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A new form of ML knowledge representation with high generalization power is devel-

oped and implemented numerically. Initial IN attributes and OUT class label are

transformed into the corresponding Hilbert spaces by considering localized wavefunc-

tions. A partially unitary operator optimally converting a state from IN Hilbert space

into OUT Hilbert space is then built from an optimization problem of transferring

maximal possible probability from IN to OUT, this leads to the formulation of a new

algebraic problem. Constructed Knowledge Generalizing Operator U can be considered

as a IN to OUT quantum channel; it is a partially unitary rectangular matrix of the

dimension dim(OUT)×dim(IN) transforming operators as AOUT = UAINU†. Whereas

only operator U projections squared are observable ⟨OUT | U | IN⟩2 (probabilities), the

fundamental equation is formulated for the operator U itself. This is the reason of high

generalizing power of the approach; the situation is the same as for the Schrödinger

equation: we can only measure ψ2, but the equation is written for ψ itself.

∗ malyshki@ton.ioffe.ru

mailto:malyshki@ton.ioffe.ru


2

I. INTRODUCTION

There are four key elements in any ML approach[1]:

• Attributes selection.

• Knowledge representation.

• Quality criteria (norm).

• Search algorithm to find the solution in knowledge representation space.

Knowledge representation is the most important element as it determines generalization power

of a ML system. The progress in knowledge representation from linear regression coefficients,

perceptron weights[2], statistical learning[3, 4], and logical approaches[5] to support vector

machines[6], rules and decision trees[7], fuzzy logic[8, 9], and deep learning[10] has been the

direction of ML development within the last two decades.

These approaches, however, share one common feature that limits their applicability. All of

them typically construct a norm, loss function, penalty function, metric, distance function, etc.

on class label (attributes to predict) difference from the target and perform it’s optimization

on training data. Selection of the norm is a complex task, moreover, the concept of “norm”

is of statistical type and cannot be applied in every situation. In our earlier works[11, 12]

we introduced a “norm-free” approach where the norm was replaced by projection operators.

The idea takes inspiration in quantum mechanics where the outcomes of an observable f

(obtained as an operator’s spectrum
∣∣f |ψ[i]

〉
= λ[i]

∣∣ψ[i]
〉
) and the probabilities of outcomes are

separated; for a given state |ψ⟩ the probabilities of λ[i] outcomes are obtained as projections

to
∣∣ψ[i]

〉
eigenvectors

〈
ψ
∣∣ψ[i]

〉2. This approach comes in two “flavors”[13]: interpolatory type

(where the outcome is obtained as regular Radon–Nikodym derivative) and classification

type (where the outcome is obtained as prior weight adjusted Radon–Nikodym derivative, a

“Bayesian” style).

While these results are of great interest as they overcome one of the most difficult problem

in ML (norm selection) and produce gauge-invariant solutions, they, as the other approaches

to ML, still have a limitation in generalization power. The problem with this our approach[13]

is that it is still of “joint distribution generalization” type. Effectively it constructs a joint

distribution of (attributes, class label) pairs and then is trying to generalize from it. Some
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ML approaches, such as statistical learning, support vector machines, rules and decision trees,

Bayesian learning, etc. do this “joint distribution generalization” explicitly; the others, such

as neural networks, hidden Markov model, almost all logic models, etc. in fact also do a “joint

distribution generalization”, but do it implicitly.

The problem with “joint distribution generalization” approaches is that they can only

predict the outcomes that already have corresponding (attributes, class label) observations

in training data. For example if we apply such an approach to periodic planetary motion –

we obtain an accurate prediction, but applying it to a hyperbolic comet would be a failure as

the comet only travel through the Solar system once. However, both (planet and hyperbolic

comet) are governed by the same Newtonian laws and their motion is the phenomena of

the same kind. Newtonian mechanics has a more powerful generalization than the “joint

distribution generalization”.

This work is the first work where we go beyond the “joint distribution generalization” in

ML knowledge representation.

II. INPUT DATA AND SIMPLE MODELS

Whereas the developed approach can be applied to input data of various forms, for the

purpose of comparison with well known models we will be considering only the data of

supervised learning form1:

(x0, x1, . . . , xk, . . . , xn−1)
(l) → (f0, f1, . . . , fj, . . . , fm−1)

(l) weight ω(l) (1)

x(l) → f (l)

where an attributes vector x of the dimension n is mapped to a class label vector f of the

dimension m for all l = 1 . . .M observations. An average ⟨·⟩ is defined as the sum over all M

observations sample:

⟨1⟩ =
M∑
l=1

ω(l) (2)

⟨h(f)g(x)⟩ =
M∑
l=1

h(f (l))g(x(l))ω(l) (3)

1 The data can be possibly “producted” to some order D. For example take n initial xk and construct

xk = xk00 x
k1
1 . . . x

kn−1

n−1 with multi-index k = (k0, k1, . . . , kn−1) subject to D =
n−1∑
j=0

kj . From initial n

attributes xk we now obtained N (n,D) = CD
n+D−1 attributes xk producted to the order D, see [13].

https://en.wikipedia.org/wiki/List_of_hyperbolic_comets
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Here h(f) and g(x) are some functions on f and x, for example a polynomial or Christoffel

function K(x) from (10). In this paper we will be considering the models built on “moments”

— some average of a polynomial function on xk and fj; an example of such an average is

⟨xkxk′fjfj′⟩. As a constant has always to be present in x and f bases the tensor ⟨xkxk′fjfj′⟩

includes all lower order averages such as ⟨xkxk′⟩ and ⟨fjfj′⟩. Introduce Gram matrices Gx
kk′

and Gf
jj′ for x– and f– spaces respectively:

Gx
kk′ = ⟨xkxk′⟩ (4)

Gf
jj′ = ⟨fjfj′⟩ (5)

We will assume that Gram matrices are non–degenerated, otherwise a regularization to be

applied to x and f bases, see “Appendix A: Regularization Example” of [13].

A few familiar examples. Least squares solution of f on x requires Gram matrix Gx
kk′ and

⟨fjxk⟩ moments as input to obtain fj(x) =
∑n−1

k=0 βkxk as linear system solution:〈[
fj −

n−1∑
k=0

βkxk

]2〉
→ min (6)

fj(x) ≈
n−1∑
k,k′=0

xkG
x;−1
kk′ ⟨fjxk′⟩ (7)

Here Gx;−1
kk′ is Gram matrix (4) inverse. The (7) is m different predictors each one is applied

to it’s own class label component fj , j = 0 . . .m− 1. Least squares knowledge representation

model has limited predictive power and low outlier stability but it is very easy to implement

numerically and obtained solution is gauge-invariant relatively an arbitrary non–degenerated

linear transform of x and f :

x′k =
n−1∑
k′=0

Tkk′xk′ (8a)

f ′
j =

m−1∑
j′=0

Tjj′fj′ (8b)

This often makes the least squares model the first choice to start data analysis despite all

the drawbacks. The model has the properties similar to “joint distribution generalization”

on the support of ⟨·⟩ and typically diverges for x outside of the support interval; it has low

generalization power.
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Radon–Nikodym model consists in constructing a weight density ψ2
y(x) localized at x = y

and then averaging f with it:

ψy(x) =
√
K(y)

n−1∑
i,k=0

yiG
x;−1
ik xk =

n−1∑
i,k=0

yiG
x;−1
ik xk√

n−1∑
i,k=0

yiG
x;−1
ik yk

=

n−1∑
i=0

ψ[i](y)ψ[i](x)√
n−1∑
i=0

[ψ[i](y)]
2

(9)

K(x) =
1

n−1∑
i,k=0

xiG
x;−1
ik xk

=
1

n−1∑
i=0

[ψ[i](x)]
2

(10)

fj(x) ≈
⟨ψ2

xfj⟩
⟨ψ2

x⟩
=

n−1∑
i,q,s,k=0

xiG
x;−1
iq ⟨xqxsfj⟩Gx;−1

sk xk

n−1∑
i,k=0

xiG
x;−1
ik xk

=

n−1∑
i,k=0

ψ[i](x)
〈
ψ[i]

∣∣ fj ∣∣ψ[k]
〉
ψ[k](x)

n−1∑
i=0

[ψ[i](x)]
2

(11)

In Eq. (11) the Radon–Nikodym approximation is presented in two bases: original xk, for

which ⟨xixk⟩ = Gx
ik, and in some orthogonalized basis

∣∣ψ[i]
〉

such that
〈
ψ[i]

∣∣ψ[k]
〉
= δik.

Whereas in least squares approximation (7) the fj(x) is a linear combination of basis function

xk, in the Radon–Nikodym approximation (11) it is a ratio of two quadratic forms on basis

function xk with the matrices
∑n−1

q,s=0G
x;−1
iq ⟨xqxsfj⟩Gx;−1

sk and Gx;−1
ik . By construction it is

an averaging with positive weight2 ⟨ψ2fj⟩
/
⟨ψ2⟩ thus the bounds of fj are preserved and

the approximation (11) tends to a constant when some xk → ∞ The calculation requires

Gram matrix Gx
kk′ and ⟨xkxk′fj⟩ moments as input (compare with Gx

kk′ and ⟨xkfj⟩ required

for least squares f(x) ≈ ⟨ψx | f⟩ψx(x) =
∑n−1

i,k=0 xiG
x;−1
ik ⟨xkf⟩ approximation); the result is

gauge–invariant relatively (8). The (11) is the solution of “interpolatory” type as it does not

take into account “prior probabilities”, see [13] for “classification” type solution with prior

probabilities taken into account, a “Bayesian style”.

A simple demonstration of localized states is presented in Fig. 1. For a simple chart a

multi-dimensional vector x is constructed from 1D variable x ∈ [−1 : 1] as xk = xk. The

measure ⟨·⟩ is taken as ⟨g⟩ =
∫ 1

−1
g(x)dx. Then ψ2

y(x) can be considered as a function of

2 For a given ψ the normalizing condition is 1 =
〈
ψ2

〉
, this is required to properly average an observable

〈
fψ2

〉
.

In applications, however, the number of “covered” observations is often also required, for example to estimate

possible data overfitting; the total coverage is ⟨1⟩ (2). To estimate the number of observations covered by a

given ψ one can use the Christoffel function K(x) (10) to estimate the coverage as: Coverageψ ≈
〈
Kψ2

〉
.

With an expansion of K(x) in spectrum[13]
∣∣K|ψ[i]

〉
= λ[i]

∣∣ψ[i]
〉

one can obtain an expansion “by coverage”;

this removes the major limitation of the principal components method: it’s dependence on the scale of x

attributes.
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FIG. 1. A simple demonstration of (9) localized states ψ2
y(x) for the measure ⟨g⟩ =

∫ 1
−1 g(x)dx and

the basis x constructed from 1D variable x ∈ [−1 : 1] as xk = xk. The results for the states localized

at y = {−0.6, 0, 0.4} are presented as olive, blue, and green lines respectively. Basis dimension n is

chosen as {7, 25, 50} for thick, middle, and thin lines respectively.

scalar x and y as x and y vectors are calculated from the powers of x and y. In Fig. 1 we

present ψ2
−0.6(x), ψ2

0(x), and ψ2
0.4(x). As expected the ψ2

y(x) density is localized near x = y;

the localization becomes stronger with n increase. This chart demonstrates the main concept

behind Radon–Nikodym type of interpolation which is a two–step process: on the first step a

localized state ψ2
y(x) is built and on the second step the value of an observable f is evaluated

at y by averaging it with the weight obtained on the first step: f(y) ≈
〈
ψ2
yf

〉 / 〈
ψ2
y

〉
. A

trivial example of a square wave interpolation using least squares and Radon–Nikodym is

presented in Fig. 2. We see that Radon–Nikodym preserves the bounds of f and has near

interval edge oscillations very much suppressed because an interpolation of f at y is obtained

by averaging f with always positive weight dµ = ψ2
y(x)dx.
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FIG. 2. A demonstration of a square wave interpolation (red) by least squares (blue, Eq. (7))

and Radon–Nikodym (green, Eq. (11)) with the measure ⟨g⟩ =
∫ 1
−1 g(x)dx with x ∈ [−1 : 1] for

n = {7, 25, 50} in the pictures: left, middle, and right respectively.

A. Pure Joint Distribution Model

In the section above we considered a simple problem of recovering f from x given sampled

data (1). The least squares and Radon–Nikodym estimators (7) and (11) were obtained.

They are using individual components of vector f as separate class labels; vector class label

makes the study much more difficult than a scalar one. For further development we need, for

attributes x and class label f of vector type, to have estimators of joint distribution P (x, f)

probability and corresponding to it coverage.

There are several possible approaches to unify x and f . In [14] the authors introduced a

new vector z of the dimension n+m

z = (x0, x1, . . . , xk, . . . , xn−1, f0, f1, . . . , fj, . . . , fm−1) (12)

and constructed Christoffel function from it (this requires all ⟨xkxk′⟩, ⟨fjfj′⟩, and ⟨xkfj⟩

moments). Maximizing Christoffel function on f given x exhibits very promising results.

However, a difficulty with cross-terms arise[13] both in data initial regularization and in

interpretation of the final result.

To deal with vector class label f and, for further generalization of Section III below, we

will use f -localized states. For sampled f data, possibly producted to some order, construct

Gram matrix in f -space (5) and, the same as in (9), build a localized state ψg(f):

ψg(f) =

m−1∑
j,j′=0

gjG
f ;−1
jj′ fj′√

m−1∑
j,j′=0

gjG
f ;−1
jj′ gj′

=

m−1∑
j=0

ψ[i](g)ψ[j](f)√
m−1∑
j=0

[ψ[j](g)]
2

(13)
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For each observation l = 1 . . .M consider (14) projection of x(l)–localized state (9) to f (l)–

localized state (13) then sum it over the entire l = 1 . . .M sample to obtain the number of

covered observations FJDG (note: there is a “projective” factor ⟨fjxk⟩ in the expression)

⟨ψg |ψy⟩2 =

∣∣∣∣∣ n−1∑
k,k′=0

m−1∑
j,j′=0

gj′G
f ;−1
j′j ⟨fjxk⟩Gx;−1

kk′ yk′

∣∣∣∣∣
2

m−1∑
j,j′=0

gjG
f ;−1
jj′ gj′

n−1∑
k,k′=0

ykG
x;−1
kk′ yk′

(14)

⟨1⟩ ≥ FJDG =
M∑
l=1

⟨ψf (l) |ψx(l)⟩2 ω(l) (15)

If x and f form the same vector space then FJDG = ⟨1⟩. Otherwise, for example when x

contains the entire f plus one more completely random attribute, FJDG < ⟨1⟩. Since (14) has

normalizing terms containing Gf ;−1
jj′ and Gx;−1

kk′ matrices in the denominator, to calculate (15)

the secondary sampling technique[15] is required. The Gram matrices Gx
kk′ (4) and Gf

jj′ (5)

are calculated first then the projection (14) is calculated for every observation l = 1 . . .M

and used in (15) as it were plain observed at observation l. Technically this means we need

to calculate the moments of x- and f - Christoffel functions product:
〈
xkfj

∣∣K(x)K(f)
∣∣xk′fj′〉

(33).

The ⟨ψg |ψy⟩2 can be viewed as joint distribution of f and x. For a given x the probabilities

of various f can be estimated as

P (f ,x) ≈ ⟨ψf |ψx⟩2 (16)

The (16) estimates the probability of possible outcome f given some fixed value of x; the

estimation is based on (attributes, class label) pairs observed in the training sample. A

typical step from here is to find a subspace of x providing the best prediction of f , optimal

clustering [13] is a typical approach in this direction. However, we want to go beyond “joint

distribution generalization”, beyond finding a subspace of x providing the best prediction of

f in terms of the probability P (f ,x) estimated on training sample. We need a more powerful

generalization method, possibly applicable to not yet observed values of x and f .
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III. ON KNOWLEDGE GENERALIZING OPERATOR

In Section II A above we transformed original x(l) → f (l) data sample (1) to a sequence of

x(l)- and f (l)- localized states according to (9) and (13):

ψx(l) → ψf (l) weight ω(l) (17)

As ψx / ψf are defined by n / m coefficients before xk / fj the (17) is nothing more than

a transform of the original data (1). This is not a regular linear transform of x / f bases,

this is a linear transform with Gx;−1
kk′ / Gf ;−1

jj′ matrices followed by normalization to 1 with

Christoffel function as in (9) / (13).

The purpose of this transform is to obtain the states we can project to each other or

to some other basis; for example: |ψx(l)⟩ =
∑n−1

k=0

∣∣ψ[k]
〉 〈
ψ[k]

∣∣ψx(l)

〉
with

∣∣ψ[k]
〉

being an

orthogonal full basis in x-space, 1 = ⟨ψx(l) |ψx(l)⟩2, 1 = ⟨ψf (l) |ψf (l)⟩
2, 1 ≥ ⟨ψx(l) |ψf (l)⟩

2, etc.

The main result of Section II A was to obtain joint (x, f) distribution (16) and then trying to

generalize from it.

Consider a different form of generalization. Let |ψx(l)⟩, before being used in calculation of

joint distribution, is transformed by a unitary operator ∥U∥:

F =
M∑
l=1

⟨ψf (l) | U |ψx(l)⟩2 ω(l) (18)

Contrary to (16) this expression is transforming ψx(l)(x) to some other function in x-space

|ψ(x)⟩ = |U|ψx(l)(x)⟩ and only then projecting the result to actual realization ψf (l)(f) in

f -space. In some sense the ∥U∥ can be viewed as a Scattering Amplitude Matrix, as it relates

the IN state |ψx(l)⟩ with the OUT state |ψf (l)⟩. All the information about what combinations

of attributes xk to be used for prediction now contains in operator ∥U∥. It is called Knowledge

Generalizing Operator. The operator is unitary (to preserve normalizing) 1 =
〈
ψ
∣∣U †

∣∣U ∣∣ψ〉.
U †U = 1 (19)

In our model the knowledge is represented in the form of a unitary operator. This is

a very common form in physics: the dynamics in classical mechanics, electrodynamics,

quantum mechanics can be represented as a sequence of infinitesimal unitary transformations

determined by Hamiltonian (or Lagrangian) of the system. The (18) is an inverse problem:

given (1) data find unitary operator ∥U∥ maximizing (18) coverage subject to (19) constraints.

https://en.wikipedia.org/wiki/S-matrix#Definition
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Whereas the (18) is of fourth order in |ψ⟩, it is of second order in ∥U∥. The constraints (19)

is also of second order in ∥U∥. Thus the problem of finding the Knowledge Generalizing

Operator is a variant of quadratically constrained quadratic program[16] (QCQP).

Before we go further, let us consider a simplified version of (18) to obtain F upper limit

for “projective” interpretation of operator ∥U∥. Consider the problem of finding (in x-space)

orthogonal basis ϕ[i], a subset of full basis D ≤ n, that maximizes FTOT :

ϕ[i] =
n−1∑
k=0

α
ϕ;[i]
k xk i = 0 . . . D − 1; D ≤ n (20)

δii′ =
〈
ϕ[i]

∣∣∣ϕ[i′]
〉
=

n−1∑
k,k′=0

α
ϕ;[i]
k Gx

kk′α
ϕ;[i′]
k′ (21)

FTOT =
M∑
l=1

D−1∑
i=0

〈
ψf (l)

∣∣ϕ[i]
〉2
ω(l) (22)

Substituting (20) to (13) obtain:

K(f)(g) =
1

m−1∑
j,j′=0

gjG
f ;−1
jj′ gj′

(23)

〈
ft
∣∣K(f)

∣∣ fs〉 = M∑
l=1

f
(l)
t f

(l)
s

m−1∑
j,j′=0

f
(l)
j Gf ;−1

jj′ f
(l)
j′

ω(l) (24)

K
(f→x)
ik =

m−1∑
k′,t′,s′,j′=0

⟨xifk′⟩Gf ;−1
k′t′

〈
ft′

∣∣K(f)
∣∣ fs′〉Gf ;−1

s′j′ ⟨xkfj′⟩ i, k = 0 . . . n− 1 (25)

The (24) is f–Christoffel function (23) moments3. The (25) allows to present (22) in the form:

FTOT =
D−1∑
i=0

n−1∑
k,k′=0

α
ϕ;[i]
k K

(f→x)
kk′ α

ϕ;[i]
k′ (26)

From which we can spectrally expand the FTOT by solving a generalized eigenvalue problem

with the matrices K(f→x)
kk′ and Gx

kk′ in left- and right- hand sides:
n−1∑
k′=0

K
(f→x)
kk′ α

ϕ;[i]
k′ = λ[i]

n−1∑
k′=0

Gx
kk′α

ϕ;[i]
k′ (27)

FTOT =
D−1∑
i=0

λ[i] (28)

3 One can also consider
〈
∂R
∂ft

∂R
∂fs

〉
with R(f) = 1/

√
K(f) =

√
m−1∑
j,j′=0

fjG
f ;−1
jj′ fj′ .

https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Generalized_eigenvalue_problem
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The (28) is a spectral decomposition of (22), it has at most m non–zero eigenvalues (the

rank of (25) is m or lower, we also assume m ≤ n). If f belongs to a subspace of x then the

sum of these m eigenvalues in (28) is equal to ⟨1⟩. The (28) takes all possible vectors from

x-space and project them to all |ψf (l)⟩ summing the coverage, this operation does not make

any inference, it estimates the coverage (18) upper limit for any norm–preserving projective

transform[17], such as |U|ψ⟩ (53) or, more generally, (54). The estimation can be obtained

from K
(f→x)
kk′ and Gx

kk′ matrices even without solving the eigenvalue problem (27):

FTOT =
n−1∑
k,k′=0

K
(f→x)
kk′ Gx;−1

k′k (29)

For calculation see com/polytechnik/kgo/KGOSolutionVectorXVectorF.java:FTOT which

is used in unit tests.

A simpler approach to construct contributing to coverage subspace
∣∣ϕ[i]

〉
is to notice

that in (18) there are scalar products ⟨fjxk⟩ of the vectors from x and f spaces. Thus we

can project the f -space to x-space; to split x into two subspaces:
∣∣ϕP ;[j]

〉
“projected” (of

the dimension D ≤ m) and
∣∣ϕO;[k]

〉
“orthogonal” to f (of the dimension n−D), all vectors

from the second one have zero scalar product with a state in f -space
〈
ϕO;[k]

∣∣ψf

〉
= 0, thus

the
∣∣ϕO;[k]

〉
does not contribute to coverage (18). For this reason it is sufficient to consider

operator ∥U∥ to have the dimension D × n converting a vector from x-space to
∣∣ϕP ;[j]

〉
, i.e.

to use
∣∣ϕ[i]

〉
=

∣∣ϕP ;[i]
〉

as contributing subspace, see com/polytechnik/kgo/TestKGO.java:

orthogonalizeU for an implementation.

Let us define operator ∥U∥ to be a matrix (in this paper usk is considered to be a real

matrix, a generalization to a complex matrix is straightforward) of D× n, D ≤ m, such that:

|U|xk⟩ =
D−1∑
s=0

∣∣ϕ[s]
〉
usk (30)

Then (note: there is a “projective” factor ⟨fjxk⟩ in the expression, from
〈
fjϕ

[s]
〉
)

⟨ψg | U |ψy⟩2 =

∣∣∣∣∣ n−1∑
k,k′=0

m−1∑
j,j′=0

D−1∑
s=0

gj′G
f ;−1
j′j

〈
fjϕ

[s]
〉
uskG

x;−1
kk′ yk′

∣∣∣∣∣
2

m−1∑
j,j′=0

gjG
f ;−1
jj′ gj′

n−1∑
k,k′=0

ykG
x;−1
kk′ yk′

(31)

〈
ϕ[s]

∣∣ϕ[q]
〉
=

n−1∑
k,k′=0

usk ⟨xk |xk′⟩uqk′ s, q = 0 . . . D − 1 (32)
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The (31) is actually (14) but |ψy⟩ is replaced by |U|ψy⟩. This is the central concept of

knowledge generalizing operator: the state the inference is based on |ψy⟩ is transformed

by the operator ∥U∥ before coupling with the state |ψf ⟩ we are looking an inference to.

Partial unitarity constraint (32) corresponds to the fact that only subspace of the dimension

D ≤ m can possibly contribute to the coverage (18). When only a subspace of x contributes

to (35) the problem to find a unitary matrix ujk becomes highly degenerative. While the

algorithm described in the Appendix A below works well with such a degenerative problem,

it is beneficial for both: computational complexity and simplicity of result’s interpretation to

make the problem less degenerative. Consider a
∣∣ϕ[i]

〉
i = 0 . . . D−1 subspace of the dimension

D ≤ m. Let us split considered above unitary operator ∥U∥ into ∥U∥ = ∥UP∥+ ∥UO∥ such

that ∥UP∥ transforms any x-vector to
∣∣ϕ[i]

〉
subspace, and ∥UO∥ transforms any x-vector to a

subspace orthogonal to
∣∣ϕ[i]

〉
(this split is most easy to perform if to convert original |xk⟩ space

into direct sum of
∣∣ϕ[i]

〉
and orthogonal to

∣∣ϕ[i]
〉

subspaces). Then, because 0 =
〈
ψf

∣∣UO
∣∣ψx

〉
for any f and x, optimization result of F does not depend on ∥UO∥, thus it is sufficient to

find an operator ∥UP∥ of the dimension D × n subject to (32) constraint.

To calculate (18) it is convenient to introduce the moments of Christoffel functions product:

〈
xkfj

∣∣K(x)K(f)
∣∣xk′fj′〉 =

M∑
l=0

ω(l) x
(l)
k x

(l)
k′

n−1∑
q,q′=0

x
(l)
q G

x;−1
qq′ x

(l)
q′

·
f
(l)
j f

(l)
j′

m−1∑
s,s′=0

f
(l)
s Gf ;−1

ss′ f
(l)
s′

(33)

to write F in the form (note: there is a “projective” factor ⟨fjxk⟩ in the expression, from〈
fjϕ

[s]
〉
)

Ssk;s′k′ =
m−1∑

j,j′,q,q′=0

n−1∑
t,t′=0

〈
xtfj′

∣∣K(x)K(f)
∣∣xt′fq′〉Gf ;−1

j′j

〈
fjϕ

[s]
〉
Gx;−1
kt Gf ;−1

q′q

〈
fqϕ

[s′]
〉
Gx;−1
k′t′

(34)

F =
D−1∑
s,s′=0

n−1∑
k,k′=0

uskSsk;s′k′us′k′ =
M∑
l=1

⟨ψf (l) | U |ψx(l)⟩2 ω(l) −→
U

max (35)

The F is a quadratic function on usk; the expression for Ssk;s′k′ can be greatly simplified if x-

and f - bases are initially regularized (see [13], “Appendix A: Regularization Example”). In an

orthogonal basis Gram matrix is a unit matrix, thus the Gx;−1 and Gf ;−1 get removed in

(34).
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A. On Knowledge Generalizing Operator With Different IN and OUT Spaces

In the section above we considered operator ∥U∥ as x → x transform. In (18) the

⟨ψf | U |ψx⟩ was understood as x → x transform |U|ψx⟩ followed by projection of the result

to |ψf ⟩-space (31); similar “projective” interpretation was used in (14). This interpretation of

∥U∥ lead us to “contributing subspace”
∣∣ϕ[s]

〉
(20) (which is a subspace of x), equation (31)

for ⟨ψf | U |ψx⟩2 (it has ⟨fjxk⟩ projective factors) and (32) constraints with the meaning of

scalar product invariance. Optimization problem (35) for ujk matrix of the dimension D × n

allows to determine partially unitary operator ∥U∥. This operator has both IN and OUT

subspaces being a subspace of x.

A natural generalization is to consider an operator ∥U∥ with different subspaces for IN and

OUT, this way we can avoid any kind of “projection” what would greatly increase generalizing

power of the approach. Let us consider x → f transform directly. Now ujk is a m× n matrix

transforming a vector from x-space to f -space

fj =
n−1∑
k=0

ujkxk j = 0 . . .m− 1 (36)

In a common “projective” paradigm the (36) is multiplied by xk′ , then after taking the average

— least squares (7) are obtained. Now it is different — we cannot take scalar products ⟨fjxk⟩

as f and x belong to different Hilbert spaces. We multiply (36) by itself and take the average

— obtain (38) constraint. Substituting (36) to localized state (13) obtain

⟨ψg | U |ψy⟩2 =

∣∣∣∣∣n−1∑
k=0

m−1∑
j,s=0

gjG
f ;−1
js uskyk

∣∣∣∣∣
2

m−1∑
j,j′=0

gjG
f ;−1
jj′ gj′

n−1∑
k,k′=0

ykG
x;−1
kk′ yk′

(37)

⟨fj | fj′⟩ =
n−1∑
k,k′=0

ujk ⟨xk |xk′⟩u∗j′k′ j, j′ = 0 . . .m− 1 (38)

thus the optimization problem does not contain any “projective” factors ⟨fjxk⟩

Ssk;s′k′ =
m−1∑
j,j′=0

〈
fjxk

∣∣K(x)K(f)
∣∣ fj′xk′〉Gf ;−1

js Gf ;−1
j′s′ (39)

F =
m−1∑
s,s′=0

n−1∑
k,k′=0

uskSsk;s′k′u
∗
s′k′ =

M∑
l=1

⟨ψf (l) | U |ψx(l)⟩2 ω(l) −→
U

max (40)
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This is the equation. The ⟨ψf | U |ψx⟩ is interpreted as operator ∥U∥ relating the states from

two different Hilbert space, a type of memoryless quantum channel, a map between two

spaces of operators. Every admissible transformation ujk must satisfy Gram matrix invariance

condition (38). This condition can be satisfied only for m ≤ n since ⟨fj | fj′⟩ has the rank m

and the matrix in the right hand side has the rank not greater than n; in case m > n one

can consider (41) and obtain (43)

xk =
m−1∑
j=0

ukjfj (41)

⟨xk |xk′⟩ =
m−1∑
j,j′=0

ukj ⟨fj | fj′⟩u∗k′j′ k, k′ = 0 . . . n− 1 (42)

⟨ψg | U |ψy⟩2 =

∣∣∣∣∣m−1∑
j=0

n−1∑
k,q=0

ykG
x;−1
kq uqjgj

∣∣∣∣∣
2

m−1∑
j,j′=0

gjG
f ;−1
jj′ gj′

n−1∑
k,k′=0

ykG
x;−1
kk′ yk′

(43)

Thus it is sufficient just to swap x and f in numerical calculations. When working in orthogonal

bases δkk′ = ⟨xk |xk′⟩ and δjj′ = ⟨fj | fj′⟩ the matrix elements of Ssk;s′k′ are (33). Also see

Appendix B below for possible adjustment of probability normalizing.

Mapping an operator A between x- and f - spaces is the same transformation Af
jj′ =∑n−1

k,k′=0 ujkA
x
kk′u

∗
j′k′ as for Gram matrix (38). The optimization problem (40) has the meaning

of finding a quantum channel conveying the highest possible probability from x–space to

f–space. A remarkable feature of this problem is that it does not contain any ⟨fjxk⟩ averages!

All the x → f inference (communication between two ends of quantum channel) now contains

only in operator ∥U∥ — a matrix ujk of the dimension m × n to find from optimization

problem (40). This is an important new result. In [13] coverage optimization problem was

always formulated with some kind of x → f projection; if a model has ⟨fjxk⟩ terms – it is of

“projective” type such as (14), (31) or (34) above. The (37) and (B1) probabilities do not

have ⟨fjxk⟩ terms; operator ∥U∥ directly (36) relates x- and f - spaces subject to (38) scalar

product invariance; it is the only link between IN and OUT spaces. Familiar least squares

expansion (7) satisfies the required constraints (38)

⟨fj | fj′⟩ =
n−1∑
k,k′=0

⟨fjxk⟩Gx;−1
kk′ ⟨xk′fj′⟩ (44)

https://en.wikipedia.org/wiki/Quantum_channel#Heisenberg_picture
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only when f is a subspace of x; Proof: select some orthogonal bases such as δkk′ = ⟨xk |xk′⟩

and δjj′ = ⟨fj | fj′⟩, obtain 1 =
∑n−1

k=0 ⟨fjxk⟩
2, i.e. only when x → f least squares mapping is

exact. Note that one can always apply Appendix (A 5) method of singular values adjustment

to obtain a partially unitary transform from the least squares or any other mapping that

initially does not satisfy the partial unitarity constraints (38).

The optimization considered above has the objective function quadratic on partially

unitary operator ujk. There are other objective functions that are quadratic on partially

unitary operator ujk hence all the optimization above can be applied to them as well. With

(36) definition one can consider it not as probability amplitude mapping ψx → ψf , but as plain

value mapping x → f . This is essentially (37) without a denominator. Consider reproducing

kernel
∑m−1

j,j′=0 fjG
f ;−1
jj′ gj′ , it has a maximum at f = g, assume g is taken from (36), and sum

it squared; obtain

F =
m−1∑
s,s′=0

n−1∑
k,k′=0

uskSsk;s′k′us′k′ =
M∑
l=1

 m−1∑
j,j′=0

f
(l)
j Gf ;−1

jj′

n−1∑
k=0

uj′k′x
(l)
k′

2

ω(l) −→
u

max (45)

Ssk;s′k′ =
m−1∑
j,j′=0

⟨fjxkfj′xk′⟩Gf ;−1
js Gf ;−1

j′s′ (46)

This creates a different version of Sjk;j′k′ , a fourth order moments–type (46) instead of

previously used Christoffel functions product tensor Ssk;s′k′ from (39); an important feature of

(46) is that an application of secondary sampling technique is not required for it’s calculation.

In this setup the conditions on ⟨fjfj′⟩ and ⟨xkxk′⟩ are put into the constraints (38) and

the ⟨fjxkfj′xk′⟩ is put into the objective function4. The mapping with this new Ssk;s′k′ maps

the values, not the probabilities, but the values are considered to belong to some vector space.

The squared term in (45) is just a scalar product of two vectors. With (B1) normalizing both

vectors be of unit length and the maximal value of the objective function is ⟨1⟩. In (45) the

vectors do not have this normalizing. One can also consider a “partially normalized” tensor,

the one with only K(f) term in (33) assuming “average”–type normalizing for xk is due to

(38).

Ssk;s′k′ =
m−1∑
j,j′=0

〈
fjxk

∣∣K(f)
∣∣ fj′xk′〉Gf ;−1

js Gf ;−1
j′s′ (47)

4 In (45) the scalar product of fj and
∑n−1
k=0 ujkxk is squared and then averaged over the sample. In finding

the contributing subspace (20) it is averaged over the sample and then squared. This means the contributing

subspace model assumes the factoring ⟨fjxkfj′xk′⟩ = ⟨fjxk⟩ ⟨fj′xk′⟩. It is similar to Lebesgue quadratures

[18], where interchanging of averaging and taking square produces new result.

https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
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B. Optimization Problem

The problem of finding the Knowledge Generalizing Operator is now reduced to maximizing

(40) coverage F (defined by the tensor Ssk;s′k′ of diverse possible forms) subject to (38)

constraints; the meaning of the constraints is to preserve scalar product (Gram matrix). The

result is ujk matrix, j = 0 . . .m− 1; k = 0 . . . n− 1. This operator, given some input state

(such as localized state |ψx⟩), uniquely (within a phase) finds the function in f -space |U|ψx⟩

(coefficients aj) that predicts the probability (37) of outcome |ψf ⟩:

P (f)
∣∣∣
x
= ⟨ψf | U |ψx⟩2 =

[
m−1∑
j=0

ajfj

]2

m−1∑
j,j′=0

fjG
f ;−1
jj′ fj′

(48)

the f is equal to the value of the outcome we are interested to determine the probability of.

Given x the probability of some outcome f is a squared linear function on fj multiplied by

Christoffel function.

If, however, not the probability but the value of the outcome is required — the easiest

method to obtain it is to consider all possible f to find the maximum5 of (48):

f : max
f
P (f)

∣∣∣
x
= max

fj

[
m−1∑
j=0

ajfj

]2

m−1∑
j,j′=0

fjG
f ;−1
jj′ fj′

(49)

For 1D class label, where fj = f j , the problem is reduced to finding the roots of a polynomial.

In general case the problem can be considered as generalized eigenvalue problem with the

matrices ajaj′ (a dyadic product of two vectors) and Gf ;−1
jj′ in the left- and right- hand sides.

It has a single non-zero eigenvalue (51) (equals to the maximal probability), corresponding

eigenvector (50) gives the most probable outcome f . The maximal probability of the outcome

corresponds to the value

fmaxP
j =

m−1∑
j′=0

Gf
jj′aj′ (50)

5 The probability (48) is invariant with respect to fj → const · fj for an arbitrary non–zero const. Actual

values of fj are determined using the requirement that the constant has always to be present in x- and f -

bases. Since the value of fj corresponding to this specific index j : fj = const is always known (a constant),

the actual values of all fj are obtained as fj/C where C = fj:fj=const; see com/polytechnik/kgo/KGOSol

utionVectorXVectorF.java:evaluateAt(double[]xorig).

https://en.wikipedia.org/wiki/Dyadics#Dyadic,_outer,_and_tensor_products
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P (fmaxP )
∣∣∣
x
=

m−1∑
j,j′=0

ajG
f
jj′aj′ (51)

The P (fmaxP )
∣∣∣
x

is a certainty of the outcome, the maximal possible value of (48), a [0 : 1]

bounded function. A difficulty with this approach is that if f is constructed from a scalar

function, such as fj = f j, this relation may not hold exactly in the result.

Obtained probability formula (48) is of very general form: a linear function on fj squared

divided by a quadratic form on fj. It can be obtained from many different considerations,

the difference between models is in coefficients aj. The simplest solution of this type is a

“direct projection” solution of [13], where we take least squares expansion of |fj⟩ in |xk⟩ (7)

and substitute obtained fLS(x) as the localization point in (13) to obtain
∣∣ψfLS(x)

〉
. This is

an example to obtain the probability of (48) form without quantum channel used. It should

be also noted that squared linear function in numerator arises only for pure states. When

working with states in the form of density matrix — the probability takes the form of two

quadratic forms ratio.

The problem has remarkable invariance features. Consider (17) mappings ψx(l) → ψf (l) ,

l = 1 . . .M of n-dimensional vector ψx(l) to m-dimensional vector |ψf (l)⟩. The vectors are

projected to each other with operator ∥U∥, projection absolute value is then squared and all

summed (40) over the entire sample. The major difference from any observable value–mapping

technique is that if we multiply all ψx(l) and ψf (l) by random phases exp(iφ(l)) the result will

be identical! This is the same as in quantum mechanics: a wavefunction is defined within a

phase, wavefunction absolute value squared defines the probability, but Schrödinger equation

is written for the wavefunction. Similarly, the knowledge generalizing operator ∥U∥ is defined

(for complex matrix) within a phase, for real matrix – within a ±1 factor, but the probability

(48) and coverage (40) are equal to operator ∥U∥ projections squared; individual ψx(l) and

ψf (l) may have arbitrary phases.

Optimization problem (40) subject to (38) constraints is a variant of QCQP problem. It

has the form: to find an operator ∥U∥ optimally transforming an IN state |ψx⟩ into an OUT

state |ψf ⟩ on (17) data, i.e. the ideology is similar to the one of S-Matrix. Currently we can

solve this optimization problem only numerically. The problem is similar to an eigenvalue

problem, see (A7). This is a new algebraic problem:

SU = λU (52)

https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
https://en.wikipedia.org/wiki/S-matrix#Definition
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where S is a Hermitian tensor, “eigenvector” ∥U∥ is a partially unitary m× n matrix, and

“eigenvalues” λ is a Hermitian m×m matrix; functional (40) extremal value is equal to λ

spur (the sum of diagonal elements (A9)). The mathematical structure of this eigenvalue–like

problem, an “eigenoperator” problem, requires a separate study and we hope to obtain

important new results soon. Currently — we have a fast, stable to degeneracy iteration

algorithm to find a solution numerically, see Appendix A below.

Considered model assumes the dynamics is determined by a single unitary operator,

possibly partially unitary. For a x-localized pure state ∥ρx∥ = |ψx⟩ ⟨ψx| a unitary operator

∥U∥ transforms the density matrix to

∥ρ̃x∥ = ∥U|ρx|U †∥ (53)

Whereas in quantum mechanics evolution operator ∥U∥ corresponds to the Hamiltonian

of the system: U = exp
[
−i tℏH

]
, in data analysis knowledge generalizing operator ∥U∥ is

obtained from optimization problem (40) subject to (38) constraint. Quantum evolution of

(53) form always transforms a pure state ∥ρ∥ = |ψ⟩ ⟨ψ| to the pure state ∥ρ̃∥ = |U|ψ⟩
〈
ψ|U †

∣∣,
and a mixed state ∥ρ∥ to the mixed state ∥ρ̃∥. In data analysis there is a common situation

when a pure state is transformed into a mixed state, Markov chain is an example. In this

case a more general form of quantum evolution is required[19]:

ρ̃ =
∑
s

BsρB
†
s (54)

with Kraus operators Bs satisfying6

∑
s

BsB
†
s = 1 (55)

The data we use in this paper is of pure state to pure state mapping (17). For other

type of input data unitary evolution (53) should be replaced by a more general form (54);

one may think about it as a quantum system evolving with several Hamiltonians at once

Bs = exp
[
−i tℏHs

]
, not as about a system evolving with the Hamiltonian H =

∑
s

Hs. The

approach is directly generalizable to e.g. probability distribution to probability distribution

6 Similarly to (38) Kraus operators Bs can also be considered in a “partially unitary”–style with bs;jk matrices

of the dimension m× n satisfying ⟨fj | fj′⟩ =
∑
s

n−1∑
k,k′=0

bs;jk ⟨xk |xk′⟩ b∗s;j′k′ . The optimization problem (40)

then becomes
∑
s

M∑
l=1

⟨ψf (l) |Bs |ψx(l)⟩2 ω(l) −−→
Bs

max.

https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Quantum_operation#Kraus_operators
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mapping: in this case the observations are not localized states mapping ψx(l) → ψf (l) , but

corresponding density matrices mapping ∥ρ(l)x ∥ → ∥ρ(l)f ∥.

Initial x(l) → f (l) input data (1) was converted to pure state to pure state mapping

ψx(l) → ψf (l) (17) to formulate optimization problem (40) subject to (38) constraints. It is

essential from methodical point of view to discuss what input moments are required for

this problem (to obtain the tensor Sjk;j′k′ (39)) and compare with other models. This is

summarized in the table:

Model Tensors Required to Calculate

Least Squares (7) ⟨xkxk′⟩, ⟨xkfj⟩

Radon-Nikodym (11) ⟨xkxk′⟩, ⟨xkxk′fj⟩

x — f Christoffel function (12) ⟨xkxk′⟩, ⟨fjfj′⟩, ⟨xkfj⟩

Pure Joint Distribution (14) ⟨xkxk′⟩, ⟨fjfj′⟩, ⟨xkfj⟩,
〈
xkfj

∣∣K(x)K(f)
∣∣xk′fj′〉

Partial Unitarity (KGO) (37) ⟨xkxk′⟩, ⟨fjfj′⟩,
〈
xkfj

∣∣K(x)K(f)
∣∣xk′fj′〉

Partial Unitarity (KGO) K(f) (47) ⟨xkxk′⟩, ⟨fjfj′⟩,
〈
xkfj

∣∣K(f)
∣∣xk′fj′〉

Partial Unitarity (KGO) adj. (B1) Beyond moments, no ⟨xkfj⟩ used.

The major difference — Knowledge Generalizing Operator (KGO) is the only model that

does not require “projective” moments ⟨xkfj⟩; it requires Gram matrices (4) and (5) of IN

and OUT bases and the moments of the Christoffel functions product (33). These moments

can be obtained with an application of secondary sampling technique[15]: Gram matrices

are built first; then, for every observation l = 1 . . .M , Christoffel function is calculated and

used as it were plain observed at observation l. These moments7 of two Christoffel functions

product are the input used to formulate the problem (40). For a Christoffel function in

some multi-dimensional vector space r (e.g. x (10) or f (23)) with ⟨·⟩ inner product and

non-degenerated Gram matrix Gjj′ = ⟨rj | rj′⟩ there is a 1/r2 asymptotic:

K(r) =
1

⟨r |G−1 | r⟩
=

1∑
j,j′
rjG

−1
jj′rj′

(56)

K(r) ∼ 1/r2 for r → ∞ (57)

The same 1/r2 long–range interaction presents in Coulomb’s law or Newton’s law of gravitation.

With (57) asymptotic the Christoffel function can be viewed as a form of “long–range 1/r2

7 The (B1) KGO model goes “beyond moments”. Even with secondary sampling it is impossible to build

from moments the (18) target functional with the probability (B1). Moreover, this problem is not a QCQP

problem.

https://en.wikipedia.org/wiki/Coulomb%27s_law
https://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation
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interaction”, an anisotropic gravity–like law of data analysis. These non-local features, along

with eigenproblem (A6) of the dimension Dn and SVD (A10) (or Gram matrix eigenproblem

(A26)) that are required on every iteration, substantially slow down the algorithm when

implemented without optimization. At this point, however, the goal is not to build a fast

algorithm, but to understand all the benefits and drawbacks of ML knowledge representation

in the form of partially unitary operator. Let us do a demonstration.

IV. A DEMONSTRATION OF KNOWLEDGE GENERALIZING OPERATOR

APPLICATION

In this section we are going to present several demonstrations of f(x) calculation using

(49). The f and x are treated as linear spaces, a basis for wavefunction, with partially unitary

operator ujk mapping (36). The result is invariant relatively f → C · f . To obtain actual

value of f — it should be normalized to const. The constant has always to be present in both

f– and x– bases. Thus

factual =
f

fj:fj=const
(58)

In this equation the numerator is a linear function on x (36) and the denominator, the

const–component of f , possibly also is a linear function on x. Thus the value obtained from

partially unitary operator mapping is a ratio of two linear functions on x. The least squares

(7) always maps a constant to a constant, thus when ujk is a least squares mapping the

denominator in (58) is always a constant. In Radon–Nikodym mapping (11) the numerator is

a quadratic form on x and the denominator is a positive quadratic form on x; the denominator

is never zero. In (58) the numerator and the denominator are both linear functions on x of

most general form. The divergences coming from denominator’s zeroes are important new

features of the approach. In least squares – these zeroes are on the infinity. Denominator’s

zeroes may come either from deep internal properties of the model or from sub-optimal

solution of the optimization problem (or badly chosen objective function).

The objective function is determined by the tensor Sjk;j′k′ . Whereas properly normalized

probability (B1) lead to a non–QCQP problem, the original Christoffel (39), the adjusted

number of degrees of freedom Christoffel (B7), f–Christoffel (47), and plain ⟨fjxkfj′xk′⟩ (46)

have Sjk;j′k′ tensor readily available and the optimization problem (A1) with the constraints
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FIG. 3. For a data with known exact f = x solution, when numerical method does not find it – it

is possible to have zeroes in (58) and corresponding poles in the behavior.

(A2) can be formulated and solved numerically.

Among available Sjk;j′k′ versions the f–Christoffel (47) has the most “usual” properties.

For example the (39) or (B7), when run with a data of exact x → f homomorphism can

possibly give a higher F on non–exact mapping due to unusual localized states normalizing.

For this reason all the demonstrations below will be performed with f–Christoffel Sjk;j′k′ (47).

Consider a trivial mapping with the measure ⟨g⟩ =
∫ 1

−1
g(x)dx and the basis x constructed

from 1D variable x ∈ [−1 : 1] as xk = xk, k = 0 . . . 6;n = 7, and fj = xj for j = 0 . . . 4;m = 5.

The solution is trivial: take first m components of xk and regularize; then use them for

both: x and f . However, when the numerical algorithm cannot find this exact solution we

can observe a deviation from exact match. In Fig. 3 the exact solution along with two

approximate solutions of different quality are presented. A not very accurate approximate

numerical solution may give poles corresponding to the zeroes in (58) denominator (clearly

https://en.wikipedia.org/wiki/Homomorphism
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FIG. 4. A square wave step function (the same as in Fig. 2), with least squares (blue), least squares

with (A11) SVD adjustment (light blue), and maximal eigenvalue with (A11) SVD adjustment

(green).

observed for f approx 2 near interval edge).

In Fig. 4 a square wave step function (the same as in Fig. 2) is presented with the

same measure and basis; n = 7. The f takes only two values since the only available m is

m = 2. The exact solution was difficult to obtain numerically as the problem is substantially

degenerated. We present three approximate solutions. The blue line is regular least squares

(7). Light blue is the same least squares mapping (7) adjusted with (A11) to partial unitarity.

Green — maximal eigenvalue (A3) solution adjusted to partial unitarity with (A11). One

can see that partial unitarity adjustment makes little changes to least squares solution. For

adjusted maximal eigenvalue solution the (58) denominator poles are close to the support of

x, this creates two artifacts in f . Note almost exact f = 1 matching in the center.

Consider a 2D example. Let us take an image and consider it as a two–dimensional basis
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mapping a pixel coordinate (x, y) to gray intensity f .

(x, y)(l) → f (l) weight ω(l) = 1 (59)

k = (kx, ky) (60)

xk = xkxyky 0 ≤ kx ≤ nx − 1; 0 ≤ ky ≤ ny − 1 (61)

fj = f j j = 0 . . .m− 1 (62)

This forms a (1) basis8 of n = nxny and m dimensions. Let us construct an operator ujk

mapping x → f . A simple example is least squares (7), it creates a familiar image expansion

similar to Fourier series. However, we are interested in operators ujk satisfying all partial

unitarity constraints (38). A simple variant of constraint–satisfying operator can be obtained

from any ujk operator applying Appendix A5 algorithm. In Fig. 5 (top row) we present

original image, least squares expansion and constraint–adjusted least squares for nx = ny = 25,

m = 5. The constraint–adjusted least squares is very similar to the original least squares.

The least squares operator maps pixel coordinates to gray intensity, not the localized states

wavefunction. When an operator is optimized to map the wavefunctions this may cause

poles in values, the zeroes of (58) denominator. It is trivially to construct a partially unitary

operator ujk preserving the constant: construct a partially unitary operator mapping x-space

without const to f -space without const x\C → f\C, then do a direct sum with C → C

mapping. We do not perform such a transform specifically to observe the poles in (58).

We present three pictures, corresponding to ujk operators differently optimizing (40) with

f–Christoffel tensor (47). In Fig. 5 (middle row) we present the results corresponding to

these three ujk: optimizing (40) with simplified constraints (A5), the same one adjusted

with (A11) to partial unitarity, and optimization result with Section A4 algorithm (overall

the best optimization algorithm we have so far). Left two pictures in the middle row — a

simple solutions (based on trivial approach of maximal eigenvalue state), they have noticeable

1/n{x,y} scale artifacts. The last one is very close to the global maximum of (40) and “mixes”

the modes much stronger . The poles of (58) separate the regions and the structure of these

“separators” can be a subject of our future research.

The developed approach works with probabilities, not with the values. For this reason it

is of interest to present the probability (48) at given known outcome f = f (l). The result is
8 For numerical stability it is better to use argument–scaled Chebyshev polynomials rather than monomials

powers xkxyky and f j .
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FIG. 5. A demonstration of image interpolation with nx = ny = 25, m = 5. Top row: original image,
least squares (7) interpolated, and the same least squares adjusted with (A11) to partial unitarity
constraints. Middle row: optimization (40) with simplified constraints (A5) (the state of maximal
eigenvalue), the same one adjusted with (A11) to partial unitarity constraints, and optimization
result with Section A 4 algorithm. Bottom row: The probability (48) is calculated at actual f , white
P = 1, black P = 0. It is calculated for: least squares (7) (“direct projection” model of [13]), the
state of maximal eigenvalue (unadjusted), and Section A 4 algorithm.

presented in Fig. 5, the bottom row. The probability is scaled as white P = 1, black P = 0.

It is presented in the bottom row for three algorithms: least squares (7), the state of maximal

eigenvalue (unadjusted), and Section A4 algorithm.

The method to overcome noticeable 1/n{x,y} artifacts in Fig. 5 is to use properly normalized
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states (B1). In most general form it can be considered as an unconstrained optimization

problem. Given sampled data (1) find a linear transform ujk (63), a general form matrix of

the dimension m× n, maximizing (64)

fj =
n−1∑
k=0

ujkxk j = 0 . . .m− 1 (63)

F =
M∑
l=1

〈
ψf (l)

∣∣ψu(x(l))

〉2
ω(l) −→

u
max (64)

Here the |ψg⟩ is the state (13) localized at f = g, and
∣∣ψu(x)〉 is also f–localized state (13) with

the localization point g determined by (63) linear mapping. When expanded
〈
ψg

∣∣ψu(y)〉2
is (B1). The objective function (64) is the total probability transferred from x–space to

f–space; this is an unconstrained problem. In this most general form the problem is not

a QCQP problem and it is difficult to solve numerically; the difficulty is that with
∣∣ψu(x)〉

state the operator ujk enters (through localization point g) both the numerator and the

denominator of (13), what makes the optimization problem (64) not a QCQP problem.

The problem can be substantially simplified when the ujk mapping is considered to be a

partially unitary transform (38) to obtain a QCQP problem. The problem can be further

approximated by splitting the solution into two steps: selecting the contributing subspace

ϕk of the dimension m, then constructing a unitary (not partially unitary) mapping from

the contributing subspace to fj. A simple projective approach is presented above in Eq. (26)

or, more generally, in the Appendix C below. A simple solution of this type is the “direct

projection” model of [13] where the localization point is determined from plain least squares

(7) to obtain the state
∣∣ψfLS(x)

〉
. The probability

〈
ψf (l)

∣∣ψfLS(x(l))

〉2 of the “direct projection”

model is presented in Fig. 5 (leftmost in the bottom row).

These demonstrations make us to conclude that partial unitary mapping is a rich form of

knowledge representation with a high generalizing power, however a more study is required.

V. CONCLUSION

The developed knowledge generalizing operator concept is similar to the S-Matrix approach

since it is an operator optimally transforming an IN state |ψx⟩ into an OUT state |ψf ⟩. As

any wavefunction in ML is known within an arbitrary phase the equation for the operator

must include only observable values. The problem we consider is to recover ∥U∥ from all it’s

https://en.wikipedia.org/wiki/S-matrix#Definition
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projections squared, from the probabilities (37). The condition of operator’s optimality is

(40) coverage maximization on (17) data; it is a new kind of algebraic problem (52) — the

equation to determine the ∥U∥. The situation is the same as with the Schrödinger equation:

the equation is written for ψ, but only ψ2 is observable. This is the difference between

our and all other ML knowledge representation techniques where knowledge representation

characteristics are observable values. If a model relates an initial observable and the final

observable then it is a “joint distribution model”, it cannot predict something that has not

been already observed in the training data. Knowledge generalizing operator relates the

amplitude of the initial state to the amplitude of the final state. This is the very feature that

creates generalization. The same is in quantum mechanics: ψ2 vs ψ; whereas a mapping of

ψ2 is meaningless, the mapping of ψ determines the dynamics of a system.

Considered maximization problem (40) is a simple example of knowledge generaliz-

ing operator technique: for observations l = 1 . . .M convert x(l) → f (l) to ψx(l) → ψf (l) ,

then reconstruct ∥U∥ from it’s projections squared ⟨ψf (l) | U |ψx(l)⟩2. The problem can be

generalized by considering, instead of l, x, f , and ⟨·⟩, the structures generalizing the con-

cepts of set, vector, and measure. In the most general form it can be formulated as: for

ψ ∈ Sx and φ ∈ Sf recover partially unitary operator ∥U∥ from it’s projections squared∑
l∈M

ω(l)
〈
φ(l)

∣∣U ∣∣ψ(l)
〉2 −→

U
max. The problem can be further generalized by considering

mixed states ∥ρ∥ ∈ Sx and ∥ϱ∥ ∈ Sf and recovering Kraus operators Bs (54) from projections

squared:
∑
l∈M

ω(l)
∑
s

Spur∥ϱ(l)|Bs|ρ(l)|B†
s∥ −→

Bs

max.

There is another interesting twist to the considered problem of finding a partially unitary

matrix ujk of the dimension dim(OUT)× dim(IN) mapping operators from |IN⟩ to |OUT⟩.

Consider the problem: for dim(OUT) < dim(IN) select dim(OUT) input attributes out of

all dim(IN) available that maximize some correctness condition which is a function of all

selected attributes. For all interesting correctness conditions this problem is typically a one of

NP–complete type. There is a single correctness function (least squares) that can be trivially

solved. Maximization of total matched probability (18) among all partially unitary operators

ujk also selects dim(OUT) inputs from all dim(IN) available. This is a new algebraic problem

(52). Found mapping ujk can be viewed as a solution to attributes selection problem with

correctness conditions somewhere “in between” least squares and NP–complete, for example

there is a simple subspace selection approach (C6) — then a problem of unitary mapping

(not partially unitary) can be directly solved.

https://en.wikipedia.org/wiki/NP-completeness
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Appendix A: A Numerical Solution to Find the Knowledge Generalizing Operator

The problem we consider is a QCQP problem to maximize (A1) subject to (A2) constraint.

F =
M∑
l=1

⟨ψf (l) | U |ψx(l)⟩2 ω(l) =
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′uj′k′ −→
u

max (A1)

⟨fj | fj′⟩ =
n−1∑
k,k′=0

ujk ⟨xk |xk′⟩uj′k′ j, j′ = 0 . . . D − 1

(A2)

Without loss of generality we put δkk′ = ⟨xk |xk′⟩ and δjj′ = ⟨fj | fj′⟩ as we can always choose

an orthogonal basis by applying, for example, an orthogonalization of Gram–Schmidt type.

Contrary to other methods (e.g. regular principal components) the result obtained with

knowledge generalizing operator is invariant with respect to (8) transform of input data, thus

it does not depend on initial regularization. The problem becomes:

F =
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′uj′k′ −→
u

max (A3)

δjj′ =
n−1∑
k=0

ujkuj′k j, j′ = 0 . . . D − 1 (A4)

Consider the squared Frobenius norm of matrix ujk to be a “simplified constraint”:
D−1∑
j=0

n−1∑
k=0

u2jk = D (A5)

This is a “partial” constraint (it is the sum of all (A4) diagonal elements). For this “partial”

constraint optimization problem (A3) can be readily converted to an eigenvalue problem that

can be directly solved. The main idea is to adjust this “preliminary” solution to satisfy the

full set of (A4) constraints and then calculate new values of Lagrange multipliers. Performing

several iterations the process possibly converge to (A3) maximum with all the required

constraints (A4) satisfied. In [13] a similar technique has been tried for a unitary operator

(19). The (A4) corresponds to partially orthogonal operator (partially unitary real matrix):

D ≤ n.

Consider Lagrange multipliers λjj′ , a matrix of D×D dimension, to approach optimization

problem (A3) with the constraints (A4)
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′u
∗
j′k′ +

D−1∑
j,j′=0

λjj′

[
δjj′ −

n−1∑
k′=0

ujk′u
∗
j′k′

]
−→
u

max (A6)

https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
https://en.wikipedia.org/wiki/Principal_component_analysis#Further_considerations
https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm


28

Despite the matrix ujk being real we write it in a “complex” form to variate separately over

ujk and u∗jk. The tensor Sjk;j′k′ = S∗
j′k′;jk is Hermitian. The variations

0 =
D−1∑
j′=0

n−1∑
k′=0

uj′k′Sj′k′;jk −
D−1∑
j′=0

λj′juj′k (A7a)

0 =
D−1∑
j′=0

n−1∑
k′=0

Sjk;j′k′u
∗
j′k′ −

D−1∑
j′=0

λjj′u
∗
j′k (A7b)

are consistent only when λjj′ is a Hermitian matrix

λjj′ = λ∗j′j (A8)

From (A7) it follows that the functional (A3) extremal value is equal to the spur of Lagrange

multipliers matrix λjj′ :

maxF =
D−1∑
j=0

λjj (A9)

An iterative algorithm finding the maximum of (A3) subject to (A4) constraints is:

1. Take initial λij and solve optimization problem (A6) with respect to ujk subject to

partial constraint (A5). Solution method — an eigenvalue problem of Dn dimension in

a vector space formed by writing all ujk matrix elements in a vector, row by row. The

result: p = 0 . . . Dn− 1 eigenvalues F [p] and corresponding matrices u[p]jk reconstructed

back from the eigenvectors, row by row.

2. To select the ujk among all Dn eigenstates one need to try a number of them, selecting

the ones providing a large value of the original functional. Taking only the state of

the maximal eigenvalue typically gives a local maximum. Chosen ujk is not partially

unitary as the constraint (A5) is a subset of the full ones (A4). Expand ujk in SVD:

ujk =
D−1∑
j′=0

n−1∑
k′=0

Ujj′Σj′k′V
†
k′k (A10)

and adjust all SVD numbers to ±1. The Σjk = δjk is typically the best option as this

is the minimal change (initial Σjj are positive). Obtained

ũjk =

min(D,n)−1∑
s=0

UjsV
†
sk (A11)

https://en.wikipedia.org/wiki/Singular_value_decomposition
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is a partially unitary matrix satisfying all the constraints (A4). This ũjk becomes the

next iteration ujk of the solution. Because of ujk → ũjk adjustment the value of F

becomes less optimal. There are other methods to adjust the ujk to satisfy the full set

of (A4) constraints, for example an eigenvector expansion of the matrix
∑n−1

k=0 ujkuj′k

followed by eigenvalues adjustment[17], Gram–Schmidt orthogonalization, etc. However,

the SVD expansion (A10) is special, see (A52) below.

3. Put this new ujk to (A7a), then multiply it by u∗ik and sum over k = 0 . . . n− 1. As the

ujk is partially unitary (A4) obtain new values for Lagrange multipliers λ̃ij and take

it’s Hermitian part9:

λ̃ij =
D−1∑
j′=0

n−1∑
k,k′=0

uj′k′Sj′k′;jku
∗
ik (A12)

λij =
1

2

[
λ̃ij + λ̃∗ji

]
i, j = 0 . . . D − 1 (A13)

This λij is the next iteration of Lagrange multipliers. As iterations proceed – the λ̃ij

is expected to converge to a Hermitian matrix by itself, without (A13) required. For

original (not yet full–constraint adjusted) ujk, which is an eigenvector of Sj′k′;jk, the

λ̃ij is Hermitian. The anti–Hermitian part of λ̃ij cancels in the quadratic form (A6).

One can possibly obtain a Hermitian λij right away with multiplication of (A7a) by

itself (instead of ujk for (A12)); the Hermitian λij is then obtained from λ2ij as all the

eigenvalues of λij are all positive; the result is very similar to (A13), a drawback for

this new λij — the (A9) now holds only approximately for current iteration of ujk, see

com/polytechnik/kgo/KGOIterationalLambda2.java.

4. Put this new λij to (A6) and repeat iteration process until converged. On the first

iteration take initial values of Lagrange multipliers λij = 0.

For a simpler scalar QCQP optimization problem of [15], “Appendix F: Directional Information:

I −→
ψ

max Subject To the Constraint ⟨ψ |C |ψ⟩ = 0”, where we considered a single quadratic

9 The equation for Lagrange multipliers (A12) produces an arbitrary matrix λ̃ij ; a variation of the constraints

produces Hermitian matrix λij . Lagrange multipliers in (A7) should be set to make the first variation

at given ujk as close to zero as possible; least squares expansion of the first variation (D × n matrix) in

Lagrange multipliers (D ×D matrix) gives (A12). For an arbitrary matrix A it’s best approximation by

a Hermitian matrix B is the Hermitian part B = AH = 1
2 (A+A†). This follows immediately from the

Frobenius norm triangle inequality by splitting the matrix into Hermitian AH and anti–Hermitian AAH

parts: ∥B − A∥F = ∥B − AH −AAH∥F ≤ ∥B −AH∥F + ∥AAH∥F .

https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Skew-Hermitian_matrix
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constraint, similar iterative algorithm converges fast but may fail when optimization and

constraint matrices have a number of eigenvectors in common. The optimization problem

(A3) subject to (A4) constraints is a problem of (52) type, it has a more complex internal

structure than the problem considered in [15].

The described Lagrange multipliers algorithm is based on eigenvalue problem solution:

(A6) with partial constraint (A5) as normalizing: D = ⟨ψ2⟩. It is much less sensitive to

degeneracy than Newtonian type iterations, where even a single degenerate degree of freedom

makes linear system (with Hessian matrix) iteration to fail. A question arise when the

described above iterative algorithm fails. Currently — we do not have the exact answer;

the condition of iterative algorithm convergence requires a separate study. The algorithm

does not converge well for partially unitary operators with D < n, but given large enough

iterations number it produces a good enough solution. The reason for a slow convergence

is that with (A12) λij the Hessian matrix is degenerated at the adjusted ujk (A11) — at

this ujk not only first but also second variation of the objective function is zero; this is a

constraint qualification problem. The algorithm does not diverge, it provides a sequence of

close to optimal solutions. See com/polytechnik/kgo/KGOIterationalSimpleOptimizati

onU.java for a numerical implementation. We also tried to find an algorithm of contraction

mapping type, but this requires more study. The convergence can be greatly improved using

linear constraints, see Appendix A 4 below where the constraints (A4) were replaces by the

closeness of ujk to current iteration value (A40). In many situation, however, an approximate

solution is sufficient.

1. On Constrained Optimization In The Singular Values Basis

Before we go further let us discuss the roles of (A10) singular values and their relation to

the calculation of Lagrange multipliers. If we write optimization problem (A6) in SVD basis

(A10) the ujk is represented as a product of three matrices. The constraints (A4) require

all singular values Σjj = ±1. We denote this diagonal matrix as vector Σs. The objective

function (A1) is then F =
∑D−1

s,s′=0 ΣsS̃ss′Σs′ . Obtain constrained optimization problem with

D Lagrange multipliers λ̃s

D−1∑
s,s′=0

ΣsS̃ss′Σs′ +
D−1∑
s=0

λ̃s
[
1− Σ2

s

]
→ max (A14)

https://en.wikipedia.org/wiki/Newton%27s_method#k_variables,_k_functions
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Lagrange_multiplier#Multiple_constraints
https://en.wikipedia.org/wiki/Contraction_mapping
https://en.wikipedia.org/wiki/Contraction_mapping
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S̃ss′ =
D−1∑
j,j′=0

n−1∑
k,k′=0

UjsV
†
skSjk;j′k′Uj′s′V

†
s′k′ (A15)

from which we immediately obtain the values

λ̃s =
1

Σs

D−1∑
s′=0

S̃ss′Σs′ (A16)

for all adjusted Σs = 1

λ̃s =
D−1∑
s′=0

S̃ss′ (A17)

Comparing (A14) with (A6) obtain λij in original basis

λ̃s =
D−1∑
i,j=0

λijUisUjs (A18)

λij =
D−1∑
s=0

UisUjsλ̃s (A19)

Whereas the original functional (A6) has D2 Lagrange multipliers λij, the (A14) has only

D — a constraint for every singular value of the matrix ujk; it is clear why: since the partial

constraint (A5) is always satisfies from the eigenproblem it is sufficient to set D− 1 diagonal

elements of (A4) to 1, then all off–diagonal elements are immediately zero.

2. On Iteration Step Without Using The SVD

In the algorithm above we extensively used SVD expansion (A10) for iterations. Let us

consider how to avoid using the SVD by replacing it with an eigenvalue problem of the

dimension D×D for the purpose of both: computational complexity and better understanding

of the algorithm. Obtained partial constraint (A5) solution matrix ujk is non–orthogonal,

the Gram matrix is:

Gu
jj′ =

n−1∑
k=0

ujkuj′k (A20)

We need to “adjust” ujk to satisfy the full set of (A4) constraints. Consider the eigenstates of

the Gram matrix ∣∣Gu|u[i]
〉
= λ

[i]
G

∣∣u[i]〉 (A21)
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The eigenvalues of this problem are equal to the singular values (A10) squared λ
[i]
G = Σ2

ii.

Setting all λ[i]G = 1 (eigenvalues adjustment technique [17]) produces a new basis in which

(A4) constraints are satisfied in full. The result is identical to the transform (A11) of setting

all Σjj = 1 but it is obtained without solving a SVD problem, the eigenvalue D×D problem

(A21) is used instead, see com/polytechnik/kgo/KGOEVSelection.java:getEVAdjustedT

o1() for an implementation.

Optimization problem is question is invariant relatively a unitary transform (the Asj is a

unitary matrix)

vsk =
D−1∑
j=0

Asjujk (A22)

The tensor Sjk;j′k′ transforms with Asj as (A23), Gram matrix (A20) corresponds to the

tensor Sjk;j′k′ = Gu
jj′δkk′ .

Ssk;s′k′ =
D−1∑
jj′=0

AsjSjk;j′k′As′j′ (A23)

F =
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′uj′k′ =
D−1∑
s,s′=0

n−1∑
k,k′=0

vskSsk;s′k′vs′k′ (A24)

The constraints for new variables vsk have the same form (A4)

δss′ =
n−1∑
k,k′=0

vskvs′k s, s′ = 0 . . . D − 1 (A25)

Let us transform the input to the basis of Gram matrix eigenvectors. Solve generalized

eigenproblem (A21) to find the eigenvalues λ[s]G and the eigenvectors v[s]j of the Gram matrix

Gu
jj′

D−1∑
j′=0

Gu
jj′v

[s]
j′ = λ

[s]
G v

[s]
j (A26)

Were it all λ[s]G = 1 — the eigenstates of the Gram matrix would form the sought partially

unitary operator, but this is typically not. Take Gram matrix eigenvectors as a new basis,

the unitary transform matrix is Asj = v
[s]
j , and write optimization problem (A24) in this new

basis vsk (A22) with the tensor Ssk;s′k′ transformed from the Sjk;j′k′ according to (A23). If all

scaling coefficients µs = 1 — this would be exactly the original problem since it is invariant
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relatively unitary transforms of the basis, but if we put the factors µs (A27) — this makes

the solution to satisfy (A25); non–unitary scaling factors µs adjust the solution to satisfy the

full set of the constraints.

µs = ± 1√
λ
[s]
G

(A27)

D−1∑
s,s′=0

n−1∑
k,k′=0

µsvskSsk;s′k′vs′k′µs′ −→
v

max (A28)

This scaling adjustment performed in Gram matrix basis is an alternative to SVD adjustment

(A11). One need to convert the problem from original basis to the basis of Gram matrix

eigenvectors, then scale them by the (A27) factors. The µsvsk satisfies partial orthogonality

constraints. We can write optimization problem in this new basis, and perform the iterative

algorithm of Appendix A above, then “chaining” unitary transforms as iterations proceed, the

result will be identical as the problem is invariant relatively these transforms, but the idea

of solution adjustment in the from of pure scaling opens a number of new ways to improve

the algorithm, see com/polytechnik/kgo/KGOIterationalMultipleTransforms.java for

a numerical implementation.

3. On Operator–Dependent Solution Adjustment

In the previous section we considered solution adjustment procedure applied to some

initial “partial” solution. This adjustment is a non–unitary basis transform. A question arise

about a generalization: applying some other non–unitary transform before the adjustment.

Optimization problem in question is to maximize (A29) subject to (A30) constraints:

F
D

=

D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′uj′k′

D−1∑
j=0

n−1∑
k=0

u2jk

−→
u

max (A29)

δjj′ =
n−1∑
k=0

ujkuj′k j, j′ = 0 . . . D − 1 (A30)

Consider a Hermitian operator J with matrix elements Jjj′ , this can be e.g. Lagrange

multipliers matrix (A13), unit matrix, etc. A generalized eigenvalue problem with Jjj′ and
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Gu
jj′ (A20) matrices is formulated as

D−1∑
j′=0

Jjj′v[s]j′ = λ
[s]
J

D−1∑
j′=0

Gu
jj′v

[s]
j′ (A31)

Because of the Gram matrix Gu
jj′ in the right hand side obtained solution

vsk =
D−1∑
j=0

v
[s]
j ujk (A32)

satisfies (A30) constraints δss′ =
∑n−1

k,k′=0 vskvs′k. The transform v
[s]
j is non–unitary

δss′ =
D−1∑
j,j′=0

v
[s]
j G

u
jj′v

[s′]
j′ (A33a)

Gu;−1
jj′ =

D−1∑
s=0

v
[s]
j v

[s]
j′ (A33b)

Condition (A33a) creates the basis (A32) satisfying partial orthogonality constraints. Let us

write the optimization problem (A29) in this new basis vsk. Using

ujk =
D−1∑
j′,s=0

Gu
jj′v

[s]
j′ vsk (A34)

obtain the original problem (A29) with the tensor Ssk;s′k′ instead of Sjk;j′k′

Ssk;s′k′ =
D−1∑

j,j′,i,i′=0

v
[s]
i G

u
ijSjk;j′k′G

u
i′j′v

[s′]
i′ (A35)

This is a generalization of (A23) to non–unitary transforms. This is exactly the original

problem (without an adjustment), but written in the vsk basis.

It can be noticed that adjustment procedure of previous section is actually a non–unitary

transform with the inverse square root of the Gram matrix Gu;−1/2
jj′ (A27); there are 2D−1

distinct combinations of signs but we take all equal to 1. The adjustment is equivalent to

multiplying (A34) by Gu;−1/2
jj′ to obtain the “adjusted” tensor

Sadjsk;s′k′ =
D−1∑

j,j′,i,i′=0

v
[s]
i G

u;1/2
ij Sjk;j′k′G

u;1/2
i′j′ v

[s′]
i′ (A36)

This way the adjustment is “transferred” from the state ujk to operator Ssk;s′k′ . Equivalent

ujk adjustment corresponds to ujk =
∑D−1

j′,s=0G
u;1/2
jj′ v

[s]
j′ vsk. The (A36) is an important option

to transfer an adjustment from a state to tensor, this allows to combine the adjustment with

optimization algorithm. Considered in Section A 2 above adjustment procedure corresponds

to Jjj′ being a unit matrix.
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4. On Optimization Algorithm With Linear Constraint Iteration

In previous sections we considered optimization algorithm with quadratic constraints of

(A4) form. In numerical implementation (A6) these constraints lead to a poor convergence

since at the point the constraints are applied the Hessian matrix is degenerated. Consider a

linear type of constraints.

Extend ujk with one more degree of freedom χ to form a “vector” of the dimension

D × n+ 1.

z =

ujk
χ

 (A37)

Then the quadratic from

F =
zTSz
zTz

=

χ2S0 + 2χ
D−1∑
j=0

n−1∑
k=0

bjkujk +
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′uj′k′

χ2 +
D−1∑
j=0

n−1∑
k=0

u2jk

(A38)

has the matrix S

S =

 Sjk;j′k′ bj′k′

bjk S0

 (A39)

The idea is to consider the bjk and S0 as some kind of “Lagrange Multipliers” to set the

variation of (A38) to zero at the “adjusted” ujk, denote it as iteration value uITjk . Consider

the constraints

ujk − uITjk = 0 (A40)

this is the closeness of ujk to current iteration value uITjk (adjusted value satisfying all the

required constraints (A4)). A one more degree of freedom χ was introduced to preserve the

form of the Rayleigh quotient for the optimization problem (A38). Variating it over ujk and

χ obtain (A43) and (A44) respectively; in these formulas ujk = uITjk , F IT
0 is a known constant,

and B0 and S0 are unknown constants.

F IT
0 =

D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′uj′k′ (A41)

B0 =
D−1∑
j=0

n−1∑
k=0

bjkujk (A42)

https://en.wikipedia.org/wiki/Rayleigh_quotient
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0 =
D−1∑
j′=0

n−1∑
k′=0

Sjk;j′k′uj′k′ + χbjk −
χ2S0 + 2χB0 + F IT

0

D + χ2
ujk (A43)

0 = χS0 +B0 −
χ2S0 + 2χB0 + F IT

0

D + χ2
χ (A44)

0 = F IT
0 + χB0 −

(
χ2S0 + 2χB0 + F IT

0

) D

D + χ2
(A45)

Multiply (A43) by ujk and sum it over j and k, obtain (A45). For a given χ the (A44) and

(A45) can be considered as a linear system for B0 and S0. Obtained 2× 2 linear system is

degenerated and has multiple solutions:

(D − χ2)B0 + (Dχ)S0 = F IT
0 χ (A46)

The specific set (χ, S0, B0) should be selected for best convergence. The selection

χ = 1 (A47a)

S0 = F IT
0 (A47b)

B0 = −S0 (A47c)

is the first one to try.

1. Take the values of bjk and S0 to construct (A39).

2. Solve (A38) and select the most appropriate vector z. The result of this step — the

“adjusted” uITjk satisfying all the required constraints (A4).

3. Take this new uITjk , and select some value of χ, for example (A47), calculate “Lagrange

Multipliers” bjk (A43) and S0 (A46) to construct (A39) matrix. If one uses χ value

from (A38) maximization problem — iterations typically stick to some local maximum.

If one uses a fixed value for χ, such as (A47a) — a convergence is observed; not very

fast, but better than in the Appendix A above. Repeat iteration process. On the first

iteration take bjk = S0 = 0.

This “Linear constraints” algorithm is implemented in the com/polytechnik/kgo/KGOItera

tionalLinearConstraintsE.java. An attempt to use D extra degrees of freedom instead

of a single one was much less successful com/polytechnik/kgo/KGOIterationalLinearCon

straintsExtraDegreesOfFreedom.java.



37

5. An Algorithm to Find an Approximate Solution to the Knowledge Generalizing

Operator

Consider the same problem (A3) subject to (A4) constraint. The bases are considered

already orthogonalized: δjj′ = ⟨fj | fj′⟩ and δkk′ = ⟨xk |xk′⟩. Assume we found optimization

problem (A3) solution with “partial” constraints (A5), this is (A6) with λij = 0. Put it to

(A2) and expand ujk in SVD:

ujk =
D−1∑
j′=0

n−1∑
k′=0

Ujj′Σj′k′V
†
k′k (A48)

⟨fj | fj′⟩ =
n−1∑
k,k′=0

ujk ⟨xk |xk′⟩u∗j′k′ j, j′ = 0 . . . D − 1 (A49)

Write (A49) for orthogonal bases xk and fj

xk =
n−1∑
k′=0

V †
kk′xk′ (A50)

fj =
D−1∑
j′=0

U †
jj′fj′ (A51)

⟨fj | fj′⟩ =
n−1∑
k,k′=0

Σjk ⟨xk | xk′⟩Σj′k′ j, j′ = 0 . . . D − 1 (A52)

The (A52) is (A49) written in xk and fj orthogonal bases. Since δjj′ = ⟨fj | fj′⟩ and δkk′ =

⟨xk | xk′⟩ the (A52) is satisfied only when all singular values of ujk are ±1. Actually we made a

single iteration of the algorithm above, this Σjk-adjusted solution is an approximate solution

one should try first. Since Σjk is diagonal, in the (fj, xk) basis we have a one–to–one relation

fj = xjΣjj (A53)

This is not a least squares type of relation, for example the result is invariant relatively the

transform Σjk → −Σjk. If (fj, xk) basis satisfies (A52) then all singular values are ±1 (the

condition of partial unitarity) and (fj, xk) relation is plain fj = ± xj. The probability (37) in

this basis is

⟨ψf | U |ψx⟩2 =

∣∣∣∣∣D−1∑
j=0

fjxjΣjj

∣∣∣∣∣
2

D−1∑
j=0

f2j
n−1∑
k=0

x2k

(A54)
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Partial unitarity “adjusted” case corresponds to Σjj = ±1.

Consider the meaning of a state with an arbitrary Σjj′ . The (A52) is actually the constraint

(A4) but with the positive diagonal matrix Σ2
jj′ , not δjj′ . What does it mean if we put this

ujk “partial constraint (A5)” solution to probability (37) without any adjustment? This

breaks the preservation of probability, the probability (A54) is no longer [0 : 1] bounded,

it is now 0 ≤ P (f)
∣∣∣
x
≤ max

j
Σ2
jj; the range [0 : 1] holds only “on average”, for the entire

sample. However, this does not change the calculation of outcome value (49). One can also

modify (A54) to have the probability [0 : 1] bounded, the maximal value is 1, it corresponds

to fj = xjΣjj.

P (f)
∣∣∣
x
≈

∣∣∣∣∣D−1∑
j=0

fjxjΣjj

∣∣∣∣∣
2

D−1∑
j=0

f2j
D−1∑
j=0

x2jΣ
2
jj

(A55)

But this is only for evaluation, this is not the function used in optimization problem,

optimization problem with the probability (B1) is much more difficult. There is a trivial

option to use the probability (B2) for optimization and (A55) for evaluation. The Σ2
jj,

j = 0 . . . D − 1, factor (whether the singular values are adjusted or not) in the denominator

prevents a decrease of probability when polluting the x–space with a large number of

completely random components (B6); the value of f (49) does not depend on this x–depended

factor, maximal value of probability corresponds to fj = xjΣjj; the probability is invariant

with respect to fj → Cfj , normalize it to const to obtain actual values. This partial constraint

solution of (A3) subject to (A5) is an approximate solution one may try. Whereas a quantum

channel that preserves probability “on average” does not have a physical meaning, in data

analysis it is an approximation with a clear meaning: it emphasizes (A52) internal relations

with high probability, the Σjj factor in (A55). Mathematically this means that in (52) we

allow operators U that preserve Gram matrix spur: D =
D−1∑
j=0

Σ2
jj, not the Gram matrix itself

(A49) as previously considered; the solution can be found from eigenproblem (A6) in original

basis with λij = 0.

Conceptually, this technique consists in taking any approximate ujk, such as least squares

(7) or any other matrix, not necessary (A6) solution, Gram matrix spur preservation is not

required, expanding ujk in SVD (A48), then set Σjj to 1 or −1. There are 2m−1 distinct

combinations, typically the minimal change adjustment — all Σjj = 1 gives the best result as
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the initial Σjj are positive. Obtained new ujk matrix with singular values equal to ±1 satisfies

all the required constraints (A49). Alternatively one can solve the eigenproblem (A21) and

adjust all the eigenvectors by the factors ±1/
√
λ[j] (A27) to obtain the same solution without

using the SVD (it is equivalent to multiplication (A36) of unadjusted ujk by inverse square

root of corresponding Gram matrix).

Appendix B: On Adjusted Normalizing Of Probability

The probability (37) has a normalizing factor as a product of two Christoffel functions: on

x and on f (33); these two Christoffel functions have n and m degrees of freedom respectively.

In some situations it is convenient to construct a normalizing factor where both x- and f -

factors have the same number of degrees of freedom: m.

One can consider the probability adjusted to only “important” x–components, this is〈
ψg

∣∣ψu(y)〉2 from (64) expanded:

⟨ψg | U |ψy⟩2 =

∣∣∣∣∣n−1∑
k=0

m−1∑
j,s=0

gjG
f ;−1
js uskyk

∣∣∣∣∣
2

m−1∑
j,j′=0

gjG
f ;−1
jj′ gj′

m−1∑
j,j′=0

n−1∑
k,k′=0

ykujkG
f ;−1
jj′ uj′k′yk′

(B1)

Whereas this formula for
〈
ψg

∣∣ψu(y)〉2 has a more suitable normalizing than (37), it has

ujk in the denominator and the problem can no longer10 be reduced to the one of form

(40) that requires only the moments of Christoffel functions product (33). For probability

evaluation, not for optimization, this can be done straightforward (A55). A quantum channel

ujk optimizing (18) with the probability (B1) is an interesting direction of future research,

this new problem is no longer a QCQP problem — it is a problem to maximize the sum of

M ratios of two quadratic forms on ujk subject to (38) constraint or, more generally, an

unconstrained optimization of (64). The one in the numerator is a dyadic product squared,

the one in the denominator is non–negative, it cancels with the numerator when it’s value is

close to zero.

To adjust the number of degrees of freedom one can use a much simpler alternative

approach. All we need is to calculate a Christoffel function in x–space to normalize the

10 This difficulty does not arise with x- and f - being the same space. For example for a unitary U the

denominator does not depend on U .
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probability. A trivial approach is to use the contributing subspace
∣∣ϕ[i]

〉
, e.g. from (20).

Despite the moments ⟨fjxk⟩ have been used to build the contributing subspace
∣∣ϕ[i]

〉
, this

does not create any difficulty as we use these projections only to construct a Christoffel

function with matched number of degrees of freedom. The (B5) is invariant with respect to

⟨fjxk⟩ → −⟨fjxk⟩ and tends to a constant when any ⟨fjxk⟩ → ∞ (factors in the denominator

and inverse Gfxa
jj′ matrix).

⟨ψg | U |ψy⟩2 =

∣∣∣∣∣n−1∑
k=0

m−1∑
j,s=0

gjG
f ;−1
js uskyk

∣∣∣∣∣
2

m−1∑
j,j′=0

gjG
f ;−1
jj′ gj′

m−1∑
i=0

ϕ[i]2(y)

(B2)

Gfxa
jj′ =

n−1∑
k,k′=0

⟨fjxk⟩Gx;−1
kk′ ⟨xk′fj′⟩ (B3)

GC
qq′ =

n−1∑
s,s′=0

m−1∑
j,j′=0

Gx;−1
qs ⟨xsfj⟩Gfxa;−1

jj′ ⟨fj′xs′⟩Gx;−1
s′q′ (B4)

Kadj(x) =
1

m−1∑
i=0

ϕ[i]2(x)

=
1

n−1∑
q,q′=0

xqGC
qq′xq′

(B5)

The value of Kadj(x) is never zero on training sample since contributing subspace always

has a constant among the components. The probability (B2) uses Christoffel function with

adjusted number of degrees of freedom Kadj(x) (B5) instead of the original K(x) (10) for

the probability (37). The difference between two these Christoffel functions is in extra terms

in the denominator sum. Since the entire x–space can be represented as the direct sum of∣∣ϕ[i]
〉

and
∣∣ϕO;[i]

〉
, a subspace of x orthogonal to

∣∣ϕ[i]
〉
, the K(x) (10) is:

K(x) =
1

m−1∑
i=0

ϕ[i]2(x) +
n−1∑
i=m

ϕO;[i]2(x)

=
1

n−1∑
k,k′=0

xkG
x;−1
kk′ xk′

(B6)

Thus we always have Kadj(x) ≥ K(x). The moments of two Christoffel functions product are〈
xkfj

∣∣Kadj(x)K(f)
∣∣xk′fj′〉 =

M∑
l=0

ω(l) x
(l)
k x

(l)
k′

n−1∑
q,q′=0

x
(l)
q GC

qq′x
(l)
q′

·
f
(l)
j f

(l)
j′

m−1∑
s,s′=0

f
(l)
s Gf ;−1

ss′ f
(l)
s′

(B7)

This tensor has the same dimensions as (33), the difference only in normalizing — it uses GC
qq′

from (B4) instead of Gx;−1
qq′ in (33). Despite it now depends on ⟨fjxk⟩ moments — they are

used only to construct Christoffel function for normalizing, this does not change the essence

of the solution due to the invariance properties of the Christoffel function.
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Appendix C: On Contributing Subspace Selection

Considered above optimization problem finds partially unitary operator ujk that does both:

selects the contributing subspace (m vectors of the dimension n) and optimizes the objective

function. Besides computational difficulties this also creates a problem with normalizing since

properly normalized objective function (64) has operator ujk both in the numerator and in

the denominator (B1), thus some surrogate normalizing (39), (B7), (46), or (47) was used

instead. It is a very attractive option to split the problem into two:

• Find the contributing subspace ϕ[j] of the dimension m.

• Find a unitary (not partially unitary!) operator U mapping from ϕ[j] space to fj space.

A simple “projective” example with contributing subspace was considered in Eq. (27) above.

The matrix K(f→x)
kk′ from (25) has the rank at most m and the best what can be obtained in

the projective paradigm is a solution[13] of “direct projection” type where the least squares

expansion fLS(x) of |fj⟩ in |xk⟩ (7) is used as the localization point in (13) to obtain the

state
∣∣ψfLS(x)

〉
to be used in calculation of probabilities.

Properly normalized objective function (64) maximizes the probability transferred from x

to f . Consider a much simpler problem: find a subspace of x contributing to the coverage of

f . The f–coverage is determined by f–Christoffel function K(f)(g) from (23). Consider it’s

values in a ψ(x) state

Coverageψ =

〈
ψ
∣∣K(f)

∣∣ψ〉
⟨ψ |ψ⟩

(C1)

Previously we considered a similar problem where the Christoffel function K and ψ both

were functions on x, see [18], Appendix B: On The Christoffel Function Spectrum. Now the

Christoffel function is a function on f , and ψ is a function on x. The (C1) can be similarly

expanded in spectrum of f–Christoffel function matrix〈
xk

∣∣K(f)
∣∣xk′〉 = M∑

l=1

x
(l)
k x

(l)
k′

m−1∑
j,j′=0

f
(l)
j Gf ;−1

jj′ f
(l)
j′

ω(l) (C2)

It is different from (24) with x–moments instead of f–moments. Consider generalized eigen-

value problem

ϕ[i] =
n−1∑
k=0

α
ϕ;[i]
k xk i = 0 . . . n− 1; (C3)
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δii′ =
〈
ϕ[i]

∣∣∣ϕ[i′]
〉
=

n−1∑
k,k′=0

α
ϕ;[i]
k ⟨xkxk′⟩αϕ;[i

′]
k′ (C4)

λ[i]δii′ =
〈
ϕ[i]

∣∣∣K(f)
∣∣∣ϕ[i′]

〉
=

n−1∑
k,k′=0

α
ϕ;[i]
k

〈
xk

∣∣K(f)
∣∣xk′〉αϕ;[i′]k′ (C5)

n−1∑
k′=0

〈
xk

∣∣K(f)
∣∣xk′〉αϕ;[i]k′ = λ[i]

n−1∑
k′=0

⟨xkxk′⟩αϕ;[i]k′ (C6)

Because x– and f– bases are different the condition[18] ⟨1⟩ =
∑n−1

i=0 λ
[i] no longer holds, it

is typically ⟨1⟩ ≤
∑n−1

i=0 λ
[i] since m ≤ n; moreover the sum of m maximal eigenvalues can

possibly exceed the total weight ⟨1⟩ ⋚
∑m−1

i=0 λ[i]. From Christoffel function invariance it

immediately follows that the sum of m maximal eigenvalues is equal to ⟨1⟩ if f and x belong

to the same space.

The m eigenstates of (C6) corresponding to m maximal eigenvalues λ[i], i = 0 . . . n − 1

form the m states contributing most to the coverage. This is an alternative option for the

contributing subspace. The problem is now reduced to finding a unitary (not partially unitary)

operator U of the dimension m×m mapping from ϕk to fj, where |ϕ⟩ =
∑m−1

k=0 ϕk
∣∣ϕ[k]

〉
,

fj =
m−1∑
k=0

ujkϕk (C7)

In this form the optimization problem is greatly simplified and the x–normalizing in (B1)

becomes ujk independent:

⟨ψg | U |ψϕ⟩2 =

∣∣∣∣∣m−1∑
k=0

m−1∑
j,s=0

gjG
f ;−1
js uskϕk

∣∣∣∣∣
2

m−1∑
j,j′=0

gjG
f ;−1
jj′ gj′

m−1∑
j,j′=0

ϕjG
ϕ;−1
jj′ ϕj′

(C8)

This probability is exactly the same as the one we considered above, but with the ϕk used as

the input instead of the xk; we also have n = m thus the operator ujk is unitary!

Appendix D: Software description

• Install java 19 or later.

• Download the latest version of the source code code_polynomials_quadratures.zip

from [20] or from an alternative location.

https://www.oracle.com/java/technologies/javase/jdk19-archive-downloads.html
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://disk.yandex.ru/d/AtPJ4a8copmZJ?locale=en
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• Decompress and recompile the program. Run a selftest.

unzip code_polynomials_quadratures.zip

javac -g com/polytechnik/*/*java

java com/polytechnik/kgo/TestKGO

• Run the program with bundled deterministic data file, test trivial mapping.

java com/polytechnik/kgo/KGO --data_cols=9:0,6:0,4:8:1 \

--SKtype=FXFX_F_CHRISTOFFEL \

--approximation=MAXEV_EVADJ \

--data_file_to_build_model_from=dataexamples/runge_function.csv \

--output_files_prefix=/tmp/out_

• There are a number of --approximation= available options. There is no perfect imple-

mentation yet available.

An effective algorithm to the problem will be found later in [21, 22], see com/polytechnik/kgo/KGO

IterationalSubspaceLinearConstraints.java for an implementation. This algorithm, instead of

usual iteration internal state in the form of a pair: approximation, Lagrange multipliers: (ujk, λij),

uses iteration internal state in the form of a triple: approximation, Lagrange multipliers, homogeneous

linear constraints (ujk, λij , Cd;jk), it is the linear constraints that provide a good convergence. The

dimension of eigenvalue problem to solve on each iteration is Dn− (D − 1)(D + 2)/2 instead of Dn

of this paper.
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