (f; (x)fir(x)); the f; is exact

31

value and the f;(x) is obtained from projection of f on x-space:

f(x) = Projf ¢ (89)
Z ‘T]G;(k (firn) (90)
7,k=0
(fir () fur(x)) = Y (fray) Gt (froa) Z GG G (91)
J,k=0 7,k=0

Here G}‘,;_l is an inverse of G, from . The non—negative m x m symmetric matrice:
(f7r(x) fir(x)) (Eq. (91)) and (f; fir) (Eq. (85)) coincide if f is a subspace of x; both represent
the f-space: the former is projected on x, the later is calculated directly.

Solve generalized eigenproblem with these two matrices in left- and right- hand side

respectively, exactly as in :

m—1 m—1
S (%) fio (%))l = A Z (f | fio) ol (92)
k'=0
m—1 n—1
Z GG G = Al Z Gt ap)
=0 7,k=0

If f-space is a subspace of x-space then all i = 0...m — 1 eigenvalues A\l are equal to 1 and
their sum is equal to matrix (f; | fi) rank m. Otherwise the difference represents an error:

how big is the remaining error after projecting f-space on x-space:

Error, g, = m — Z NI = — Z (f;(x sz_l (93)

5,k=0

This error is gauge—invariant relatively , it is dimensionless and represents how well f-space
can be projected on x-space. It can be viewed as a gauge—invariant “squared multi—dimensional
correlation” between f(x®) and fO [=1... M. If n = m = 2 we have: x = (1,z); f = (1, f)
then (92)) has the maximal eigenvalue Al = 1 because a constant presents in both bases, and
minimal eigenvalue is equal to regular correlation between x and f squared: A% = p?(z, f).

The (93] can also be calculated directly using matrix Spur, without solving a generalized
eigenvalue problem. It is a “rank-difference” error estimator what makes it not always
convenient in practical ML applications. The most convenient error estimator in ML is of

“coverage” type: how many observations are correctly classified (or misclassified). This error

10°If the matrix (f;/ fi) is not positive — apply Appendix [A| regularization first.

32

can be obtained using projection and Christoffel function technique we applied in Section
below to the Low-Rank Representation(LRR) problem. The solution is straightforward:

e Construct a 1g(f) state, localized at f = g, it is exactly with a replace x — f ;
y — g, G — Gf, see Eq. (E5).

e In every g = f¥) point we have <1/)?(l)> = 1, exactly as in full basis expansion ({116]).

e If one, instead of ¢g(f), take it’s projection to x-space — the value (94) can be
lower than 1, similarly to (117)). Then sum it over all [= 1... M sample observations
to obtain the number of covered points. The Error is then:

n—1 m—1

N 2 > geGyy GG GELGy g
) = [Proj]) = RS (99
Z gj’G it ! gk;’
/ k —
M
Error = Z wWe(fV) (95)
=1

The is an analogue of with no predictor available, this is a characteristics of the
data, not of a predictor, the sum of basis projection successes w(f M) in every observation
point [with the weight w®. This expression can be generalized with an operator ¢ in x-space
converting ¥, (x) to some other function in x-space |(x)) = [U|1xw (x)) and only then

projecting the result to actual realization 1¢q) (f) in f-space:

Error = Zw (o [U | Px0)|” (96)

This error is the number of misclassified observations for specific predictor |||, it is always
greater than the error (95)). The corresponds to [U|i,w) (a single vector in x-space)

being replaced by direct projection to a full orthogonal basis W[ﬂ> in x-space, similar to

and (F1):

3
H

w(g) = <¢g|¢ y 1> w(g) (97)

7

I§
o

The w(g) determines how well a localized in f-space state ¢g(f) can be projected to x-space
basis. This criterion is then tested for all [= 1... M observation points, For the reason

of testing the entire sample of M points, not just n basis functions, the Error (95) is an

33

estimation of the best possible predictor performance, thus it is useful as a bound (G3)) for a
predictor of form.

The Error can be spectrally expanded. Introduce

f()f(l)
(| KO £ Zw — G k=0...m—1 (98)
=1 3 f”Gf,,;,1 ,
/kl

Which is exactly Christoffel function matrix , but in f-space. Then (95]) can be expressed

as matrix spur ((100)):

m—1
KG9 =Y GRGh (fo| KO f0) G5 6 G k=0..n—1 (99)
Wt s',§'=0
n—1
Error = (1) — Z K](.z_m Gt = (1) = SpurKFIGx ! (100)
5k=0
(f—x)

From which immediately follows, that if we solve generalized eigenproblem with K ;™ and
G = (xjrr) matrices in left- and right- hand side respectively, the Error can be spectrally

expanded:

n—1
> K = Al Z TT) o (101)
k=0

Error = (1) —) Al (102)

i=0
The is a spectral decomposition of , it has at most m non—zero eigenvalues (the
rank of is m or lower, we also assume m < n). If f belongs to a subspace of x then the
sum of these m eigenvalues in (102)) is equal to (1). The eigenvectors corresponding to a few
(m or lower) maximal eigenvalues of is the solution to vector class label classification
problem target basis (not the problem itself).

Consider a simple demonstrative solution. Let us project ¢g(f) to 1, ;x)(f) to obtain a
joint probability estimator: what is the probabilitylﬂ of outcome g given input vector y if

f1s(x) model is assumed.

n—1 m-—1

Ve sy () = Norm Z Z y;G]k Gk]’G i’k ' fro (103)

]k‘ 04 ,k'=

1 The coverage of the predictor (105)) at y can be estimated from the value of 1/Norm?(y), similar to using

Christoffel function K (y) for estimation of the support of the measure of localized at x =y state.

34

,_.

n—1 m—
x —1 f;—1 X; —1
NOl“mQ(y) = Z y kyl 'k Gsk’G (104)
7,k,s,t=0 j’,k'=0
2

m—1
X; -1 f -1

n—1

pe

Prob(gly) = (v, ()| va(f))” = T—"—— (105)
Norm?(y) > gj/G?k_,lgk/
J' k=0
M
Error = (1) — Zw(Z)Prob(f(l)|x(l)) (106)

=1

This solution has a form of conditional probability which can be used to introduce
a predictor-specific error estimator Error. Whereas the “maximal coverage” estimator
estimates data recoverability without constructing a predictor, the estimator estimates
specific simple prediction of least squares type; usual least squares property holds: it is zero
if f is a subspace of x. This estimator can be spectrally decomposed only at some given x,

this makes it’s properties related. Introduce b,/ (y):

n—1
1 x; —1 f
bj(y) = ——— G G 107
J (y) Norm(y) ;0 Yj jk kj ()
m—1
> by (y)bw () _Azlsz,k,ak, (108)
k'=0

Then ((108) has a single non-—zero eigenvalue A1 = Z;",;:lo bng};lbk = 1, which is the

maximal value of . While vector—to—vector prediction models are not implemented in
the provided software yet, a reference unit test for (105 and is available therein; it
can be run with random data. The calculations require only matrix algebra: the is
a ratio of a quadratic form squared and a product of two quadratic forms. Hence, as with
any Radon—Nikodym type of solution, it tends to a constant (not to infinity like e.g. least
squares) when y — oo or g — 00. See DirectProjectionTestSolutionVectorXVectorF. j
ava:evaluateAt (final double []X) for simple examples. The estimates conditional
probability, not the value of most probable outcome. A familiar least squares (90]) estimation

of f given x can be obtained from:

fis(x) = Norm(x)b(x) frs o (x Z x; (109)

Prob(frs(x)|x) =1 (110)

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip

35

The ([105) is just a simple example of conditional probability estimator, a demonstration, that
even with least squares naive form there exists a big improvement when we consider a
conditional probability estimation instead of typically considered value estimation. A general
form a “unitary” type of conditional probability estimator is discussed below in Appendix [E]

All considered estimators are gauge—invariant relatively . The main idea behind these
estimators is straightforward: consider localized at f = g state 1g(f) (the in f-space),
project it to some x-dependent vector space (in the simplistic case it is just direct
projection, in most general case — a unitary transformation following a projection (E2))),
then sum it over the entire sample as in , , , or below to obtain the
number of covered observations.

This approach can be deployed to estimate, as the number of misclassified observations,
other vector-to—vector predictor systems that result in the value f(x), not in conditional
probability Prob(f|x): for example a distribution—to—distribution regression model, a neural
network with vector output, etc. Take a projection@ of the state localized in realized outcome
Ve () to the state localized in predicted outcome g (f), obtain an expression similar to

(105) weighted over the entire sample:

M

Error = (1) = > w () | Vet (111)

=1

2
1

; ij?flgk-

0

s

<77Df | ¢g>2 = m—1 . m—1 i (112)
.;0 £iGi .;Ongj}c_lgk
]7 = ‘7’ =

This error estimator is outlier—stable, it has the meaning of the number of misclassified

observations. In can be applied to any predictor of f(x) output type; when least squares

prediction fig(x") is put to (111)) obtain (106). These are not bounded by as they are
not of form.

Another interesting option to consider is to put f = x, then spectral decomposition ((102))
corresponds to “coverage expansion” (42)) above and to LRR solution ((120]) below with D = n.

Let us demonstrate an application of this technique to the Low-Rank Representation problem.

12 Note: this is a different concept from a typical consideration of how close are predicted and realized
outcomes. For an estimation of this type — one can test how much the eigenvalues are lower than 1.

The Error,q,; from lj is an aggregated estimator of this type.

36
C. A Christoffel Function Solution to Low-Rank Representation

For an unlabeled data (no class label f available) consider the problem of clustering to

build a Low-Rank Representation (LRR). Consider a data without f:
(20, @1,y Thy - Tpeq)V weight w® (113)

the problem is to cluster vector space x of a dimension n on a subspace of D < n dimension.
A solution|27] is to introduce a n x M matrix x,(j) of the rank n (we assume the problem is
already regularized), and to represent it by n x M matrix X of lower rank D < n and an

. I
“error” matrix E ,g).

2V = x4 Y (114)

The problem is then to find a low-rank representation X, D from the given observation matrix
xk , that allows to recover the given matrix with a small enough error E . The [27] authors
consider the following minimization problem:

1)1(11]%1 [rank()() —i—XHEHF] (115)

)

where A > 0 is a parameter and || E|| is a norm, such as the squared Frobenius norm. The
main issue with minimization, besides computational difficulties, is that the solution is
not gauge invariant relatively .

The type of error estimator allows us to construct a gauge invariant solution. Consider
state 1y (x) localized at x =y. As a regular wavefunction, when expanded in any full
basis [¢!) obtain:

—_

n—

1= (¢ | ¢1)? (116)

7

Il
=)

When, instead of a full basis W)[ﬂ> of the dimension n, a basis of lower dimension D < n is
used, this can be for example 7,0?;] (x) of the dimension D < n from or any other lower
dimension basis |¢[i}> orthogonal as 9;; = <¢[i] ‘ ¢U]>, the sum of squared projections can be

lower than 1:

Mb

<¢y | gty (117)

=0

https://en.wikipedia.org/wiki/Low-rank_approximation#Basic_low-rank_approximation_problem
https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

37

The was obtained back in [6] as Eq. (20) therein, where we summed it over the
entire sample. Similarly, let us sum with the weights w® over ally e xV, 1 =1... M
observations. If all terms are equal to 1 then the total measure (1) is obtained. Otherwise
the difference is an estimation: how well the space |gbm> of the dimension D < n allows to

recover the full space x; of the dimension n. The error is:

M D-1
Error = (1) — Zw(l) Z (Vg | qu>2 (118)
. =1 =0
20 = (ay | o1 ol (x) (119)
i=0

Unsupervised clustering solution is a D-dimensional ¢/!(x) basis minimizing the (118])

error. The solution to (118]) minimization problem can be readily obtained from (1 | qb>2 =

K(y)¢*(y) and ‘Q/J?{]> definition in 1}

D-1

Error = (1) — > A} (120)

=0

This is (|118)) written in a subset of ’¢g> basis. For D = n this is previously obtained coverage

expansion @ The Christoffel function clustering solution ‘¢[i]> is then: the D < n vectors

wﬁ? out of n corresponding to D largest)\[I@. It can be converted to x basis as (|119)). The

@ is a low-rank representation of the data: the matrix Xk(l) of rank D represents the
original data matrix x,gl) of rank n. In contradistinction to solution, the solution
is gauge invariant relatively and unique if there is no /\[[i(] degeneracy. This property
enables a new range of availabilities that are not practical (or even not possible) for other
clustering methods. The two most remarkable features — a possibility to use the “product
attributes” and the fact that the “coverage expansion” solution is obtained from
the expansion of the Christoffel function, that is small for a seldom observed x. This is
important when input data is a union of subspaces. If x € S; and y € S5 the union
S1 U Sy does not form a vector space (ax + by € S; U Sy iff S; € Sy or Sy C 7). The
Christoffel function is small for the vectors not in S; U S5, thus it serves as an indicator
function of a vector from subspaces direct sum S; @& S5 to belong to subspaces union S; U Ss.

The option --flag_replace_f_by_christoffel_function=true of Appendix[B]software
makes the program to construct and output the wﬁ?(x“)) matrix from read xgl) input matrix

of the dimensions: ¢ =0...n—1; [= 1... M. Set option --flag_print_verbosity=3 to

38

print all <xk ‘ ¢¥<]> coefficients and wﬁ? (x() values to obtain Xk(l). The error (120) depends

on how many ’¢£’<]> are included in (|119) as |gbm>, the error is zero if all ‘¢E> are included.

D. An application of LRR representation solution to dynamic system identification

problem.

For an application of LRR solution to a dynamic system identification consider a linear
stochastic dynamic system:

LD x(-l)
J Z ey 4 el (121)

T

Here we assume that the dataset (113) is [-ordered (e.g. [is time and all w® = 1). The
left-hand side is a discrete analogue of time-derivative, the € is a noise with some
distribution (not necessary Gaussian). The problem: to determine the matrix Mj; for a given
observation set x,g), k=0..n—1;l=1...M.

This problem has a trivial “projection” solution, similar to projection with a replace

n—1 d.fl?j
My=) dt

i=0

x> Gl (122)

corresponding to a direct projection of dz;/dt vectors to x-space; it has zero error when
€ = 0. This solution is formally applicable even when x and dx/dt spaces are of different
dimension, e.g. dx;/dt, j =0...n — 1, are original attributes derivatives, and xy are product
attributes with a multi-index k; there are N (n,D) product attributes (56). Then
the matrix M;j, is of the dimension n x N (n, D) and the matrix G}, is of the dimension
N(n,D) x N(n,D) The selection of a space to project is the key element of any approach, a
direct use of the full x-space (even more so for product attributes space) typically produces
poor results.

The x is a phase space of the dynamic system , for a mechanical system it is coordinates
and momentums x = (g, p). Dynamic system equation determines the evolution of a point in
the phase space. The biggest practical problem with a dynamic system identification is that
the phase space can be of a very large dimension. We need a low—dimensional subset that

captures most of the dynamic features.

https://en.wikipedia.org/wiki/Phase_space

39

In case of a stationary dynamic system our solution is straightforward: apply Section
VIC|LRR solution to the phase space matrix x,(f), k=0...n—1;l=1... M: Construct the
K (x), perform (34)) coverage expansion in x—space, then select D < n maximal eigenvalues
(according to error condition), new basis functions ¢¥, i = 0... D —1 are corresponding
to them eigenvectors . Then study the system dynamics in ¢ basis of dimension D < n:

doll =~ .
- =Y My +¢ ik=0...D—1 (123)
k=
n—1
ol = Z ag?lg;j (124)
j=0

Instead of the original problem to identify the matrix M of the dimension n the problem
became to identify the matrix M of the dimension D <n.

The (|123)) is a “projected” dynamic equation. One can use to obtain the dynamics
in original variables z; and dz;/dt. The LRR solution of Section constructs the }¢[i]>
basis of the dimension D, this basis is the optimal one to recover the dynamics of in
the form among all D-dimensional bases.

E. Localized states |¢y) dynamics.

A dynamic equation of (121)) form is written in x-space directly. It is equivalent to a

recurrent relation:

n—1
2 =3 My + €Y (125)
k=0

with M, = 4, + 7M,;, being evolution matrix and a renormalized noise. This equation
determines the dynamics of a point in the original phase space x of the system. Existing
dynamics techniques typically use a variant of Kalman filter[28] approach, which is a linear
quadratic estimation (LQE). The central concept of these approaches is the covariance matrix,
a “glorified standard deviation” concept. The technique developed in this paper is based on
using a wavefunction ¥ (x) = Zz;é agxr and obtaining the results by averaging with the
?(x) weight. For this reason, instead of considering the dynamic of a point itself, we are
going to consider the dynamics of a wavefunction localized at some point of the phase space:
not the dynamics of x¥) but of a state 1, (x), localized at x = x; it is the state 1y (x)

from (24)) with y = x®,

https://en.wikipedia.org/wiki/Phase_space
https://en.wikipedia.org/wiki/Kalman_filter

40

The transition x) — x(*1) corresponds to localized wavefunction transition |, @) —
’@Dx(lﬂ)):
Uy (X) = Utheay (x) + € (126)
|[hxasn) = [U[Yew) + |€)
Here the ||| is a unitary operator (to preserve normalizing) converting iy (x) from ([24))
from y = x® to y = x("*Y: in the simplest stationary case it can be considered [-independent,
and |€) is a noise vector. The ([126)) is written in two types of notation; it can be projected to

any orthogonal basis ¥’ (for example @ with any f, Christoffel basis , regularized basis
X; from the Appendix [A] etc.) to be written in the matrix form:

7 n—1
= (e | 91) = D) 1= sV i (127)
Z [(x®) | =

s Zujksk (128)

The is the dynamic equation for the projections <¢x<z) ‘ w[i]>.

The dynamic system identification problem, for a given observation sequence :c,(f), k=
0...n—1;l=1... M, instead of determining evolution matrix M, of the dimension n x n
that transforms x to x(*! now became: to determine a unitary operator Uj; of the
dimension n x n that transforms ¥, to ¥, a+1). If one apply solution to this will
be incorrecﬁ: because the is a equation for a point in phase space. It corresponds to
minimizing predicted/observed differences which is the L? norm error applied to ((125):

M 2
Zw(z) [(+1) ZM]k‘Tk] — min j=0...n—1 (129)

— ik

M
This result in linear system solution with) xyH)ajg)w(l) determining linear system right

=1
part and Gram matrix determining linear systems matrix.

The is a equation for wavefunction, e.g. if one apply a [-dependent transform

() — exp(up(l)) ® ,4=0...n — 1, the result should be identical; similarly ¢}, and —U;;

13 Tt is also incorrect to consider time evolution operator as an “average” of observed state transitions:
U = Zlszl [thyat1)) (Y| with subsequent “unitarization” procedure (e.g. SVD followed by setting
Yk = 0% we deployed in Eq. (D10) for numerical optimization) because identical dynamics must be

obtained under transform v, — exp(i@®)ih oy with arbitrary phases o), I = 1... M; this invariance is

satisfied only in 1]

41

should provide identical dynamics (compare with M, — —M ;). Were we study a quantum

system time evolution operator can be readily obtained as Hamiltonian related:

t
U = exp l—iﬁH} (130)
[01) = |1y =) (131)
Now, however, we are trying to construct operator U from the data. The functiona]ﬂ
M 2
Zw(l)‘ <77Z)x(l+1) |u | @bx(z)) ‘ 7 max (132)
=1

determines how well v, u11) is reconstructed from 1,) by a unitary operator & when system
dynamics takes the form of a sequence of unitary transformations of a wavefunc-
tion. It can be interpreted as a density matrix dynamics: consider localized pure state
density matrix ||px|| = |¥x) (¢¥x|. Then ||pea+n || = [[U]pxo [UT|| and the criterion de-
termines the difference between realized ||p,u+1) || and predicted ||pya+n || density matrices:
Zl]‘il wSpur|| pyasn [U|pw JUT||. Tf there is a perfect recovery ||p|| = ||p]| for all [— then, as
for pure states Spur||p?|| = 1, total coverage (1) is obtained, the difference is an error. The

problem is: to find a unitary transformation ¢ maximizing (132)). In (127) basis the ((132)) is:

M
S = ZW(l)3§'l+1)51(<;l)3§‘l/+1)*Si(cl/)* (133)
=1

n—1

Z L{ijjk;j/k/Z/{;k, 7 max (134)
jikej’ k'=0
n—1
> Uil = 65 (135)
k'=0
Siksik! = Sk ji (136)

The optimization problem ({134)) is considered for a matrix Uy, satisfying unitarity constraint
; the Sjg.j1 is a Hermitian tensor obtained from the data sample, in an orthogonal
basis it takes the form ; for Sk, = 0,50k Eq. becomes . A complex unitary
matrix U, of dimension n is determined by n? real parameters (a complex Hermitian matrix

of full rank is determined by n? real parameters, a unitary matrix is obtained from it’s complex

41y (132) the

- | denote absolute value, not an operator. Here ‘ (Vs [U | V) =
(gasny | U bewr) (s |U | bea) i [0 .. 1] bounded value having the meaning of conditional probability

and determining how well the 1, +1) is recovered from v,) using 1)

https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)

42

exponent, similar to (130])). Were the constraint ((135)) be of scalar type Z?,E}a:o Uil =n

or, even better, the squared Frobenius norm/ of U:

n—1
> Ul =n (137)

5,k=0

which is the sum of all diagonal components, then Eq. can be considered as a
quadratic form with a vector of n? dimension obtained from matrix elements of operator Ujy,
row by row; the is a regular Euclidean scalar product for this vector, the Frobenius
inner product. Remarkably, that solution with the constraint instead of can
be obtained as a regular eigenproblem solution, however it does not produce the matrix Uy,
that is exactly unitary, nevertheless it may be a good starting point for a numerical method.

For exact unitary constraint optimization problem can be approached using Lagrange
multipliers technique where it takes the form , similar to an eigenvalue problem:

SU =\ (138)

but S is now a Hermitian tensor, “eigenvector” { is a unitary matrix, and “eigenvalues”
A is a Hermitian matrix ; functional extremal value is equal to A\ spur.

While a complete mathematical structure of this problem requires a separate study, it’s
portion required for a dynamic system identification: find a unitary matrix {/;;, maximizing
, can be readily solved numerically, see Appendix @ below.

When performing realtime analysis of data at any given moment [only the data of
1...[interval is available, not 1... M as required in and for calculation of Gy,
and S . In this case the G and Sy, should be calculated on 1...[sample, thus all
the calculations start having “sliding” G, and Sji.;/, .g. every new observation coming add
one more wx;xy term to G; a weight such as w(t) = exp (—(tpow — t)/7) allows recurrently
adjust the sum without re-calculating aggregates of previously observed sample. An example
of sliding G technique can be found in [9]. Moreover, in this case a “secondary” Hilbert
space can be constructed from some calculated at t = [value (such as the maximal eigenvalue
of operator I = dV/dt, the number of shares traded per unit time; a highly singular function
[8]) treating it as it were plain observed at t = [with the weight w"). For marker dynamics
this allows us to separate price changes that occurred on rising and falling execution flow
I = dV/dt. As only the former ones have predictive power, this allows us to construct a

“scalp” price: the sum of price changes occurred on rising execution rate.

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
https://en.wikipedia.org/wiki/Frobenius_inner_product
https://en.wikipedia.org/wiki/Frobenius_inner_product

43

In this section a new approach to dynamic system identification is developed. Instead of
considering a trajectory in phase space we convert a sequence of phase space observations
x® to a sequence of probability states 1) (x) (wavefunctions) localized at x"). Then system
dynamics is considered as a sequence of unitary transformations of the wavefunction. The
approach allows us to write the dynamics of these probability states; quality criterion (134])
estimates the number of correctly predicted outcomes. The probability of the next outcome

x(*1) being equal y given currently observed outcome equal x1) is:

P = y)| = [ty |0 | (139)

<D

The approach can be readily generalized to density matrix states, however a unitary form
of the dynamics has limitations in data analysis (e.g. in application to the data of
Markov chain type), this requires to approach the problem of state decoherence, see Appendix
M below. In this section we solved the problem of determining evolution operator Uj; from
a “sequence of wavefunctions” 1, (x) that are obtained from a sequence of observation
points in phase space x(). The key element for this success is the form of quality
criteria. This criterion satisfies wavefunction unobservability, a fundamental characteristic
of a quantum system: whereas Schrodinger equations is written for a wavefunction, the
wavefunction itself is not observable, only it’s absolute square can be measured. The ((132])
is invariant if all [= 1... M observations has the wavefunction defined within an arbitrary
phase shifts: .0 — exp(ip®),0; similarly two time—evolution operators ||| produce
identical dynamics if they transform a wavefunction within a phase shift. One may ask a
question: given a sequence of quantum mechanical wavefunctions, can this approach identify a
quantum system? The answer is definitely yes if only time—evolution operator is required
(Appendix D] optimization problem). If the Hamiltonian, not just time evolution operator, is
required then the formal answer is yes, but practically this requires taking a logarithm of a
unitary matrix, what is a complex problem required a separate consideration[29].

Another important topic to discuss is allowed transformation of a [¢) state. Whereas for
quantum systems only unitary transformation determined by a unitary matrix U,
is allowed, in data analysis it can possibly be of a non—unitary form. We see “non—unitary
dynamics” as an important direction of further research, see Appendix [E] discussing unitary
transformations following by a projection and Appendix [[| discussing lquantum channel type

of transformation . A trivial example of non—unitary dynamics is the situation when

https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Quantum_channel#Pure_channel

44

the [4 1-th state depends non only on the [-th state as in (125)) and ((126) but on a finite

sequence (of the length J) of previous observations:

n—1 J-1
I+1 -t
x§»+) = jka:,(c) (140)
k=0 t=0
|¢x(z+1)> = U|bsxw, Va1, - - . ,¢x(z_J+1)> (141)

In this case “classical” problem ({140 can be reduced to least squares problem (129 with
matrix M of a more general form, and “quantum” problem (141]) can be viewed with operator
U transforming a vector of J x n dimension to a vector of dimension n and satisfying “partial

unitarity” constraint (G13|) with these dimensions.

VII. CONCLUSION

In this work the support weight of Radon-Nikodym form ¢?(x), with (x) function to be
a linear function on x;, components was considered and applied to interpolation, classification,
and optimal clustering problems. The most remarkable feature of the Radon-Nikodym
approach is that input attributes x; are used not for constructing the f, but for constructing
a probability density (support weight) 1)?(x), which is then used for evaluation of the value
f = (f(x)¥?) / (4?) or conditional probability. This way we can avoid using a norm in
f—space, what greatly increases practical applicability of the approach.

A distinguishing feature of the developed approach is knowledge of the predictor’s invariant
group. Given dataset, what x basis transform does not change the solution? Typically in
ML (neural networks, decision tree, SVM, etc.) the invariance is either completely unknown
or poorly understood. The invariance is known for linear regression (and a few other linear
models), but linear regression has an unsatisfactory knowledge representation. Developed in
this paper Radon—Nikodym approach has 1) known invariant group (non—degenerated linear

transform of x components) and 2) advanced knowledge representation in the form of matrix

spectrum; even an answer of the [first order logic| type becomes feasible. The knowledge is

extracted by applying projection operators, thus completely avoiding using a norm in the
solution to interpolation ({13|), classification ([18)), and optimal clustering problems.
The developed approach, while being mostly completed for the case of a scalar class

label f, has a number of unsolved problems in case of a vector class label f. As the most

45

intriguing one we see the question: whether the optimal clustering solution of Section [[I]]
can be generalized to vector—valued class label approach of Section : the solutions
and have no basis dimension reduction feature, and the conditional probability solution
currently always sets clusters number to be equal to the dimension of vector class label.
For our first try to construct a subspace with an arbitrary number of D < n clusters see

optimization problem (G6)) below.

Appendix A: Regularization Example

An input vector x = (zg,T1,..., Tk, ..., Tp_q)? from may have redundant data, often
highly redundant. An example of a redundant data is the situation when two attribute
components are equal e.g. xy = x4y for all [. In this case the Gj; = (z; | x) matrix becomes
degenerated and the generalized eigenvalue problem cannot be solved directly, thus a
regularization is required. A regularization process consists in selection of such xj linear
combinations that remove the redundancy, mathematically the problem is equivalent to
finding the rank of a symmetric matrix.

All the theory of this paper is invariant with respect to any non-degenerated linear
transform of x components. For this reason we may consider the vector X with equal to zero
average, as this transform improves the numerical stability of (z; | z)) calculation. Obtain

(7| 7)) matrix (it is plain covariance matrix):

X = (.CEO —fo,ﬂfl —Tl,...,xk —fk,...,.iljn_l _En—l) (Al)
— _ taw)
Gk = (T, | T) (A3)
o = 1 Gk (A4)

(1)
For each k =0...n — 1 consider standard deviation o of xj, select the set S of indexes k,
that have standard deviation greater that a given ¢, determined by computer’s numerical
precision. Then construct the matrix éjk with the indexes in the set obtained: j, k € S. The
new matrix éjk is obtained by removing x; components that are equal to a constant, but it
still can be degenerated.

We need to regularize the problem by removing the redundancy. The criteria is like a

https://en.wikipedia.org/wiki/Rank_(linear_algebra)
https://en.wikipedia.org/wiki/Covariance_matrix

46

condition number|in a linear system problem, but because we deploy generalized eigenproblem
anyway, we can do it straightforward. Consider generalized eigenproblem (A7) with the right

hand side matrix equals to diagonal components of éjk.

J, k€S (A5)
é;?k e (AG)
Z G, kak =\l Z é;lka,[j] (A7)
kes kes
S% :a set of i, such that:\" > ¢ (A8)
Xoa=>_ o (@, —7) (A9)
kes

By construction of the S set the right hand side diagonal matrix éfk has only positive
terms, that are not small, hence the has a unique solution. The eigenvalues MY of the
problem have a meaning of a “normalized standard deviation”. Select set: the
indexes 7, such that the A is greater than a given ¢, determined by computer’s numerical
precision. Obtained S¢ set determines regularized basis (A9)). The matrix (X;|X,,) with
i,m € S%is non-degenerated. After the constant component X = 1 is added to the basis
the X = (... X;...,1) can be used in (1)) instead of the x = (... xy...). This algorithm
is implemented in com/polytechnik/utils/DataReadObservationVectorXF.java:getDa
taRegularized_EV().

Alternatively to (Ag]), a regularization can be performed without solving the eigenproblem
(A7), using an approach similar to Gaussian elimination with pivoting in a linear system
problem. This algorithm is implemented in com/polytechnik/utils/DataReadObservati
onVectorXF. java:getDataRegularized _LIN(). Which regularization method to be used
depends on the parameter --regularization_method= supplied to com/polytechnik/uti
1s/RN. java driver, see Appendix |B| below.

A singular value decomposition is often used as a regularization method. However, for a
symmetric matrix considered in this appendix, without pseudoinverse required, a regular-
ization method based on symmetric eigenproblem (A7) provides the same result with lower
computational complexity. Moreover, even a “Gaussian elimination with pivoting” type of
regularization provides the result of about the same quality.

Regardless the regularization details, for a given input data in the basis x;, different

regularization methods produce the same number of X components, formed vector space

https://en.wikipedia.org/wiki/Condition_number#Matrices
https://en.wikipedia.org/wiki/Pivot_element#Partial_and_complete_pivoting
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://en.wikipedia.org/wiki/Vector_space

47

is the same regardless the regularization used; the dimension of it is the rank of (z; | zy)
matrix. Important, that because the developed theory is “gauge invariant” relatively , all
inference results are identical regardless regularization method used, see com/polytechnik/u
tils/TestRN. java:testRegularizations() unit test for a demonstration. It is important

to stress that:
e No any information on f have been used in the regularization of G, = (z; | x).

e All “standard deviation“ type of thresholds were compared with a given ¢, determined
by the computer’s numerical precision. No “standard deviation® is used in solving the

inference problem itself.

The result of this appendix is a new basis X = (... X;...,1) of 1 +dim S¢ elements ((A9) and
const, the rank of (x;|zy)) that now can be used in instead of original x = (... x...).

Obtained basis provides a non—degenerated Gram matrix (X; | X,,) (7).

Appendix B: RN Software Usage Description

The provided software is written in java. The source code files of interest are com/polytec
hnik/utils/{RN,RadonNikodymSpectralModel ,DataReadObservationVectorXF,Attrib
utesProductsMultiIndexed}. java. The class DataReadObservationVectorXF reads input
data from a comma-separated file and stores the observations. The methods getDataRe
gularized_EV() or getDataRegularized_LIN() perform Appendix [A]data regularization
and return an object of DataRegularized type that contains the matrices (X;|Xj) and
(X, | f|Xk) in the regularized basis X. The method getRadonNikodymSpectralModel() of
this object creates Radon—Nikodym spectral model of Section [[I} it returns an object of Rado
nNikodymSpectralModel class. The method getRNatXoriginal (double [] xorig) of this
object evaluates an observation at a xorig in the original basis and returns an object
of RadonNikodymSpectralModel.RNPointEvaluation type; this object has the methods ge
tRN(Q), getRNW(), and getPsikAtX () that, for a xorig given, calculate the , , and
Yl (xorig) components. An object of RadonNikodymSpectralModel type has a method red
uceBasisSize(int D) that performs optimal clustering of Section [[II] and returns RadonNi
kodymSpectralModel object with the basis chosen as the optimal dimension D clusterization

of f. The documentation produced by javadoc is bundled with the provided software.

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://docs.oracle.com/en/java/javase/13/javadoc/javadoc.html#GUID-7A344353-3BBF-45C4-8B28-15025DDCC643
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip

48

The com/polytechnik/utils/RN. java is a driver to be called from a command line. The

driver’s arguments are:

e —-data_file_to_build_model_from= The input file name to read data and build
a Radon—Nikodym model from it. The file is comma-separated, if the first line starts
with the |# — it is considered to be the column names, otherwise the column names are
created from their indexes. Empty lines and the lines starting with the | are considered

comments. All non—comment lines must have identical number of columns.

e --data_file_evaluation= The input files (multiple options with multiple files possi-

ble) to evaluate the model built. The same format.

e --data_cols= The description of the input files data columns. The format is --data_c
ols=numcols:xstart,xend:f:w:1label, where numcols is the total number of columns
in the input file, xstart,xend are the columns to be used for zy, e.g. the columns (
xstart,xstart+1,...,xend-1,xend) are used as the (zg,x1,..., 2k, ..., Ty—1) in (1)
input. The £ and w are the columns for class label f and weight w, if weight column
index w is set to negative then all weights w are set to 1. The label is column index of
observation identification string (uniquely identifies a data row in the input data file,
a typical identification is: row number 12345 = X y image pixel id 132x15, customer
id johnsmith1990, etc.), it is copied without modification (or set to 77 if label is
negative) from input data file to the first column of output file. All column identifiers
are integers, base 0 column index. For example input file dataexamples/runge_fun
ction.csv of Appendix [C|has 9 columns, the x) are in the first 7 columns, then f
and w columns follow, the z; is used as observation string label of input file row. This

corresponds to --data_co0ls=9:0,6:7:8:1

e --clusters_number= The value of D. If presents Section [[I]] optimal clustering is
performed with this D and the output is of this dimension. Otherwise all n input
components are used to construct the 1 (x) from @ and the dimension of the output

is the rank of (x; | zx) matrix.

e --regularization_method= Data regularization method to be used, possible values:

NONE, EV (default), and LIN, see Appendix [A|for algorithms description.

49

e --max_multiindex= The value of D. If presents then N (n, D) “product” attributes
Xkoxki xFntare constructed in regularized basis (using recursive algorithm)
with the multi-index k lower or equal than the D, these “product” attributes are then
used instead of n original attributes zy, see Section [V| above. For a large enough D
the problem may become numerically unstable. For A'(n, D) > 500 used eigenvalue
routines may be very slowﬁ]. The option is intended to be deployed together with --cl

usters_number= with the goal to obtain a model of a “first order logic” type.

e --flag print_verbosity= By default is 2. Set --flag_print_verbosity=1 to sup-
press the output of ! (X(Z)) values or set ——flag print_ verbosity=3 to output the
projections <xk ‘ w[’]> in expansion x,(f = <9c ‘ w[’]> w[’]). Useful for obtaining
LRR Xk matrix 1-) from printed ! (X) values.

o --flag replace_f_by_christoffel_function= By default is false. If set to true
then, after regularization of the Appendix |A] the Christoffel function is calculated
for every observation and used instead of f; datafile read values of f are discarded.
Useful for unsupervised learning. While mathematical result does not depend on f, the
specific basis used may affect numerical stability because of initial regularization; in
this situation a good heuristic is to use observation number as the f, this removes class

label degeneracy and makes the basis more stable.

o --flag assume_f_is_diagonal_in_christoffel_function_basis= By default is

false. If set to true then f is considered to be diagonal in ‘w%}> basis . Sampled

matrix (z; | f | zg) is converted to < Ej{]

f ‘ w[k]>, all off-diagonal elements are removed,
then the matrix diagonal in ‘@ZJ%> basis is converted back to x; basis. This can be viewed

n—1 . . .
as [14] type of transform: || f|| =~ > wg> < E %> < EZ(]
i=0

option to vector class label classification problem of Section [VI A]

. This is an experimental

e --output_files_prefix= If set all output files are prefixed by this string. A typical

usage is to save output to some directory, such as --output_files_prefix=/tmp/.

The program reads the data, builds Radon-Nikodym model from --data_file_to_

build_model_from= then evaluates it on itself and on all --data_file_evaluation=

15 For eigenproblem routines one can use JNI interface com/polytechnik/lapack/Eigenvalues_JNI_lapac

ke. java to LAPACK instead of java code, see com/polytechnik/utils/EVSolver. java for selection.

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
http://www.netlib.org/lapack/

20

files. The output file has the same filename with the .RN.csv extension appended. In the
comments section it prints data statistics (filename, observations number, and the Lebesgue
quadrature) Column data description is presented in the column header. Every output
row corresponds to an input file row. An output row has a number of columns. The first
column is observation string label, then n + 2 columns follow: observation original input
attributes xj, observation class label f, and observation weight w. Calculated data is put
into additional columns of the same row. The columns are: £_RN , f_LS , Christoffe
1 , f_RNW Coverage , and, unless --flag_print_verbosity=1, the 1[(x®) @
D components. Here the D is either the rank of (x; | z;) matrix, or the parameter --cluste

rs_number= if specified. For all output files the following relations are held for the columns:

D—1
S fll [wm(xm)]?
£ RN = = (B1)
> [l (x0)]?
1=0
Christoffel’) = 5T ! (B2)
> [l (x0)]?
=0
D—-1
S flilwlil [yl (Xa))f
£ RN = = (B3)
S wlil [yl (X(1)>]2
bt
> wlil [yl (Xm)f
Coverage!!) = i:joj_l (B4)
> [l (x0)]?
=0

For the file the model is built from (learning data) a few additional relations are held

(t,m=0...D—1):

w™ = [i ¢[m](x(l))w(l)] (B5)

fimg, = iwi] (xD)lm(x D) OO (B6)
l;
i = Z P (xD)gplm (D) (BT)

=1

Obtained D states ¥™(x) (for D < rankof (z; | z;) these are the w[Gm] (x) from , wlm =

51

wgn ! from , and fl" =)\[CT]) provide the optimal clustering of class label f among all

D—point discrete measures.

1. Software Installation And Testing

e Install java 19 or later.
e Download the source code code_polynomials_quadratures.zip from [30].

e Decompress and recompile the program. Run a selftest.

unzip code_polynomials_quadratures.zip
javac -g com/polytechnik/*/*java

java com/polytechnik/utils/TestRN
e Run the program with bundled deterministic data file (Runge function (C2])).

java com/polytechnik/utils/RN --data_cols=9:0,6:7:8:1 \
--data_file_to_build_model_from=dataexamples/runge_function.csv \

--data_file_evaluation=dataexamples/runge_function.csv

Here, for usage demonstration, we evaluate the model twice. The file runge_function.
csv.RN.csv will be created (the same file is written twice, because the built model
is then test—evaluated on the same input dataexamples/runge_function.csv). See

Appendix [C] below for interpolation results obtained from the output.

e Run the program with the constructed ! (x®) @ as input. They are in the columns

with the index 15 to 21 of the file runge_function.csv.RN.csv (22 columns total).

java com/polytechnik/utils/RN --data_cols=22:15,21:8:9:0 \

--data_file_to_build_model_from=runge_function.csv.RN.csv

The file runge_function.csv.RN.csv.RN.csv will be created. Because the input x
are now selected as ¥ (x), with this input, the Radon-Nikodym approach of Section
produce exactly the input zj as the result 1¥(x), possibly with +1 factor. There

https://www.oracle.com/java/technologies/javase/jdk19-archive-downloads.html
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip

52

are 7 nodes/weights of the Lebesgue quadrature for input data file dataexamples

/runge_function.csv:

£ = 0.042293402383175485 w!® = 0.2453611587632685

I =0.043621284685679745 w!l =0

f& = 0.06535351052058812 w = 0.5222926033815862

fB = 0.07864169617926474 w® =0 (B8)
FH = 0.16469273913045052 w¥ = 0.6710343400073819

fE = 0.28493524789476266 w'® =0

fO = 0.7025238747369117 w!® = 0.5613118978475747

Some of the Lebesgue weights are 0. This may happen with (15b]) definition. The
weights sum is equal to total measure, for (C3)) it is equal to 2.

The dimension of the Lebesgue quadrature is n, it is the number of input attributes x.
When we start to increase the n, the Lebesgue quadrature starts to partition the x
space on smaller and smaller elements. The type of answer will eventually start
to exhibit data overfitting effect. Radon—Nikodym is much less prone to it than a
direct expansion of f in xy, a type of answers, but for a large enough n even the
(f?)] (4?) type of answer is starting to overfit the data. We need to select D < n
linear combinations of xj that optimally separate the f. Optimal clustering is described

in Section [[TI Run the program

java com/polytechnik/utils/RN --data_cols=9:0,6:7:8:1 \
--data_file_to_build_model_from=dataexamples/runge_function.csv \

--clusters_number=4

Running with --clusters_number equals to 5, 6, or 7 may fail to construct a Gaussian
quadrature as the number of the measure support points should be greater
or equal than the dimension of Gaussian quadrature built on this measure. For --c
lusters_number=4 the obtained quadrature gives exactly the nodes with zero

weights removed: the optimal approximation of the measure with four support points

93

by a four points discrete measure is the measure itself.

£ = 0.04229340238319568 w!? = 0.24536115876382128
#01 = 0.065353510520606 w!! = 0.5222926033810373
£ = 0.1646927391304516 w'® = 0.6710343400073585
£B = 0.7025238747369116 w!¥ = 0.5613118978475746

A more interesting case is to set --clusters_number=3

java com/polytechnik/utils/RN --data_cols=9:0,6:7:8:1 \
--data_file_to_build_model_from=dataexamples/runge_function.csv \

--clusters_number=3

O = 0.0553329558917533 wl = 0.737454390130916
U = 0.16285402990411255 w!! = 0.701183615381193 (B10)
2 =0.7025131758981266 w!? = 0.5613619944877021

The is the optimal approximation of the measure with 4 support points by a

3—point discrete distribution, this is a typical application of Gaussian quadrature. The
n—point Gaussian quadrature requires 0. ..2n — 1 distribution moments for calculation,
the measure must have at least n support points. The distribution moments of f can
be obtained using a different method, for example using the sample sum directly. A
remarkable feature of the Lebesgue integral measure is that obtained eigenvectors
can be converted from f to x space. The conversion formula is . The wgﬂ] (x),
m =0...D — 1 create the weights, that optimally separate f in terms of (f?) / (/%)

separation. This is a typical setup of the technique we developed:

— For a large number n of input attributes create the Lebesgue integral quadrature
().

— Select the number of clusters D < n. Using Lebesgue measure build Gaussian
quadrature in f space. It provides the optimal clustering of the dimension D.

— Convert obtained results from f to x space using , obtain the wgﬂ } (x) classifiers.

— One can also entertain a first order logic —like model using the attributes of Section

AY!

54

fix S 8 8 W S—
Proj[o](x)
I—‘roj[”(x) | | |
Proj”\x)

-1 -08 -06 -04 -02 O 02 04 06 08 1

FIG. 3. Runge function (C2)) data (C1)) clustered to D = 3. Corresponds to (B10) data. The
projections to w[g:n} (x), m=0...D — 1 are presented.

e The three function 1/)[Gm] (x), corresponding to (B10) nodes, are presented in Fig. 3| The
Proj((x) (this is squared and normalized ¢gn) (x) as) One can clearly see that
the states @Z)gn) (x) are localized exactly near the fI™ nodes . This technique is a
much more powerful one, than, say, support—vector machine linear separation. In the
Radon—Nikodym approach the separation weights are the [gn] (x)] i that are obtained
without an introduction of a norm with subsequent minimization the difference between
the result and a prediction with respect to the norm. The separation by the functions

gn) (x) is optimal among all D dimensional separations of [1)(x)]* type. The cost is
that the solution is now two-step[3]. On the first step the Lebesgue quadrature is built
and the measure is obtained. On the second step the Gaussian quadrature is
built on this measure; the result is then converted to x space . The [wg"’) (x)} i are

the optimal separation weights.

https://en.wikipedia.org/wiki/Support-vector_machine#Definition

959
2. Nominal Attributes Example

In ML applications the attributes can be nominal. They may be of orderable (low,
medium, high) or unorderable (apple, orange, tomato) type. A nominal attribute taking two
values can be converted to {0, 1} binary attribute. Orderable attributes (low, medium, high)
can be converted to {1,2,3}, or, say, {1,2, 10} this depends on the problem. For unorderable
attributes the conversion is more difficult, however in some situations it is straightforward: a
“country” attribute taking the value: “country name from a list of eight countries”, can be
converted to three binary attributes.

The f, predicted by a ML system, is called class label. It is often a binary attribute. This
leads to the nodes of the Lebesgue quadrature to be grouped near two values of the class
label. We have tested a number of datasets from [UC Irvine Machine Learning Repository,
Weka datasets, and other sources. For direct comparison with the existing software such
as C5.0 or Weka 3: Machine Learning Software in Javal a care should be taken of nominal
attributes conversion and class label representation. We are going to discuss the details in a
separate publication, here we present only qualitative aspects of Radon—Nikodym approach
application to ML problem with the binary class label. Take breast-cancer-wisconsin/ database,
the breast-cancer-wisconsin.data dataset[31] is of 699 records, we removed 16 records
with unknown (“7”) attributes and split the dataset as 500:183 for training:testing. Obtained

files are

wCc breast-cancer-wisconsin_S.names \
breast-cancer-wisconsin_S.data \
breast-cancer-wisconsin_S.test
139 938 6234 breast-cancer-wisconsin_S.names
500 500 14266 breast-cancer-wisconsin_S.data
183 183 5182 breast-cancer-wisconsin_S.test

822 1621 25682 total

The data has nominal class label 2:Benign, 4:Malignant. (5.0, when run on this dataset

produces a very good classifier:

c5.0 -f mldata/breast-cancer-wisconsin_S

Evaluation on training data (500 cases):

https://archive.ics.uci.edu/ml/
https://www.cs.waikato.ac.nz/ml/weka/datasets.html
https://www.rulequest.com/see5-unix.html
https://www.cs.waikato.ac.nz/ml/weka/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
https://www.rulequest.com/see5-unix.html

26

(a) (b) <-classified as

293 10 (a): class 2
3 194 (b): class 4
Evaluation on test data (183 cases):

(a) (b) <-classified as

139 2 (a): class 2
4 38 (b): class 4
Now let us run the RN program to obtain the Lebesgue quadrature
java com/polytechnik/utils/RN --data_cols=11:1,9:10:-1:0 \

--data_file_to_build_model_from=mldata/breast-cancer-wisconsin_S.data \
--data_file_evaluation=mldata/breast-cancer-wisconsin_S.test
The number of the nodes is 10, it is equal to the number of input attributes zy.
O = 2.090917684500027 w!” = 308.30166232236996
I =3.198032991602546 w!'! = 5.307371268658678
12 = 3.344418191526764 w!? = 0.0189894231470068
Bl = 3.5619620739712725 wl! = 0.3341989402039986
= 3.6221628167395497 w!¥ = 0.2549558854552573 -
1Pl = 3.7509806530824346 wl = 1.2339290581894928 Py
19 = 3.7939096228600513 w!® = 5.146789024450902
fIM = 3.8081118648848045 w!™ = 0.16082536035874645
1B = 3.8799894340830727 w!® = 50.25004460556501

1 = 3.9574710127612613 w!”) = 128.99123411160124
Then we calculate a joint distribution of realization/prediction for fzy and fryw. The
continuous to nominal conversion for fry and fryw was performed by comparing predicted
value with the average. Evaluation without clustering on training data (500 cases),
and on test data (183 cases) is:

L 183 120 o 294 9
Distribution(fry) : Distribution(fryw) : (B12)

0 197 13 184

o7

o 91 50 - 140 1
Distribution(fry) : Distribution(fryw) : (B13)

0 42 0 42

We see that fry that equally treats the states with low and high prior probability often gives
spurious misclassifications. In the same time the fryy that uses the projections adjusted to
prior probability gives a superior prediction.

When we cluster to D = 2:

java com/polytechnik/utils/RN --data_cols=11:1,9:10:-1:0 \
--data_file_to_build_model_from=mldata/breast-cancer-wisconsin_S.data \
--data_file_evaluation=mldata/breast-cancer-wisconsin_S.test \

--clusters_number=2

FIOT = 2.09463398432689 w!”! = 310.52326905818705 (B14)
1
I = 3.924320437715293 w!!l = 189.47673094181317

The evaluation with D = 2 clustering on training data (B15|) (500 cases) and on test data

(B16)) (183 cases) gives joint distribution of realization/prediction for fry and fryw:

o 202 11 S 205 8

Distribution(fry) : Distribution(fryw) : (B15)
7 190 13 184

o 141 0 o 141 0

Distribution(fry) : Distribution(fryw) : (B16)
0 42 1 41

Now, after the states with low prior probabilities (17a)) are removed, both fry and fryvw
exhibit a good classification. For D = 3, however, we still get a type of (B12)) and (B13)
behavior of spurious misclassifications by fry and no such behavior in fryw .

This makes us to conclude that the fryw answer is the superior answer for predicting a

probabilistic f. The posterior distribution (17b)) is Radon—Nikodym alternative to Bayes.

Appendix C: Application With A Different Definition Of The Probability

Besides a typical ML classification problem the can be used for a number of
different tasks, e.g. it can be applied to an interpolation problem. The reason is simple: as an
input Radon—Nikodym only needs matrices Fj, and G, which are calculated from

sample, that is a file of M rows and n + 2 columns (n for z and two for f and the weight w).

o8

-1 -08 -06 -04 -02 O 02 04 06 08 1

FIG. 4. Runge function (C2)) interpolation result for n = 7. The input data was prepared ((C1))
in a way the classification problem solver from Appendix [B| to reproduce interpolation results of the

Appendix D of [13]. The fryw (x) (18) (olive), Christoffel function (blue) (14)), and the Coverage(x)
(sky) for the measure (g) = f_ll g(z)dz 1) are also calculated.

In the Appendix |B| the probabilities were obtained as an ensemble average, calculated
from the data, this is typical for a ML classification problem.

Input file can be constructed in a way that calculated averages represent a probability
of different kind, such as time average probability. Consider function interpolation problem,
the (-) now has a meaning of time-average (g) = [g(z)w(x)dz, see Section II of [13]. A one-
dimensional interpolation problem[7] can be reduced to (1) data by converting a two—columns

sequence () — fO [=1... M to:
(1,z,2%, ..., 2" HD - fO weight w® (C1)

Because the result is invariant relatively any non-degenerated basis components linear
transform any polynomials (e.g. P, (x), T,,(z), etc.) can be used instead of the z™ in (C1)).
For example: to reproduce Runge function d = 1 interpolation problem

1

1@ =195 (C2)

https://en.wikipedia.org/wiki/Ensemble_average_(statistical_mechanics)
https://en.wikipedia.org/wiki/Ergodicity
https://en.wikipedia.org/wiki/Runge%27s_phenomenon

29

dp = dx (C3)

re[-1:1]

for n = 7, the result of the Appendix D of [I3|, take x sequence with a small step
about dr = 107%, it will be about M = 1 + 2/dx total points z € [—1,—1 + dx, —1 +
2dx,...,1—2dr,1 — dz, 1] and create a comma-separated file of M rows and n + 2 columns:
Lz,2% ..., 2" f(x),w. First n columns are the x from , then f(z) from follows,
and the last column is the observation weight w = dx for all points except the dx/2 for
the edges. This file dataexamples/runge_function.csv is bundled with provided software.

Run the program

java com/polytechnik/utils/RN --data_cols=9:0,6:7:8:1 \

--data_file_to_build_model_from=dataexamples/runge_function.csv

The output file runge_function.csv.RN.csv has a few more columns, four of them are: the
frn from (13)), the Christoffel function (14)), the fryw from (18), and the Coverage(x) (19).
The result is presented in Fig. . With the data prepared as the Christoffel-like function
is the regular Christoffel function for the measure (C3|). The fryw(z) is also presented
in Fig. 4. The fryw(x), the same as the fry(x), is a weighted superposition of
eigenvalues, but the weights are the posterior weights , that are the product of prior
weights by the ‘w[i}> projections: wl?Projl’. For Runge function in n = 7 case only four prior
weights are non—zero, thus in Fig. 4| the fryw (z) is a superposition of four eigenvalues.
As we discussed above in Section [[TA] the fry(z) should be used for a deterministic functions,
and the fryw(x) is a solution to classification problem for a probabilistic f; it uses the
posterior weights . Same result can be also obtained using multi-index multiplications
of Section [V] take a single x attribute and multiply it by itself 6 times. The quadrature will

be identical.

java com/polytechnik/utils/RN --data_cols=9:0,1:7:8:1 \
--max_multiindex=6 \

--data_file_to_build_model_from=dataexamples/runge_function.csv

Radon—Nikodym interpolation [2I] of an image (d = 2 problem), can be performed in

a similar way. Create a file of M = d, x d, rows and n = n, X n, + 2 columns. Each

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip

60

row corresponds to a single pixel. The last two columns are: pixel gray intensity and the
weight (equals to 1). The first n = n, x n, columns are a function of pixel coordinate

(¢ € 0...dy, — 1,y € 0...d, — 1) as T}, (2" — l)ij(Z#— 1), jo = 0...m, — 1,

de—1

Jy =0...n, — 1. The T,,(x) is Chebyshev polynomial Ty = 1; T} = z;. .., they are chosen for
numerical stability. In [2I] the multi-index j = (j,, j,) has and constraints. After
running the interpolated fry and Christoffel function columns are added to
output file, the frn(z;,y;) provides required interpolation. While the Gaussian quadrature
cannot be obtained for d > 2, the Christoffel function can be easily calculated not only
in d > 2 case, but also for an arbitrary x space with a measure (-).

The input file can be also constructed for x vector to represent a random variable. For
example a distribution regression problem where a “bag” of observations is mapped to a
single outcome f can be approached|24] by using the moments of the distribution of a single
“observations bag” as an input x. For every “bag”, calculate it’s distribution moments (one
can use any choice of polynomials), then put these moments as x (now the z; components
are the moments of the distribution of a bag’s instance), and use the f as the outcome.

Similarly, temporal dependencies can be converted to type of data. Assume f has
a f(x(t)) form. Then each z(t) can be converted to the moments (Qs(xx)),, s = 0...ny,

relatively some time-averaging (-), measure, such as in the Section II of [I3]. Then the

t
n x n, input attributes (Qs(zx)),, k=0...n =1;5s =0...n; — 1, are “mixed” moments: time
averaged (-), first and then ensemble averaged in . They can be used in data input.
Note, that “combined” averaging in (7)) as ((Qs(z;(t)) | Qs (zx(t))),) produces different result
than “mixed” one: ((Qs(z;(t))), | (Qy (zx(t))),). Numerical experiments show that (Q,(zy)),
attributes typically show a better result than using (xy(t), zx(t — 9), xx(t — 26),...) as a
“vectorish” xj. With temporal (and spatial) attributes the dimension of input can grow
very fast. In such a situation Section [[I] optimal clustering is of critical importance: this way
we can select only a few combinations of input attributes, that optimally separate the f.
The strength of the Radon—Nikodym approach is that it requires only two matrices
as an input, and the average (-), used to calculate the Fj;, and G, can be chosen with a
different definition of the probability. The input file (--data_file_to_build_model_fro
m= parameter) can be prepared in a form to represent any probability space in any basis

of any dimension. One row corresponds to a single realization, all rows correspond to the

entire sample. After input datafile is prepared for the chosen probability space — the features

61

introduced in this paper fry(x), K(x), fryw(x), Coverage(x), along with wgn] (x) clusters
are calculated by the provided software.

Appendix D: A Numerical Solution to Quadratic Form Maximization Problem in

Unitary Matrix Space

The constrained optimization problem (132

M

2
D] (i [U) | > max (D1)
=1

to find a unitary operator ||| most accurately transforming |, 1)) to |tgarn) is reduced to:

n—1
F = Z L{ijjk;j/k/Ll;‘,k, 7 max (DQ)
7,k,3",k'=0
n—1
k'=0

Without loss of generality we will be considering the problem in basis G5 = O to
simplify constraint. This is a problem of optimization of scalar function (quadratic form
with a Hermitian tensor Sj, s from) on the unitary group U(n). It is equivalent to a
problem of maximizing a quadratic form with a Hermitian matrix given multiple constraints
of quadratic form as well. The constraint may be of more general “partial unitarity
D <n” form (G10)); a slight algorithm modification is then required, see Appendix below.
A regular eigenvalue problem has a single quadratic form constraint, the problem in question
has multiple. We have already approached a problem with an extra quadratic form constraint

in the Appendix F of [9], the problem in question is of this type. Consider a “simplified
constraint” ({137))

n—1
> Uplhy =n (D4)

5,k=0
as a “partial” constraint for which optimization problem (D2)) can be readily converted to
an eigenvalue problem to be directly solved. The idea is then to adjust obtained solution to
satisfy full unitary constraints and calculate new values for Lagrange multipliers. Performing
several iterations the process will converge to optimization problem solution with the

required constraints (D3]).

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://en.wikipedia.org/wiki/Unitary_group

62

Consider Lagrange multipliers A;;, to optimize (D2 with the constraints (D3]

n—1 n—1
Z ujksjk J’k’u i+ Z)‘Jk [jk — Zujk’ukk/

J,k,3",k'=0 7,k=0 k'=0

7 max (D5)

and variate it over all U, components. There are 2n? real number coefficients defining
Uji, = aji, + 1bji, only n? of them are independent for a unitary matrix. One more coefficient
is dropped as a common phase, so (D2|) optimization with the constraints is equivalent
to an unconstrained optimization problem over n? — 1 independent real parameters.

It is typically more convenient to variate over U, and U}, rather than over aj; and

b;i, then take care of the constraints by adjusting Lagrange multlpliers Aji- The variations

Z Ujirr Sk ipg Z/\J pUirq (D6a)

j k=
Z Spq]/k/u % Z)\p]/z/{* (D6b)
gl k=

are consistent only when \j;; is a Hermitian matrix
)‘jk = ;;j (D7>

From also immediately follows: the functional (D2]) extremal value is equal to the spur
of)\jk:

n—1
Fem =3 (D8)

An algorithm finding extremal (D2)) is a generalization of the one from the Appendix F of

[9] to multiple constraints:

1. Take initial A;; and solve optimization with partial constraint . Solution
method — an eigenvalue problem of n? dimension in a vector space formed by writing
all Uj; matrix elements in a vector, row by row. The result is: F and Uj; matrix
reconstructed back from the eigenvector corresponding to maximal eigenvalue, row by

ToOw.

2. Obtained from this solution matrix I}, may not be unitary as the constraint (D4]) is a

subset of the full one (D3]). Expand U}, in SVD
n—1

U= UypZiwViy (D9)

Jk'=0

https://en.wikipedia.org/wiki/Singular_value_decomposition

63

n—1
Z/[jk = Z Ujj’vﬂk (DlO)
3'=0

and adjust all SVD numbers to 1: 3, = d,;, obtained zfijk is a unitary matrix, it is the
next iteration of the solution. This matrix (D10]) satisfies exact constraint (D3]), the
value of F has decreased (became less optimal). The Z]jk becomes a new Uj;, at this

iteration.

3. Put this new U, to , then multiply it by U}, and sum over ¢ =0...n — 1. As

the Uy is unitary A\, = ZZ;LO AUy, Obtain new values for Lagrange multipliers

Xjk and take it’s Hermitian part:

n—1
A=Y UpSimedds, (D11)
i =0
1 Y N*
i =5 [Ajk n Akj} (D12)

This Ajj is the next iteration of Lagrange multipliers. As iterations proceed — the Xjk

should converge to a Hermitian matrix by itself, without (D12 required.

4. Put this new \j; to (D5)) and repeat iteration process until converged. On the first

iteration take initial values for Lagrange multipliers as A;, = 0.

The convergence of this algorithm turned out to be poor. An effective algorithm to the problem will
be found later in [32, 33|, see com/polytechnik/kgo/KGOIterationalSubspaceLinearConstraint
s.java for an implementation. This algorithm, instead of usual iteration internal state in the form
of a pair: approximation, Lagrange multipliers: (u;, A;;), uses iteration internal state in the form
of a triple: approximation, Lagrange multipliers, homogeneous linear constraints (u;x, Aij, Ca;jk),
it is the linear constraints that provide a good convergence. The dimension of eigenvalue problem
to solve on each iteration is Dn — (D — 1)(D + 2)/2 instead of Dn of this paper algorithm in the
Appendix In addition to that, for calculation efficiency, SVD-based solution adjustment

was replaced by an eigenproblem-based solution adjustment.

Appendix E: Non—Unitary Dynamics

In the previous section an approach to numerical solution of optimization problem (D2))

with unitary constraint (D3|) has been developed. Whereas for quantum systems time evolution

64

operator Uj;, can be only unitary, in data analysis it can possibly be of a non—unitary form.
The difference arises because in data analysis wavefunction is directly “observable” (within a
phase) with the goal to construct a “time evolution operator” ((126)).

The first non—unitary matrix of this type to consider is the , having a single constraint:
the sum of squared elements is equal to n. With this matrix the problem can be easily solved.
It does not preserve the normalizing, but gives more weight to correctly matched predictions.
Regardless interpretation difficulties the dynamics with a matrix constrained the sum of
squared elements being equal n is the first one to try for the reasons of computational simplicity
(no iteration process required) and mathematical interpretation simplicity (eigenvalue problem
equivalence).

Another matrix of interest is a subspace-projection matrix. This type of constraint typically
makes Lagrange multipliers A;;, calculation problematic, however some results can be obtained
analytically, what makes a subspace-projection matrix the first one to try for an analytic
study.

In the considered above approach to dynamics the x) and x**1) were belong to the same
phase space. It is of great interest to consider a situation where |1,)) and [y a+1)) belong to
different vector spaces, e.g. to use |¢¢)) instead of |1h a+1)). In this case in operator U
is transforming [i)x) to a different vector space |i¢); this is not a true “dynamics” (I is the
same), but such a transform can be applied to a traditional ML classification problem.

While a study of a general non—unitary x — f homomorphism producing the most general
form of non—unitary dynamics is out of scope of this work (see Appendix [I| below for our
first attempt), let us consider a simple composition of a unitary transformation U: x — x
followed by projection of x on f, a “projective” form of non—unitary dynamicﬂ. Let us apply
it to a vector—to—vector classification problem of Section [VIB] Assume we have a problem

with vector—valued class label
x® — £ weight w;1=1... M (E1)

The choice of knowledge representation is the most important feature of a ML approach. For

example it can be a linear regression a ratio of two quadratic forms ([72)) or (74)), neural
p g , q)

16 Similar composition of a unitary transformation f — f followed by transform projection on x can be
constructed in exactly the same way; it looks, however, much less attractive. For isomorphic f-space and
x-space (e.g. considered in Section above) the projection retains the full basis, thus f on x and x on f
inferences produce evolution operators U in different only in time inverse. A promising direction for
future research may be to consider two unitary transformation: &* acting x — x and Uf acting f — f

then do transforms projection, see Appendix |F| below.

65

network weights, etc. An important result of this appendix is to consider not x — f mapping,
but instead to construct localized wavefunctions in x- and f- space: 1y (x) and g(f) to
study vy (x) mapping with a unitary operator ¢ in x-space following by a projection of the

transform |U|1y) on f-space outcome g (f):

Problely) = e]y 1> m(g) > Problely) (2
M M

F =Y O [U[w) P = wProb(f®]x?) -
=1 —1

Error = (1) — F el

Conditional probability is bounded by the value w(g) of full basis expansion (97)), a
situation without predictor available, this is the problem we considered in Section [VIB|above.
Because x- and f- space are different — a projection of a wavefunction from one to another
gives 1 > w(g) > (g |U | 1by)]” in . This non—unitarity, however, does not create any
practical difficulties as we separated a “unitary dynamics” in x-space and a “non—unitary
projection” to f-space. The error estimator has the meaning of misclassified observations
number, it is bounded by considered above simple projective estimator ; it is zero if f is
a subspace of x (in below consider ¥ as a direct sum of ¢ and the space orthogonal to
®, then in (E12) numerator cancels denominator).
Given the expressions for 1y (x) and for g (f):
5 0,6l

=0

%ng (f) ==

(E5)

m—1

f;—1
P Ongjk 9k
]7 =

here Gg}c_l is an inverse of ng from 1} we can write conditional probability 1) as:

2

n m—1

-1
x; —1 xf ~f;—1
J,7,p=Y 7R =
n

-1 m—1
x; —1 f;—1
-~ Oij]k; Yk A/%: Ogj/Gj/k/ [0} %
-]7 =] b =

n—1
U|zy) = Zukpxp (E7)
p=0

Prob(gly) = (E6)

The expression is very similar to 1) the difference is that instead of ijjf», we now have x

transformed by a unitary operator U as ZZ;& ukpG;fjf,. This is the key difference: instead of

66

“direct projection” we now have a unitary transformation and then a projection. In

M n—1
F = Zw(l)Prob(f(l)|x(l)) = Z Uik Sjkipglpg (ES)
=1 J:k:p,q=0

a Hermitian tensor Sji.,, is readily obtained from and with simple algebra. Thus
we reduced x — f classification problem to a dynamic problem of finding a unitary matrix
maximizing , i.e. the problem considered in Section @! This is the most general solution to
a vector class label classification problem, it finds a unitary transformation i/ , producing
the maximal coverage in (ES)).

Note, that unitary operator U coefficients uy, are defined in in a general, non—
orthogonal basis zy, a one with real symmetric Gram matrix G%, = (z;7;). This makes

unitarity constraint more verbose:
n—1
X Nal, 3
Gy = E | Gty (E9)
J,k=0

It is convenient to select orthogonal bases Wil (x), i =0...n — 1 and ®UI(f), j =0...m — 1

for input data, we already did this in Eq. (127]) above:

n—1
Ui(x) =) " B i=0..n—1 (E10)
k=0
\I]M X(l) n—1 2
ng) _ <¢xm ‘\I,m> _ - (x) 1 — Z Sz('l)
> Wbl (x®)" =
=0
n—1
Opg = (WP | W) = N BXG%. B, pg=0...n—1
4,k=0
m—1
ol(f) =Y Bffi i=0...m—1 (E11)
k=0
, BII(FO) molo o
di = (e | BIT) = = G, 1= |d
S @bl (F0)[? =0
j=0
m—1
Opg = (P | @) = Y~ BI.GE, BY, p,g=0...m—1
4,k=0

As the solution is gauge—invariant relatively we can use any basis. An orthogonal

basis choice is also beneficial for computational complexity: it takes O(n) instead of O(n?)

67

to calculate a quadratic form Z?;o ij;.‘,;_lyk in a basis in which G%, is diagonal. The

Prob(®|W) also takes a much simpler form:

2
n

S5 iy, Gre gl
k 0

Prob(f|x) = Prob(®|¥) = 2= (E12)
Z N 2ulk Z LUl
7=0 1=0
n—1m-—1
Gt = (Ul = BGYLB (E13)
§j=0 j'=0
M m—1
Sjkipg = Zw(l) Z Sg'l)Glg}r@dg)S;()l)Gi@dz(fl) (E14)
=1 rt=0

The (E14)) corresponds to (133|) when put formally s(l+1) = " G‘I@d] and swap tensor

indexes (inverse time): Epjk;pq = Skj:qp- A unitary operator U now has a matrix U;;, with regular
unitarity constraint . As the result is basis-independent it is practically convenient to use
input data x,(cl) and f;l) to calculate the matrices and , then build from them the bases
and , with possible regularization of the Appendix A} then finally use Wl (x®)
and ®UI(f1) as they were input data sample. In new bases the problem with Hermitian
tensor ([E14]) can be directly approached by (D2 m) optimization with unitary constraint m
Obtained solution is independent on bases WI¥ and ®U! specific choice (gauge-invariant).
If contributing subspace is known explicitly the solution of dimension n can be reduced to
m using clustering approach of Appendix |G| below; there is also a general D-clusters

solution corresponding to a more general “partial unitarity D < n” form of constraint (G7)).

What is the main application of the approach of this appendix? Most often — it is a
“replacement” of a regression in a problem of recovering some hidden x — f relation. Both
theories take (E1|) data as input and have zero error if f is a subspace of x. The differences

can be summarized in the table:

68

Regression

“Dynamic” theory

The Result

Optimization

Mathematical
problem
Outliers and fat

tail sensitivity

Symmetry
Y= =1

Physical world

relation

Function value f(x) (]@I); diverges

at X — 00

L? norm ‘) in f-space
Linear system solution

Very sensitive; a single “several
orders off” outlier completely in-
validates the solution

Broken: observable is linear on x;

¥ is also linear on x.

A model

Conditional probability Prob(f|x)
[12

; does not diverge at x — 0o

The number of correctly classified ob-
servations 1'

Conditional optimization |) with
unitary constraint 1}

Not sensitive; a single outlier may
invalidate only a single observation
point

Preserved: v is linear on x, but the
probability behaves as ¥?, in-
variant with: ¥y — —1x; Yy — —s¢
Most of dynamic equations in na-
ture are equivalent to a sequence

of unitary transformations (Newton,

Maxwell, Schrodinger equations)

Appendix F: A Projective Non—Unitary Dynamics

Considered in Section [E] projective dynamics consists in a unitary transformation of x

following by a projection of the transform on f. The problem can be further generalized.

Consider input data as vector spaces x and f (it is convenient to convert them to W
and @ of Egs. and) The ¥ and ® are regular vector spaces of the dimensions n
and m with a scalar product determined by positively definite (otherwise apply Appendix
regularization) matrices and calculated from the data sample (EI). In addition we
have a “cross—product” (¥ | ®) determined by the matrix G%f, (87) calculated from the

same data sample. These bases may not be full with respect to each other:

(Fla)

69

n—1
1> (wblgll)? i=0..m—1 (F1b)
=0

In Section [VIA] we considered an approach of various ¥ <+ ® projections. In Appendix [E] we
considered a composition of a unitary transformation /¥ ¥ — ¥ following by a projection

of the transform on ®. In this appendix we consider the most general case, a composition of:

1. A ¥ — U unitary transformation ", the transform is |U/*|¥).
2. A ® — ® unitary transformation ®, the transform is |U®|®).

3. Projection of these two transforms on each other: <<I> ‘ U ‘L[‘I’ ‘ \Il> using 1} “scalar
product”.

The number of “covered” observations is then:

Prob(f|x) = Prob(®[W) = [(® |u® |u™ |)|’ (F2)
M M

F = Zw(l) ‘<(I)f(l> |U¢ }U‘Ij ‘ \I/x<z>>‘2 = Zw(l)Prob(f(l)|x(l)) (F3)
=1 =1

These expressions are different from (E2)) and (E3)) in a second unitary transformation |||

The problem is then: Maximize 1} over Z/I;I,; and Z/{f;C given two unitary constraints:

n—1

5jkzzuf;u,§* jk=0...n—-1 (F4a)
i=0
m—1

S =Y USUE Jik=0...m—-1 (F4b)
=0

The optimization (F3]) with the constraints (F4)) can be approached by Appendix @ type
of algorithm, however, as {D is a quadratic form over matrix elements products Z/I;I,;L{;I; (a
“two—particle” system wavefunction basis is a product of individual particles wavefunction),
this makes the problem of dimensions product, thus makes it impractical. We expect that
a heuristic algorithm, such as alternately optimize (F3) over 2/} and U, can be a better
fit. For isomorphic f-space and x-space (n = m and all coefficients in (F1]) are equal to 1)
the dynamics is unitary and the problem itself becomes degenerated: It then depends on
a single operator |[U|| = ||UY|U®|| what is equivalent to the problem already considered in
Section [VIE] This makes us to conclude that considered in Section [E| composition: a unitary

transformation of ¥ following by a projection of the transform on @ is the most practical

approach to traditional ML classification problem x — f.

70
Appendix G: On Clustering of a Dynamic System Phase Space

In Appendix [E] a “projective” solution to dynamic system identification problem has been
developed. The solution has the form of a unitary operator ||| in x-space. Conditional
probability given possible input/output is determined by projection of x vector transform
to a vector in f-space. The dimension of x-space and f-space can be quite different. The
n is typically of hundreds, often thousands, for a system with internal state (memory), see
Appendix [H] below, it may reach millions. The m is the dimension of f, the number of values
of interest, it is always below a few dozen. From this relation naturally arises the problem
of clustering: to construct a low dimension D < n subspace of phase space x that captures
most of the information about f. For a problem with vector class label only the case D =m
is easy.

Consider some orthogonal basis WM> in x-space and expand x-localized states 1,) (x)

in this basis:

n—1
) = Z (P | 1) [l (G1)
i=0
then substitute to , obtain the number of covered observations:
M
F =30 (e [U])
=1
= 2w 3 (W o) (P U) (o U [65) (i [0FT) - (G2)
=1 i,j=0

Were we operate in terms of simple “projective paradigm” of Section [VIB] this would
correspond to ({L00]) error with spectral expansion. Now, however, the problem is that
sought basis ‘w[ﬂ> enters coverage four times, thus a direct eigenvalues expansion is no
longer possible. As the conditional probabilities are bounded by direct projection to the
entire x-space by probabilities , obtain F upper bound:

M
FPP =3 "wlom(t®) F < FPF (G3)
=1

The spectral expansion (102)) has at most m eigenvectors (101)) contributing to coverage
expansion with |¢¢a)), for (G2) this means that only these |¢) contribute to coverage:

[w1T) € |u|o) (G4)

71

where [l1) belongs to (101)) eigenvectors subset having non-zero eigenvalue, there are at
g g g g

most m out of total n. From this follows that only vector space ’¢[i}> contribute:
[67) = e (G5)

where ¢ takes m out of n values such that Al > 0 in . The ‘¢[i]> is the only x-subspace
contributing to total coverage (G2)).

Appendix @ solution to maximization (G2|) (which is a quality criterion) finds unitary
matrix ||| in x-space of the dimension n. However, as quality criterion operates in f-space
of the dimension m, the transform allows to build x-subspace of the dimension D =m
as the only vector subspace contributing to quality criterion.

For a system with known contributing subspace numerical optimization algorithm of
Appendix [D]can be optimized by converting the basis to contributing subspace and simplifying
the constraints to act in contributing subspace only, i.e. considering a subset of a full set
of unitarity constraints. The conversion back from contributing subspace to x-space then
requires some algebra as the condition for unitary operators; 4/ ~! = T may no longer hold
true in full x-space.

In practice the problem of finding the contributing subspace is typically “an extra
step”, thus it is sometimes more convenient to solve the problem directly to avoid a non-
unitary transformation between contributing subspace and x-space. Whereas constructing
a f-predictor of given input dimension D < n creates the same problem as with (an
expression with the fourth power of sought basis), the problem of finding x subspace of the
dimension D < n providing maximal coverage on f, can be directly reduced to a variant of
Appendix [D] optimization problem.

Consider coverage maximization problem with constraints:

M D—1

F— Zw(n Z (Y | ¢m>2 > max (G6)
=1 Jj=0

5]~k=<¢m\¢[k]> j,k=0...D—1 (GT7)

the goal is to find an orthogonal basis ¢V!(x) of dimension D < n, j =0...D — 1, providing
maximal (G6)) coverage; the solution is non-unique, it is (101]) eigenvectors, corresponding to
D largest eigenvalues within an arbitrary unitary transformation of them. The problem (97))

of above corresponds to D = n case; ((G3)) is the upper bound of (G6)). Here ¢ (f) is f = g

72

localized state (E5) in f-space, and ¢Vl(x) is x-space linear function:

oV (x Zu]kxk j=0...D—-1 (G8)

Substituting (G§) to (G6) obtain optimization problem with some Sjg.

D—-1 n-—1
F = Z Z uijjk;j/k/u;,k, T) max (GQ)
j7j1:0 k’k/f
Z u]kak/qu/ - 5]72 - O PP D - 1 (GlO)
kk'=

The problem: to find uj; matrix of the dimensions j =0...D — 1,k =0...n — 1, providing
maximal (G9)) subject to constraint . Obtained uj, matrix defines ¢l/(x) basis
of the dimension D < n providing maximal coverage in . This basis is then typically
used to construct in it a unitary operator U providing maximal coverage in . Thus we
need to solve two optimization problems: first to construct a basis of lower dimension,
second to build a unitary operator in this basis. If D = m and f is a subspace of x then
the sought basis is this subspace and coverage is maximal F = (1). Otherwise we modify

Appendix [D] algorithm to D < n case, specifically:

1. A Numerical Solution to Quadratic Form Maximization Problem With Partial

Unitarity Constraint

The constrained optimization problem (G2))

F = Zw (Ve | | ¢X(z>>‘2 T> max (G11)

to find an operator ||u|| of the dimension n x D most accurately transforming a localized state
in x-space |¢x) (of the dimension n) to a localized state in f-space |¢¢) (of the dimension D)

is reduced to:
D—-1 n-1
F = E Z Uk Sk Wiy — MAX (G12)
0 k,k'=0 “

> wjeul, =0 ji=0...D—1 (G13)

73

The upper bound of F is . For n = D this would be a unitary optimization problem
considered in the Appendix [D| above; for D < n we have a partial unitarity constraint.
Without loss of generality let G, = 0, i.e. the problem is considered in bases and
to simplify constraint. Consider Lagrange multipliers \;j;,, a matrix of D x D
dimension, to optimize with the constraints (G13|)

D—-1 -1 D—1 n—1

* *
E E uijjk;j’k’Uj/k/+ E)\jj/ (5jj/— E Uk U s —)u max (G14)
7,5'=0 k,k'=0 7,5'=0 k'=0

The variations are consistent only when A is a Hermitian matrix. The “partial” constraint

is the squared Frobenius norm condition:

)

—_
3

ujpuy, = D (G15)
0

I
o
il

J
with which optimization can be reduced to a generalized eigenvalue problem. Then
repeat Appendix [D]iteration almost identically. Generalized eigenvalue problem of the dimen-
sion Dn is solved with partial constraint being wavefunction normalizing condition;
obtained with partially constrained solution wu;; requires an adjustment to satisfy the full
constraints ; it is performed using SVD) expansion:

D—1n—1

5'=0 k'=0
followed by setting diagonal elements of the rectangular diagonal matrix 3, to 1; new values

for Lagrange multipliers A;;» are then calculated from adjusted uj; to perform a new iteration:

N D—-1 n—1

)\ji = uqkqu:;ik’u;k/ (G17>
q=0 k,k'=0
1~ ~ .

)\jizﬁ[)‘ji‘{')‘ij] ji=0...D—1 (G18)

With these changes to Appendix E algorithm the iteration process produces wuj; matrix

maximizing (G12)) subject to partial unitarity D < n constraint (G13]).

Appendix H: The Dynamics of a System with Internal State

The data (E1) x® — f® is the form most frequently studied in ML, where observations

corresponding to different [are considered as independent observations. Same data studied

https://en.wikipedia.org/wiki/Singular_value_decomposition

74

in signal processing is typically considered as [-ordered (e.g. [is time), where the problem
of timeserie prediction corresponds to f) = xU*+1_ Such an embedding of timeserie data to
(E1)) implicitly selects a time—scale. Real system have some internal state z (memory); the

output now depends not only on the input signals x, but also on the internal state z:
(X(l),Z(l)) — f0 weight w:l=1... M (H1)

This produces a omnifarious dynamics, much richer compared to systems without internal
state. An example of a system with memory is a finite-state machine. From practical point

of view it is convenient to classify them as the systems with:

e Completely observable internal state.

e Partially observable internal state.

The same system (e.g. a vending machine) can be completely observable to a support team
(have a full access to vending machine memory) and partially observable to a customer (can
only see whether it is empty and not working). In this appendix we will be only considering
the systems with completely observable internal state.

Consider a very simple finite-state machine: synchronous positive-edge-triggered D flip-flop
(D trigger); it’s circuit has a positive feedback loop what creates a bistable system. CD4013

chip is a typical example of this device.

b C Qk

(H2)

It operates as following: on every 0 — 1 transition on C' (on the rising edge _I~ of the clock)
input D is recorded and becomes immediately available on @, the @ is it’s inverse. Any

changes on D has no effect on the state unless there is a rising edge on C"

c | D| QqQ
g 1 0 | 0
Nl N
0
1
L

X |unchanged

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Flip-flop_(electronics)#Classical_positive-edge-triggered_D_flip-flop
https://www.ti.com/lit/ds/symlink/cd4013b.pdf

)

This device can be used as a 1-bit memory register, pulses counter, frequency divider by 2
(connect D with @Q to inverse the state on every _I~ on C), etc.

Consider a simple problem of the dimensions n = 2, m = 1. Take edge-triggered D flip-flop,
let g = D, 1 = C, and output f = Q. Also assume (to avoid timing considerations) that on

every tick [the a:gl) takes the value slightly after x(()l)

was set. The output () at [now depends
not only on current input x() but also on the previous state (and hence, previous inputs).
Now assume that all the input x() are completely random. For every new [-th input x®
coming (completely random) the system undergo transition:

xél) if a;glfl) =0 and xgl) =1

O = (H4)

fU=1 " otherwise
It is clear that this D-trigger cannot be predicted by n = 2, m = 1 system corresponding to
D, C, @Q trigger terminals “connected” to xg, 1 and f. A system with transition rules
has a long—range dynamicﬂ.

A typical result of interest for a study of such a system is: given a long sequence of random
x(®) as input be able to tell: there is a D-trigger inside. It is clear that an approach typical
for signal processing: take a finite number of previous inputs x¢~9, x(=2) x(=3) the
length is determined by e.g. autocorrelation length of the signal, is poorly applicable to a
system with internal memory.

For a system with completely observable internal state the problem can be directly
approached by using f and some previous x (like in signal processing) as system memory: put
7z = (f(l_l), azglfl)) in 1| making a system of the dimensions n = 4, m = 1. Given this
input almost any ML technique can build an accurate predictor for D-trigger. The problem,
however, is that to apply obtained rules an information about system current internal state
is required and this information is typically not available. The approach of Appendix (E))
separates the system dynamics (in a form of unitary operator ||| obtained from (E3)
optimization) and calculation of conditional probability for a given input/output. When
applied to this problem only the first step is straightforward: construct a unitary operator of
dimension 4 in space that can be selected as a subspace of (x), £~ x(=D x(=2))
17Aimore straightforward example of a system with long-range dynamics is the aforementioned frequency

divider by 2 (connect D with Q) and use x = C, f = Q; this single input system switches the state to
the inverted f(H+1 = W for every mél) = 1 such that x(()l_l) = 0; this system has the state completely

determined by the initial state and the number of _| transitions on C' input.

https://en.wikipedia.org/wiki/Flip-flop_(electronics)#Timing_considerations

76

the transform then to be projected to f¥); the Error from (E4) will be 0. However, the second
step: it’s application to a prediction of future value of f is problematic as the “system current
state” is typically available only for training data. Nevertheless, obtained unitary operator

precisely identifies (H3)) system dynamics and tells us exactly: there is a D-trigger inside!

Appendix I: Kraus Operators and State Decoherence Problem

A dynamics considered so far was of either unitary or unitary following by a projection
forms. The criterion ((132)) is the total coverage of a system with an initial state (e.g. a localized
pure state |1)x) (¢«[; it has a simple form in (E10|) basis), the initial state is transformed to

predicted state with a unitary transformation ({[2))

n—1 . *
o U (x) U (x)
x|l = [tx) (Vx| = Z jwily — 5 (T (I1)
i,k=0 S |whl(x)|
=0
| Pav || = [1U] pscr U] (I12)

following a comparison of predicted and realized density matrices to obtain the total coverage

by taking sum over all observations, exactly as we did in Eq. (132)) above:

M M
F = wOspur|pxeen [Ulpxo U = wSpur||pyan [pxan | (13)
=1 =1
U =1 (14)
Error = (1) — F (15)

This approach can be successfully applied to a number of problems, e.g. to a deterministic
finite-state machine such as considered in the Appendix [H] above.

An example of a system to which an application of unitary dynamics has limitations is the
data of Markov chain type. Consider single boolean variable Markov chain with a stationary

transition matrix P,.:

W {0,1} w=1;1=1...M (16)
Pyz = P(x(l—H) = Z|$(Z) = y) 1= Z Pyz (I7>

2=0,1
For a boolean variable we can assume that x = 0 corresponds to W[O]> and x = 1 corresponds

to |¢[”>; without loss of generality we can also assume <@D[y] {@/J[Z]> = 0y,. For l=1...M

https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Stochastic_matrix

7

observations Markov chain model gives the transition: if the value of () is known then
2 outcome probabilities can be predicted according to . If x at [is known and equal
2" then [— [+ 1 transition of ‘w[w}> state is:

[0 (| = P [01) (1] + Poy [91) (1] (18)

Important, that Markov chain [— [+ 1 transition transforms pure state (given we know
r = 2 value) to a mixed state according to transition matrix probabilities P,.. This type of
transformation cannot be obtained from unitary dynamics . A fundamental property of
quantum dynamics is: a pure state can be transformed only to a pure state. Markov chain

dynamics is different in this sense as it possibly transforms pure state to a mixed state.

This problem is known as quantum decoherence and is a subject of active study[34] since
the inception of quantum theory initially in application to quantum measurement, following
by quantum computing, quantum field theory[35], etc.; for example as black hole radiates as
black body (Hawking radiation) thus it should completely evaporate within a finite time,

and in this process an initially pure quantum state should evolve to a mixed state[36].

The problem in hand is much less global. It is: given the data to transform localized
pure state 1y (x) from to a mixed state to be subsequently used e.g. in coverage
estimation instead of ||U|pyw [UT||, corresponding to regular quantum dynamics (131)).

Typically to obtain a mixed state from pure state one may consider some other space |p),
form a composite system |@) ® [1)), then consider a pure state in the composite space; as the
|p) states are not observable take the Spur over |¢) (partial spur) and obtain a mixed state
in |¢)-space. The difficulty is that with data there is no other space |p), only averaging
over [= 1... M observations is available; there is no “second set of observations” for a given [
(with possible exception of distribution regression problem|[24] type of data). For this reason

we need other methods to construct a mixed state.

Mathematically the problem is equivalent to constructing a completely positive trace+
preserving map (quantum channel). Considered in Appendix [Ef above ML classification
problem consists in a unitary transformation in x-space following by a projection of the
transform to f-space; this is a trace-decreasing map (quantum operation) as these two spaces

are not necessary full with respect to each other.

https://en.wikipedia.org/wiki/Quantum_decoherence
https://en.wikipedia.org/wiki/Measurement_problem
https://en.wikipedia.org/wiki/Quantum_channel
https://en.wikipedia.org/wiki/Quantum_channel

78
Kraus’ theorem determines the most general form of this operation[37):
p=) BB (19)
with Kraus operators By satisfying
> BBi=1 (110)

The number of terms in the s-sum is called Kraus rank. The maximal number of terms
is n? (or nm for transformations between Hilbert spaces of different dimensions), in
ML applications a good heuristic is to choose Kraus rank between 1 and 3, a value below
n fits most data analysis problems. The transformation subject to constraint is
a generalization of regular quantum dynamics subject to unitary constraint . A
fundamental question is then: whether Appendix numerical optimization algorithm of a
problem with partial unitarity constraint can be modified to approach the problem of

finding Kraus operators B, maximizing

M
F =Y w> Spurllpgen | Bilpxw | B| (I11)
=1 s

subject to constraint; the problem solution “favors” pure states as only for them
Spurp? = 1 and the maximal coverage (1) can be reached; for a series of mixed state density
matrices p() maximal coverage is limited by the value ", w(l)Spurp(Ql), which reaches (1)
only when all p(y are pure states. This optimization problem, the same as the one considered
in the Appendix @: maximize subject to , has target function and constraints both
being quadratic functions on Kraus operators By matrix elements, a variant of quadratically
constrained quadratic program|38] (QCQP). Thus we can consider a “wavefunction” (of
the dimension n? times the number of By operators in sum) constructed from By
matrix elements subject to “partial” constraint (a generalization of (D4)): the sum of all B,
matrix elements absolute value squared (the sum of all By squared Frobenius norm) equals
to n. Optimization problem with partial constraint can be easily solved as equivalent to a
regular eigenvalue problem. An iteration process involving an update of obtained “partial
constraint” solution to a full constraint sub-optimal one with subsequent Lagrange multipliers
recalculation is then repeated until the required constraints are satisfied in full. This

treatment readily produces a numerical solution. The solution is non—unique (take e.g. a

https://en.wikipedia.org/wiki/Quantum_operation#Kraus_operators
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program

79

permutation of By; more generally — B, are defined within a unitary transformation; it is often

convenient to work with orthogonal form of Kraus operators (canonical form) SpurBsBj ~ O,

that is especially useful for adjusting “partial constraint” solution to a full constraint sub-

optimal one) but described numerical algorithm (contrary to naive Newtonian type iterations)

is expected to be non—sensitive to this degeneracy unless the number of terms in ([10) sum

is chosen a very large; if there is just a single term in the sum (Kraus rank one) — then

the problem is reduced to previously considered optimization problem (D2|) with unitary

constraint (D3)), a pure quantum channel.

1]

2]

3]

4]

[5]

[6]

7]

18]

V. G. Malyshkin, On Lebesgue Integral Quadrature, arXiv preprint arXiv:1807.06007
10.48550/arXiv.1807.06007 (2018).

V. G. Malyshkin, On Numerical Estimation of Joint Probability Distribution from Lebesgue
Integral Quadratures, ArXiv e-prints [10.48550/arXiv.1807.08197 (2018), arXiv:1807.08197
[math.NAJ.

V. G. Malyshkin, Multiple-Instance Learning: Christoffel Function Approach to Distribution
Regression Problem, arXiv preprint arXiv:1511.07085 10.48550/arXiv.1511.07085| (2015).
J.-B. Lasserre and E. Pauwels, The empirical Christoffel function with applications in data
analysis, Advances in Computational Mathematics , 1 (2019).

B. Beckermann, M. Putinar, E. B. Saff, and N. Stylianopoulos, Perturbations of Christoffel-
Darboux Kernels: Detection of Outliers, Foundations of Computational Mathematics , 1 (2020).
V. G. Malyshkin, Norm-Free Radon-Nikodym Approach to Machine Learning, ArXiv e-prints
10.48550 /arXiv.1512.03219| (2015), http://arxiv.org/abs/1512.03219, larXiv:1512.03219
|cs.LG.

A. V. Bobyl, A. G. Zabrodskii, M. E. Kompan, V. G. Malyshkin, O. V. Novikova, E. E.
Terukova, and D. V. Agafonov, Generalized Radon—Nikodym Spectral Approach. Application
to Relaxation Dynamics Study., ArXiv e-prints 10.2139/ssrn.3229466 (2016), arXiv:1611.07386
[math.NAJ.

A. V. Bobyl, V. V. Davydov, A. G. Zabrodskii, N. R. Kostik, V. G. Malyshkin, O. V. Novikova,
D. M. Urishov, and E. A. Yusupova, The Spectral approach to timeserie bursts analysis

(CuekTpaJibHBII MOIX0/] K aHAIM3Y BCIUIECKOB BpEMEHHON mnocsiegoareasnoctn), [ISSN 0131-

https://en.wikipedia.org/wiki/Newton%27s_method#k_variables,_k_functions
https://en.wikipedia.org/wiki/Quantum_channel#Pure_channel
https://doi.org/10.48550/arXiv.1807.06007
https://doi.org/10.48550/arXiv.1807.08197
https://arxiv.org/abs/1807.08197
https://arxiv.org/abs/1807.08197
https://doi.org/10.48550/arXiv.1511.07085
https://doi.org/10.1007/s10444-019-09673-1
https://doi.org/10.1007/s10208-020-09458-9
https://doi.org/10.48550/arXiv.1512.03219
http://arxiv.org/abs/1512.03219
https://arxiv.org/abs/1512.03219
https://arxiv.org/abs/1512.03219
https://doi.org/10.2139/ssrn.3229466
https://arxiv.org/abs/1611.07386
https://arxiv.org/abs/1611.07386
https://doi.org/10.24411/0131-5226-2018-10010

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

30

5226.Teopermaeckuit 1 HayIHO-IpakTHIeCcKUit 2KypHaa. UASIL. | 77 (2018).

V. G. Malyshkin, Market Dynamics: On Directional Information Derived From (Time,
Execution Price, Shares Traded) Transaction Sequences, arXiv preprint arXiv:1903.11530
10.48550/arXiv.1903.11530 (2019).

F. Mosteller and D. L. Wallace, |Applied Bayesian and classical inference: the case of the
Federalist papers (Springer Science & Business Media, 1984).

V. G. Malyshkin, R. Bakhramov, and A. E. Gorodetsky, A Massive Local Rules Search Approach
to the Classification Problem, arXiv preprint arXiv:cs/0609007 10.48550/arXiv.cs/0609007
(2001).

B. Beckermann, On the numerical condition of polynomial bases: estimates for the condi-
tion number of Vandermonde, Krylov and Hankel matrices, Ph.D. thesis, Habilitationsschrift,
Universitat Hannover (1996).

V. G. Malyshkin and R. Bakhramov, Mathematical Foundations of Realtime Equity Trad-
ing. Liquidity Deficit and Market Dynamics. Automated Trading Machines, arXiv preprint
arXiv:1510.05510 10.48550/arXiv.1510.05510 (2015).

G. S. Malyshkin, The comparative efficiency of classical and fast projection algorithms in the reso-
lution of weak hydroacoustic signals (Cpasuuresnbrast 3(bheKTUBHOCTD KJIACCUIECKUX U OBICTPBIX

IPOEKIMOHHBIX aJITOPUTMOB TIPU PA3PEIIeHNH CJIa0bIX THIPOAKYCTHIECKIX CUTHAJIOB), Acoustical
Physics 63, 216 (2017), doi:10.1134/S1063771017020099 (eng) ; doi:10.7868,/50320791917020095
(pyc).

V. G. Malyshkin, On Machine Learning Knowledge Representation In The Form Of Par-
tially Unitary Operator. Knowledge Generalizing Operator, arXiv preprint arXiv:2212.14810
10.48550 /arXiv.2212.14810] (2022).

M. H. Hayes and J. H. McClellan, Reducible polynomials in more than one variable, Proceedings
of the IEEE 70, 197 (1982).

M. Nieto-Vesperinas, F. J. Fuentes, R. Navarro, and M. Perez-Ilzarbe, A FORTRAN routine to
estimate a function of two variables from its autocorrelation, Computer physics communications
78, 211 (1993).

T. Becker and V. Weispfenning, |Grébner bases: Computational Approach to Commutative
Algebra), Vol. 141 (Springer, 1993) ISBN:978-0387979717.

V. V. Nalimov and N. A. Chernova, Statistical Methods for Design of Extremal FExperiments,

https://doi.org/10.24411/0131-5226-2018-10010
https://doi.org/10.24411/0131-5226-2018-10010
https://doi.org/10.24411/0131-5226-2018-10010
https://doi.org/10.48550/arXiv.1903.11530
https://doi.org/10.1007/978-1-4612-5256-6
https://doi.org/10.1007/978-1-4612-5256-6
https://doi.org/10.48550/arXiv.cs/0609007
http://math.univ-lille1.fr/~bbecker/abstract/Habilitationsschrift_Beckermann.pdf
https://doi.org/10.48550/arXiv.1510.05510
https://www.researchgate.net/publication/315960433
https://www.researchgate.net/publication/315960433
https://doi.org/10.1134/S1063771017020099
https://doi.org/10.7868/S0320791917020095
https://doi.org/10.7868/S0320791917020095
https://doi.org/10.48550/arXiv.2212.14810
https://doi.org/10.1109/PROC.1982.12262
https://doi.org/10.1109/PROC.1982.12262
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.888.2105&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.888.2105&rep=rep1&type=pdf
https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1007/978-1-4612-0913-3
https://apps.dtic.mil/sti/citations/AD0673747

[20]
[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]
[33]

[34]

81

Tech. Rep. AD0673747 (FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO,
1968).

V. V. Nalimov, Theory of Experiment (Teopus sxcnepumenma) (Nauka, USSR, 1971).

V. G. Malyshkin, Radon-Nikodym Approximation in Application to Image Reconstruction,
Available at SSRN 3237936 10.48550/arXiv.1511.01887 (2015).

J.-B. Lasserre, Moments, positive polynomaials and their applications, Vol. 1 (World Scientific,
2009).

S. Marx, E. Pauwels, T. Weisser, D. Henrion, and J.-B. Lasserre, Tractable semi-
algebraic approximation using Christoffel-Darboux kernel, arXiv preprint arXiv:1904.01833
10.48550/arXiv.1904.01833 (2019).

V. G. Malyshkin, Multiple-Instance Learning: Radon-Nikodym Approach to Distribution Re-
gression Problem, ArXiv e-prints 10.48550/arXiv.1511.09058 (2015), arXiv:1511.09058 |cs.LG|.
A. Bourass, B. Ferrahi, B. M. Schreiber, and M. V. Velasco, A Random multivalued uniform
boundedness principle, Set-Valued Analysis 13, 105 (2005).

B. Simon, Szegd’s Theorem and Its Descendants (Princeton University Press, 2011).

G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, Robust recovery of subspace structures by
low-rank representation, IEEE transactions on pattern analysis and machine intelligence 35.
171 (2012).

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic
Engineering 82, 35 (1960).

T. A. Loring, Computing a logarithm of a unitary matrix with general spectrum, Numerical
Linear Algebra with Applications 21, 744 (2014).

V. G. Malyshkin, The code for polynomials calculation| (2014), http://www.ioffe.ru/LNEPS/
malyshkin/code.html| and an alternative location.

O. L. Mangasarian and W. H. Wolberg, |Cancer diagnostis via linear programming, Tech. Rep.
(University of Wisconsin-Madison Department of Computer Sciences, 1990).

M. G. Belov and V. G. Malyshkin, Partially unitary learning, Phys. Rev. E 110, 055306 (2024).
M. G. Belov, V. V. Dubov, A. V. Filimonov, and V. G. Malyshkin, Quantum channel learning,
Phys. Rev. E 111, 015302 (2025).

H. D. Zeh, On the interpretation of measurement in quantum theory, Foundations of Physics 1.

69 (1970).

https://doi.org/10.48550/arXiv.1511.01887
https://doi.org/10.1142/p665
https://doi.org/10.48550/arXiv.1904.01833
https://doi.org/10.48550/arXiv.1511.09058
https://arxiv.org/abs/1511.09058
https://doi.org/10.1007/s11228-004-4108-x
https://doi.org/10.2307/j.ctt7t9sg
https://doi.org/10.1109/TPAMI.2012.88
https://doi.org/10.1109/TPAMI.2012.88
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1002/nla.1927
https://doi.org/10.1002/nla.1927
http://www.ioffe.ru/LNEPS/malyshkin/code.html
http://www.ioffe.ru/LNEPS/malyshkin/code.html
http://www.ioffe.ru/LNEPS/malyshkin/code.html
https://disk.yandex.ru/d/AtPJ4a8copmZJ?locale=en
https://minds.wisconsin.edu/bitstream/handle/1793/59346/TR958.pdf
https://doi.org/10.1103/PhysRevE.110.055306
https://doi.org/10.1103/PhysRevE.111.015302
https://doi.org/10.1007/BF00708656
https://doi.org/10.1007/BF00708656

82

[35] W. G. Unruh and R. M. Wald, Evolution laws taking pure states to mixed states in quantum
field theory, Physical Review D 52, 2176 (1995).

[36] R. M. Wald, Quantum field theory in curved spacetime and black hole thermodynamics (University
of Chicago press, 1994).

[37] K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory, Lecture
Notes in Physics, Vol. 190 (Springer-Verlag, 1983) Lectures in Mathematical Physics at the
University of Texas at Austin.

[38] N. Z. Shor, Nondifferentiable optimization and polynomial problems, Vol. 24 (Springer Science
& Business Media, 2013).

https://doi.org/10.1103/PhysRevD.52.2176
https://press.uchicago.edu/ucp/books/book/chicago/Q/bo3684008.html
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1007/978-1-4757-6015-6

	On The Radon–Nikodym Spectral Approach With Optimal Clustering
	Introduction
	Radon–Nikodym Spectral Approach
	Prior and Posterior Probabilities

	Optimal Clustering
	Optimal Clustering For Unsupervised Learning

	Selection of the Answer: fRN vs. fRNW
	A First Order Logic Answer To The Classification Problem. Product Attributes.
	Lenna Image Interpolation Example. Multi–index Constraints Comparison.
	On The Christoffel Function Conditional Optimization

	A Supervised Classification Problem With Vector–Valued Class Label
	A Vector–Valued Class Label: Selecting Solution Type
	A Vector–Valued Class Label: Error Estimation
	A Christoffel Function Solution to Low-Rank Representation
	An application of LRR representation solution to dynamic system identification problem.
	Localized states |y dynamics.

	Conclusion
	Regularization Example
	RN Software Usage Description
	 Software Installation And Testing
	Nominal Attributes Example

	[RN]RN Program Application With A Different Definition Of The Probability
	A Numerical Solution to Quadratic Form Maximization Problem in Unitary Matrix Space
	 Non–Unitary Dynamics
	A Projective Non–Unitary Dynamics
	On Clustering of a Dynamic System Phase Space
	A Numerical Solution to Quadratic Form Maximization Problem With Partial Unitarity Constraint

	 The Dynamics of a System with Internal State
	Kraus Operators and State Decoherence Problem
	References

