
Partially Unitary Learning

Mikhail Gennadievich Belov∗

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics,

GSP-1, Moscow, Vorob’evy Gory, 119991, Russia

Vladislav Gennadievich Malyshkin †

Ioffe Institute, Politekhnicheskaya 26, St Petersburg, 194021, Russia

(Dated: May, 14, 2024)

$Id: PartiallyUnitaryLearning.tex,v 1.400 2024/11/14 19:45:25 mal Exp $

The problem of an optimal mapping between Hilbert spaces IN of |ψ⟩ and OUT

of |ϕ⟩ based on a set of wavefunction measurements (within a phase) ψl → ϕl,

l = 1 . . .M , is formulated as an optimization problem maximizing the total fidelity∑M
l=1 ω

(l) |⟨ϕl|U|ψl⟩|2 subject to probability preservation constraints on U (partial

unitarity). The constructed operator U can be considered as an IN to OUT quantum

channel; it is a partially unitary rectangular matrix (an isometry) of dimension

dim(OUT) × dim(IN) transforming operators as AOUT = UAINU†. An iterative

algorithm for finding the global maximum of this optimization problem is developed,

and its application to a number of problems is demonstrated. A software product

implementing the algorithm is available from the authors.

∗ mikhail.belov@tafs.pro
† malyshki@ton.ioffe.ru

https://orcid.org/0000-0003-0429-3456
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
mailto:mikhail.belov@tafs.pro
mailto:malyshki@ton.ioffe.ru


2

Dedicated to Professor Arthur McGurn on the occasion of his 75th birthday.

I. INTRODUCTION

Progress in machine learning (ML) knowledge representation, from linear regression

coefficients, perceptron weights[1], statistical learning[2], and logical approaches[3] to support

vector machines[4], rules and decision trees[5], fuzzy logic[6, 7], and deep learning[8] has

defined the direction of ML development over the last four decades. Recently, knowledge

representation in the form of a unitary operator has started to attract significant attention[9–

11]. The problem of learning unitary matrices is also useful in various other fields. For

example it can be applied to the quantum mechanics inverse problem[12, 13], investigating

the dynamics of quantum many-body systems[14–18], quantum computing[19–22], light

coherence[23], market dynamics[24] and other fields.

The techniques used for unitary learning differ in unitary matrix representation, input data,

and quality criteria. A substantial number of existing works[23, 25, 26] use the Frobenius

L2 norm of the difference between the target and current matrix, ∥U − V∥2. The main

advantage of this approach is the applicability of first-order gradient optimization, but it

has all the limitations of L2 minimization approaches. A better option is to use the fidelity

of the target states |⟨ϕ | U |ψ⟩|2; this approach is utilized in [9, 27] and many others. An

important advantage of this approach is that the multiplication of the source |ψ⟩ or target

|ϕ⟩ by a random phase does not change the fidelity. A disadvantage is that the operator

U itself can only be determined within a phase. There is a very interesting approach to

representing a unitary matrix of dimension n in a recursive way by splitting it into [n/2]-sized

matrices and continuing the process recursively [28]. This includes a unitary representation

U ≈ V1(UA ⊗ UB)V0, which requires the introduction of pre- and post-processing operators

V1 and V0, allowing for the identification of an appropriate cost function.

The algorithm developed in this paper is applicable only when the objective function is a

quadratic function of U , as in the form given by the fidelity (5) or the cost function (37) below.

This form allows the optimization problem to be formulated as a novel algebraic problem

(39) and avoids the difficult challenge of unitary matrix parametrization. In our previous

work[29] the problem of unitary learning was generalized to partially unitary operators. This

operator maps two Hilbert spaces of different dimensions, whereas a unitary operator maps

https://en.wikipedia.org/wiki/Fidelity_of_quantum_states


3

a Hilbert space into itself. The problem is to maximize the fidelity of a mapping between

the Hilbert spaces IN of |ψ⟩ and OUT of |ϕ⟩ based on a set of wavefunction measurement

(within a phase) observations ψl → ϕl, l = 1 . . .M , as an optimization problem maximizing

the total fidelity
∑M

l=1 ω
(l) |⟨ϕl | U |ψl⟩|2 subject to probability preservation constraints on U

(partial unitarity). This problem is reduced to a problem of maximizing a quadratic form

on U subject to quadratic form constraints. This is a variant of the QCQP (Quadratically

Constrained Quadratic Program) problem. This problem is non-convex, exhibiting local

extrema and multiple saddle points. In this work, an iterative algorithm for finding the global

maximum of this optimization problem is developed, and its application to a number of

problems is demonstrated.

The quantum mechanics inverse problem of reconstructing U from measured wavefunction

observations ψl → ϕl, l = 1 . . .M is transformed into a new algebraic problem (39). This

problem is analogous to the Schrödinger equation, where instead of a Hamiltonian, there is a

superoperator S, the “eigenvector” U corresponds to a unitary operator, and the “eigenvalue”

λ corresponds to a Hermitian matrix. The solution to the quantum mechanics inverse problem

can be found by solving this Schrödinger-like equation. This represents the most important

result of the study. Currently, only a numerical solution is available. For software availability,

please refer to Appendix C; all references to code in the paper correspond to this software.

II. FORMULATION OF THE PROBLEM

Consider the quantum mechanics inverse problem. It may be broadly described as a problem

of determining the internal structure (e.g. Hamiltonian) of a system from wavefunction

measurements. A number of other problems in statistics, machine learning, data analysis,

etc., can be converted to a problem of the following form. Let there be two Hilbert spaces of

dimensions n and D, corresponding to states ψ(x) and ϕ(f) in some x- and f - bases xk and

fj where D ≤ n

ψ(x) =
n−1∑
k=0

αkxk (1a)

ϕ(f) =
D−1∑
j=0

βjfj (1b)

https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program


4

There is a scalar product operation ⟨·⟩ in each Hilbert space allowing to calculate scalar

product inside the basis ⟨ψ |ψ′⟩ =
∑n−1

k,q=0 α
∗
k ⟨xk |xq⟩α′

q and ⟨ϕ |ϕ′⟩ =
∑D−1

j,i=0 β
∗
j ⟨fj | fi⟩ β′

i,

but not across the bases: the ⟨xk | fj⟩ cannot be calculated! Assume we have l = 1 . . .M

wavefunction pairs (typically M ≫ n) as “observations”:

ψl(x) → ϕl(f) weight ω(l) (2)

1 = ⟨ψl |ψl⟩ = ⟨ϕl |ϕl⟩ (3)

These represent M mappings from Hilbert space x to Hilbert space f . The weights ω(l) are

typically all equal to 1. However, they can be set to different values if the observations are

made with different accuracy, this is particularly convenient for classical systems. Another

use of the weights is the possible generalization from a discrete sum
∑M

l=1 ω
(l) to a general

measure
∫
dω.1

The inverse problem is to find a partially unitary operator U (a matrix ujk of dimension

D × n) acting from x to f

fj =
n−1∑
k=0

ujkxk j = 0 . . . D − 1 (4)

that maximizes the total probability (fidelity)

F =
M∑
l=1

ω(l)
∣∣∣ ⟨ϕl | U |ψl⟩

∣∣∣2 −→
U

max (5)

⟨fj | fj′⟩ =
n−1∑

k,k′=0

ujk ⟨xk |xk′⟩u∗j′k′ (6)

subject to scalar product preservation (6) where j, j′ = 0 . . . D− 1. The operator U acts from

Hilbert space x to Hilbert space f , and it can be viewed as a memoryless quantum channel. The

functional (5) has matrix element 2 ⟨ϕl | U |ψl⟩ absolute value squared, which allows expressing
1 Some authors use ω(l) = 1/M to normalize the fidelity to the range [0 : 1]. However, this approach is

inconvenient because F is no longer an extensive quantity in the sense that, for two sets of observations,

the total fidelity is no longer the sum of the two — losing its additive property. For this reason, normalizing

to the number of observations is preferred over normalizing to [0 : 1].
2 Note that the bra-ket notation in ⟨ϕ | U |ψ⟩ (and (3)) may differ from the measured sample average, such as

(10) (which is the sum over l = 1 . . .M). They are the same in Section II B but different in other examples;

this is an important advance from [30], where two averages were always considered the same. For example,

if in (6) the ⟨fj | fj′⟩ and ⟨xk |xk′⟩ are considered as sample averages, the Gram matrix quantum channel

of Section IIB is obtained. If they are postulated to be unit matrices, the traditional unitary learning

of Section IID is obtained. The Sjk;j′k′ is always calculated from the measured sample as the sum over

l = 1 . . .M .

https://en.wikipedia.org/wiki/Quantum_channel
https://en.wikipedia.org/wiki/Intensive_and_extensive_properties


5

the fidelity only with ⟨fj | fj′⟩, ⟨xk |xk′⟩ and fourth order terms ⟨fjxk | fj′xk′⟩, without using

unavailable “cross-moments” ⟨xk | fj⟩. The functional also exhibits proper wavefunction phase

invariance. A specific aspect of quantum measurement is that the wavefunction itself cannot

be measured; only the squared modulus of the wavefunction (probability density) can be

obtained from a measurement operation. The |ψ|2 is observable, whereas ψ is not. Measured

wavefunction pairs (2) should be considered as measured |ψ|2 and |ϕ|2 with the square root

applied. The obtained result is possibly multiplied by an unknown random phase exp(iξl). The

optimization problem (5) of finding the optimal quantum channel U is invariant with respect

to random phases introduced to measured wavefunctions (2). Without loss of generality, we

can consider the Hilbert space bases to be orthogonal:

δjj′ = ⟨fj | fj′⟩ (7a)

δkk′ = ⟨xk |xk′⟩ (7b)

if this is not the case — an orthogonalizing procedure can be applied, see Appendices A

and E of [30] or one can simply apply an orthogonalization method of Gram–Schmidt type,

see com/polytechnik/algorithms/DemoRecoverMapping.java:GramSchmidtTest for an

implementation. For orthogonal bases, condition (6) is exactly the unitary condition if n = D.

If D < n we name it the condition of partial unitarity.

δjj′ =
n−1∑
k=0

ujku
∗
j′k j, j′ = 0 . . . D − 1 (8)

The meaning of F (5) is a weighted sum (with ω(l) weights) of the possible similarity between

|U|ψl⟩ and |ϕl⟩. By construction, we cannot directly project the states belonging to different

Hilbert spaces as ⟨ϕl |ψl⟩. Additionally, such a direct projection will not be invariant with

respect to random phases of measured wavefunctions. The only possible way to transform

a state from x to f is to apply operator U (4). This is a quantum channel that links two

different Hilbert spaces. The states ψl(x) and ϕl(f) in basis (1) are defined with l = 1 . . .M

coefficients α(l)
k and β(l)

j . For orthogonalized basis (7) the functional (5) takes the form

F =
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′u
∗
j′k′ (9)

Sjk;j′k′ =
M∑
l=1

ω(l)β
(l)
j α

(l)
k β

(l) ∗
j′ α

(l) ∗
k′ (10)

https://en.wikipedia.org/wiki/Measurement_in_quantum_mechanics
https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process


6

This expression is obtained by converting ψl(x) to a function in f -space using (4) and

then projecting it onto ϕl(f). For non-orthogonal bases (7), the expression for Sjk;j′k′ is

more complicated and less convenient to use. The tensor Sjk;j′k′ = S∗
j′k′;jk is Hermitian by

construction. The original problem is now reduced to maximizing the functional in (9) subject

to the partial unitarity constraint in (8). There are a number of practical problems that can

be reduced to this optimization problem.

A. A Quantum System Time Evolution

Consider a quantum system with a time-independent Hamiltonian H. Its time evolution

U = exp

[
−i t

ℏ
H

]
(11)∣∣ψ(t)

〉
=

∣∣U∣∣ψ(t=0)
〉

(12)

Assume we have a long sequence l = 1 . . .M of system observations made equidistantly at

time moments tl = τ l

ψl(x) → ψl+1(x) weight ω(l) = 1 (13)

Measured wavefunctions can possibly have random phases. Given the basis (1a), a measured

sample is a sequence of l = 1 . . .M coefficients α(l)
k that define the actual wavefunction within

a random phase exp(iξl). To obtain the optimization problem of the previous section, we put

D = n, β(l)
j = α

(l+1)
k , and U is a unitary operator of wavefunction time shift τ .

|ψl+1⟩ = |U|ψl⟩ (14)

The Sjk;j′k′ is then

Sjk;j′k′ =
M∑
l=1

ω(l)α
(l+1)
j α

(l)
k α

(l+1) ∗
j′ α

(l) ∗
k′ (15)

The result of the optimization problem (9) subject to the unitary (n = D) constraint (8) is a

unitary time shift operator U . To obtain the Hamiltonian from U requires taking the logarithm

of a unitary matrix. This is a different problem that requires separate consideration[31].

H = i
ℏ
τ
lnU (16)

https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)


7

B. A Classical System x → f Vector Mapping

Consider classical system x(l) → f (l) vectors mapping with the weights ω(l), l = 1 . . .M ,

and all measurements are real numbers.

(x0, x1, . . . , xk, . . . , xn−1)
(l) → (f0, f1, . . . , fj, . . . , fD−1)

(l) (17)

This is a mapping of some observable to observable classical measurements of real vectors, for

example let x be attributes and f be class labels of some dataset used in machine learning

classification problem of vector type. A few example of f(x) constructed models include

linear regression, the Radon-Nikodym approximation[30], a logical function, a neural network

model, etc.

We want to convert these data to ψl(x) → ϕl(f) from (2) to construct a partially unitary

operation U converting a state from x to f . Let us define an average in both Hilbert spaces

as the sum over the data sample (17)

⟨h⟩ =
M∑
l=1

ω(l)hl (18)

Gx
kk′ = ⟨xk |xk′⟩ (19)

Gf
jj′ = ⟨fj | fj′⟩ (20)

where h is a function on x or f . When (18) is applied to hl = x
(l)
k x

(l)
k′ or f (l)

j f
(l)
j′ we obtain

the Gram matrix (19) or (20). For complex space hl would be x(l)k x
(l) ∗
k′ or f (l)

j f
(l) ∗
j′ , but in

this section xk and fj are all real. As we discussed above, the x and f bases can be always

orthogonalized (7) with a basis linear transform; the Gram matrix is equal to the unit matrix

in the case of an orthogonal basis. Note that with these classical data, we can calculate

“cross-moments” ⟨xk | fj⟩. An example of a model that uses cross-moments is linear regression

min
γk

〈∣∣∣∣∣fj −
n−1∑
k=0

γkxk

∣∣∣∣∣
2〉

(21)

fj(x) ≈
n−1∑

k,k′=0

xkG
x;−1
kk′ ⟨fj |xk′⟩ (22)

As we use quantum channel ideology, our model should not depend on “cross-moments”, only

the partially unitary operator U (4) can link x and f .

https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Gram_matrix


8

To construct a wavefunction ψy(x) localized at x = y consider a localized state ψy(x)

ψy(x) =
√
K(y)

n−1∑
i,k=0

yiG
x;−1
ik xk

=

n−1∑
i,k=0

yiG
x;−1
ik xk√

n−1∑
i,k=0

yiG
x;−1
ik yk

=

n−1∑
i=0

ψ[i](y)ψ[i](x)√
n−1∑
i=0

[ψ[i](y)]
2

(23)

K(x) =
1

n−1∑
i,k=0

xiG
x;−1
ik xk

=
1

n−1∑
i=0

[ψ[i](x)]
2

(24)

The ψy(x) is a function on x localized at a given y, it is a normalized reproducing kernel,

1 = ⟨ψy |ψy⟩. In (23) it is written in two bases: the original xk, for which ⟨xqxk⟩ = Gx
qk, and

in some orthogonalized basis
∣∣ψ[i]

〉
, such that

〈
ψ[q]

∣∣ψ[k]
〉
= δqk. The K(x) is the Christoffel

function. Localized states in f -space can be obtained with n to D and x to f replacement.

With these localized states, we obtain ψl(x) → ϕl(f) mapping for classical data (17) with

observation weights ω(l), l = 1 . . .M√
K(x(l))

n−1∑
i,k=0

x
(l)
i G

x;−1
ik xk →

√
K(f (l))

D−1∑
i,j=0

f
(l)
i Gf ;−1

ik fk (25)

This mapping is actually an original x → f mapping (17) with x and f linearly transformed

and normalized. Contrary to the original mapping, (25) can be considered as a mapping

of two Hilbert space states with the scalar product (18). It is convenient to introduce the

moments of Christoffel function products:〈
xkfj

∣∣K(x)K(f)
∣∣xk′fj′〉 =

M∑
l=0

ω(l) x
(l)
k x

(l)
k′

n−1∑
q,q′=0

x
(l)
q G

x;−1
qq′ x

(l)
q′

·
f
(l)
j f

(l)
j′

D−1∑
s,s′=0

f
(l)
s Gf ;−1

ss′ f
(l)
s′

(26)

Assuming the x and f bases are orthogonalized (7), the tensor (10) is then

Sjk;j′k′ =
〈
xkfj

∣∣K(x)K(f)
∣∣xk′fj′〉 (27)

We have now obtained, for classical data, an optimization problem (9) subject to the (8)

partial unitarity constraint. The result is the operator U maximizing F . This problem has

the same mathematical form as the quantum problem of Section II A above. But there is one

https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space


9

important difference: where the Hilbert space inner product comes from. In the quantum

problem, it is an original property of Hilbert spaces used to formulate the problem, but the

functional F is obtained from measurement data. In the classical problem, both the scalar

product in the Hilbert space and the functional F are obtained from measurement data.

To evaluate the result at some given point y, construct the localized density (23) and

transform it to f -space with (4). By projecting it to a g-localized state in f -space, obtain the

probability of a given outcome g (here ψg(f) is a f -space state localized at f = g, similarly to

an x-state (23), i.e. in giGf ;−1
ij fj put fj from (4) after that obtained expression is a function

on xk that can be coupled with (23); for orthogonal bases (7) obtain (27))

⟨ψg | U |ψy⟩2 =

∣∣∣∣∣n−1∑
k=0

D−1∑
j,s=0

gjG
f ;−1
js uskyk

∣∣∣∣∣
2

D−1∑
j,j′=0

gjG
f ;−1
jj′ gj′

n−1∑
k,k′=0

ykG
x;−1
kk′ yk′

(28)

The optimization result is the ujk matrix, j = 0 . . . D − 1; k = 0 . . . n − 1. This operator,

given some input state (such as a localized state |ψx⟩), uniquely (within a phase) finds the

function in f -space |U|ψx⟩ (coefficients aj(x)) that predicts the probability (28) of outcome f :

P (f)
∣∣∣
x
= ⟨ψf | U |ψx⟩2 =

∣∣∣∣∣D−1∑
j=0

ajfj

∣∣∣∣∣
2

D−1∑
j,j′=0

fjG
f ;−1
jj′ fj′

(29)

aj =
D−1∑
s=0

n−1∑
k=0

Gf ;−1
js uskxk

√
K(x) (30)

the f is equal to the value of the outcome we are interested in determining the probability

of. Given x, the probability of an outcome f is a squared linear function on fj multiplied

by the Christoffel function K(f). This form of probability, a squared linear function on fj

divided by a quadratic form on fj, can be obtained from many different considerations; the

difference between them lies in the coefficients aj. The mapping (25) corresponds to pure

states. For mixed states mapping, the probability will be a ratio of two general quadratic

forms instead of a rank one matrix in the numerator (29).

For a simple demonstration of creating x → f classical mapping, refer to Section VII

below.



10

C. Learning Unitary Dynamics

In nature most of the dynamic equations are equivalent to a sequence of infinitesimal

unitary transformations: Newton, Maxwell, and Schrödinger equations. Consider a simple

classical problem. Let there be an initial state vector X(0) of unit L2 norm and a unitary

matrix U . The operator U is applied to X(0) M times:

X(l+1) = UX(l) (31)

From this sequence, M observations (x, f) (17) are created by taking (l, l + 1) elements of

the sequence and multiplying them by a random phase (or ±1 for real space).

x(l) = exp(iξl)X
(l) (32a)

f (l) = exp(iζl)X
(l+1) (32b)

The random phases make any x ↔ f regression-type methods inapplicable.3 From the unitary

property of operator U , we immediately obtain (6); it does not depend on random phases.

Whereas in the quantum problem we have a Hilbert space with an inner product ⟨·⟩, in this

classical problem there is no built in inner product available. The only available average is

the sum (18) over M observations; there is no any other average such as ensemble averages

or quantum measurements. For unitary dynamic with ω(l) = 1, this sum represents the

regular time-average. The problem is to determine the operator U from the sample (32),

l = 0 . . .M−1, that undergoes unitary time-evolution (31). The goal is to determine a matrix

ujk (with D = n) maximizing the quality criterion F (5).

The Gram matrices Gx
kk′ (19) and Gf

jj′ (20) are time-average. The functional F is also

time-average of the (31) data

F =
M∑
l=1

ω(l)

∣∣∣∣∣
D−1∑
j=0

n−1∑
k=0

X
(l+1)
j ujkX

(l)
k

∣∣∣∣∣
2

−−→
ujk

max (33)

Using (32) obtain

Sjk;j′k′ =
M∑
l=1

ω(l)f
(l)
j x

(l)
k f

(l) ∗
j′ x

(l) ∗
k′ (34)

3 Consider the data in (32). Then ⟨fj |xk⟩ =
M∑
l=1

ω(l)f
(l)
j x

(l) ∗
k exp(i(ζl − ξl)) which depends on random

phases ζl and ξl, and thus it cannot be used to reconstruct the system.



11

Random phases (±1 for real space) in (32) do not affect Sjk;j′k′ and the Gram matrices

⟨xk |xk′⟩, ⟨fj | fj′⟩ as the phases cancel each other in probabilities. The Gram matrices are not

necessary unit matrices. This can be changed by basis regularization. Introduce regularization

transformations Rx and Rf such that

x = Rxx (35a)

f = Rf f (35b)

produce unit Gram matrices; this can be for example Rx = Gx;−1/2, Rf = Gf ;−1/2 or any other

method, such as Gram-Schmidt with pivoting or QR decomposition. Then transformation

(4) can be written in the form

f = RfURx;−1x (36)

and we can consider an optimization problem for the operator Ũ = RfURx;−1 instead of for

U . The solution in the original basis is then U = Rf ;−1ŨRx, see com/polytechnik/algori

thms/DemoRecoverUnitaryMatrixFromSeq.java:getUFromConfigGramMatrixChannel for

an implementation.

A question can be asked: In the case where D = n for the data (32), will an operator of

system dynamics U having the matrix ujk maximizing F subject to constraints (6) always be

unitary? It depends on the data. For a dataset representing unitary dynamics (31) the Gram

matrices ⟨xk |xk′⟩ and ⟨fj | fj′⟩ must be the same, since the unitary operator U preserves

the scalar product. But if the data contain non-unitary contributions, the Gram matrices

⟨xk |xk′⟩, ⟨fj | fj′⟩ can be different, and this difference contributes to the non-unitarity of ujk;

the constraints (6) preserve the Gram matrix passing through the quantum channel. This is

the meaning of the constraints: the Gram matrix must transform from the Hilbert space IN

into the Hilbert space OUT like any other operator. The idea is to measure the Gram matrix

from the sample in both Hilbert spaces, construct ujk by solving the optimization problem,

and then generalize the model, stating that any other operator converts in the same way

(38). If operators other than the Gram matrix are available in both Hilbert spaces, they can

be used to build a quantum channel in exactly the same manner. Consider the unit matrix

transformation, which corresponds to traditional unitary learning.

https://en.wikipedia.org/wiki/QR_decomposition


12

D. Traditional Unitary Learning

Consider “traditional” unitary learning. For the data sample (32), it is postulated that

the operator U (31) is unitary; hence the Gram matrix properties are irrelevant to the

task. All observation vectors x and f are of unit L2 norm and of the same dimension. The

problem becomes the following: maximize F (9) subject to unitary U , i.e. constraints (8) with

D = n. This is exactly the problem considered in Section IIC above, but with a quantum

channel transforming (38) a unit matrix from Hilbert space IN into a unit matrix in Hilbert

space OUT instead of a Gram matrix. Practically, this unit matrix quantum channel can

be implemented exactly as considered above. The only difference is that no regularization

(35) should be performed at all, since it is postulated that U must always be unitary. The f

and x should be used directly as is (without regularization) when constructing Sjk;j′k′ (34),

see com/polytechnik/algorithms/DemoRecoverUnitaryMatrixFromSeq.java:getUFrom

ConfigUnitMatrixChannel for an implementation. Contrary to the Gram matrix quantum

channel of the previous section, the U obtained with the unit matrix quantum channel is

always unitary. For a simple demonstration of recovering ujk from unitary dynamics data

(32) refer to Section IV below.

This unitary learning considers x and f vectors to be of the same dimension. The approach

can be directly generalized to partial unitarity. Assume a dataset is of x → f mapping, where

all vectors x and f have unit L2 norm, but the vectors x and f are of different dimensions: n

and D respectively. We want to build a partially unitary operator U of dimension D×n that

converts a vector from x to f preserving probability. The model makes direct assumption

about U and the dataset, hence Gram matrix properties are irrelevant to the task. The

problem becomes the following: maximize F (9) subject to partial unitary constraints (8),

now with D < n. The calculations are identical to the problem where D = n that we

just considered. Calculate Sjk;j′k′ (34) using x and f directly, without regularization. Then

optimize F subject to (8) with corresponding D and n. The obtained partially unitary

operator U is a quantum channel transforming a unit matrix of dimension n in Hilbert space

x to a unit matrix of dimension D in Hilbert space f . For a simple demonstration, refer

to Section VI below. This quantum channel maximizes the fidelity of mapping between

Hilbert spaces of different dimensions. This can offer a completely new perspective on unitary

machine learning models.



13

E. Variational quantum algorithms

Variational quantum algorithms[32], which use a classical optimizer to train a parametrized

quantum circuit, are among the most promising applications of near-term quantum computers.

They often have a cost function in the form[33]

C(θ) = TrOU(θ)ρ0U †(θ) (37)

where O is a Hermitian operator. This expression is a quadratic function of the unitary

operator U . Expanding the trace, we obtain the cost function exactly in the form (40),

subject to unitary constraints (41). The tensor Sjk;j′k′ is obtained directly from (37). Thus,

the theory developed in this paper is directly applicable to variational quantum algorithms.

The application of the developed algorithm is demonstrated for problems of dimension as

large as 40; see Section IV below. The limitation now is not due to vanishing gradients or a

too-flat cost function[33], but to computational complexity. Our optimization algorithm can

be parallelized (see Appendix B below), and we see no significant difficulty preventing an

increase in problem dimension.

F. Algebraic Structure of the Optimization Problem

The formulated optimization problem maximizes (9) subject to the partial unitarity

constraint (8). This is a variant of the QCQP problem. We find an operator U that optimally

transforms a state |ψ(x)⟩ from Hilbert space IN (of dimension n) into a state |ϕ(f)⟩ from

Hilbert space OUT (of dimension D). The operator is a rectangular matrix of dimension

D × n that transforms an operator A from IN to OUT as

AOUT = UAINU † (38)

This transformation converts any operator between two Hilbert spaces, for example a pure

state AIN = |ψ⟩ ⟨ψ| into a pure state AOUT = |U|ψ⟩
〈
ψ|U †

∣∣. For D = n it is a trace

preserving map and for D < n it is a trace decreasing map quantum channel (see Fig. 1 for a

demonstration); for a more general form, refer to Kraus operators (78) below. There should

always be an operator known in both Hilbert spaces, which is used to create constraints on U

when maximizing fidelity. These constraints (probability preservation) determine the specific

form of partial unitarity. We consider two such operators: the Gram matrix (used throughout

https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
https://en.wikipedia.org/wiki/Quantum_channel
https://en.wikipedia.org/wiki/Quantum_channel
https://en.wikipedia.org/wiki/Quantum_channel
https://www.youtube.com/watch?v=cMl-xIDSmXI
https://learning.quantum.ibm.com/course/general-formulation-of-quantum-information/quantum-channels#kraus-representations


14

most of this paper) and the unit matrix (traditional in unitary learning, as in Section IID,

a unital map). The constrained optimization problem on U is reduced to a new algebraic

problem (a variation of the Lagrangian L (49) is set to zero (65))

SU = λU (39)

which determines the operator U . It is remotely similar to the stationary Schrödinger equation

(eigenvalue problem), but instead of a Hamiltonian there is a superoperator S (represented by

the tensor Sjk;j′k′). The “eigenvector” U is a partially unitary operator (represented by a D×n

matrix ujk), and the “eigenvalue” λ is a Hermitian matrix (represented by a D ×D matrix

λij). The extremal functional value F is equal to the trace (the sum of diagonal elements) of

λ. The algebraic structure of this eigenvalue–like problem, let us call it an “eigenoperator”

problem, requires a separate study. Currently, we only have a numeric solution algorithm.

III. NUMERICAL SOLUTION

The problem is to optimize (40) subject to constraints (41)

F =
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′u
∗
j′k′ −→

u
max (40)

δjj′ =
n−1∑
k=0

ujku
∗
j′k j, j′ = 0 . . . D − 1 (41)

The tensor Sjk;j′k′ = S∗
j′k′;jk is Hermitian. For simplicity, we consider Sjk;j′k′ and ujk to be real,

and do not explicitly denote complex conjugation (∗) below, generalization to complex values

is straightforward. The matrix ujk is an isometry, which means it has orthonormal rows but

may not be a square matrix. If we consider a subset of constraints (41), the optimization

problem can be readily solved. Consider the squared Frobenius norm of matrix ujk to be a

“simplified constraint”:

D−1∑
j=0

n−1∑
k=0

u2jk = D (42)

This is a partial constraint (it is the sum of all diagonal elements in (41)). For this partial

constraint, the optimization problem (40) is equivalent to an eigenvalue problem — it can be

directly solved by considering a vector of Dn dimension obtained from the ujk, saving all its

components into a single vector, row by row.

https://en.wikipedia.org/wiki/Unital_map
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Isometry
https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
https://en.wikipedia.org/wiki/Vectorization_(mathematics)


15

The main idea of [29] was to modify the partial constraint solution to satisfy the full set

of constraints (41). There are several options to adjust the solution from a partial to the full

set of constraints. The one producing the minimal change to the solution is the application

of the Gram matrix

Gu
jj′ =

n−1∑
k=0

ujkuj′k (43)

inverse square root Gu;−1/2 = 1/
√
Gu to ujk.4 There are 2D square roots of a positively

definite symmetric matrix of dimension D, differing only in the ± signs. The simplest method

to calculate it is to convert Gu
jj′ to diagonal form in the basis of its eigenvectors∣∣Gu

∣∣g[i]〉 = λ
[i]
G

∣∣g[i]〉 (44)

then change the eigenvalues to ±1
/√

λ
[i]
G and convert the matrix back to the initial basis

∥∥Gu;−1/2
∥∥ =

D−1∑
i=0

±1√
λ
[i]
G

∣∣g[i]〉 〈g[i]∣∣ (45)

By checking the result, one can verify that for any ujk producing a non-degenerated Gram

matrix (43), the vector

ũjk =
D−1∑
i=0

G
u;−1/2
ji uik (46)

satisfies all the constraints (41) (the most general form of adjustment is an application of

UGu;−1/2 to uik, where U is an arbitrary unitary operator; the ± square root signs can be

included in U ; below we consider all signs in (45) to be “+”), see com/polytechnik/kgo/Ad

justedStateToUnitaryWithEV.java for an implementation. Thus, the multiple constraints

optimization problem (40) can be reduced to an unconstrained optimization problem (we use

the identity D =
∑D−1

j=0

∑n−1
k=0 u

2
jk =

∑D−1
j,j′=0

∑n−1
k=0 ujkG

u;−1
jj′ uj′k):

F =

D−1∑
j,j′,i,i′=0

n−1∑
k,k′=0

ujkG
u;−1/2
ji Sik;i′k′G

u;−1/2
j′i′ uj′k′

1
D

D−1∑
j=0

n−1∑
k=0

u2jk

−→
u

max (47)

4 See Appendix A of [29] for adjustments in different bases and for an approach that uses SVD instead of

the eigenproblem (44). Also note that both SVD-based and eigenproblem-based transformations convert a

single ujk state satisfying the partial constraint (42) to a state satisfying the full set of constraints (41).

The problem of converting several u[s]jk states satisfying a partial constraint to a single state satisfying the

full set of constraints can greatly improve the initial convergence of the algorithm. This is a subject of

future research.

https://en.wikipedia.org/wiki/Definite_matrix
https://en.wikipedia.org/wiki/Definite_matrix
https://en.wikipedia.org/wiki/Singular_value_decomposition


16

However, this unconstrained problem5

• cannot be reduced to an eigenvalue problem since Gu;−1/2
ji itself depends on ujk.

• is degenerate: there are multiple ujk producing the same F . Convert a solution ujk

to the Gram matrix basis (44), change the eigenvalues, then convert it back to the

initial basis, this is similar to the transformation in (45). Hence the Hessian matrix

is degenerated, which prevents us from directly applying Newton and quasi-Newton

optimization methods. One can possibly use a penalty function like
∑

1/λG

TrGu;−1 =
D−1∑
i=0

1

λ
[i]
G

(48)

which has the minimum value D when all the constraints (41) are satisfied.

Alternatively, an iterative approach with Lagrange multipliers can be used. Iterations are

required since we cannot simultaneously solve the equation for ujk and λjj′ . A single iteration

consists in solving an eigenvalue problem, adjusting the obtained solution to satisfy the full

set of constraints, and calculating the new values of Lagrange multipliers. There are three

main elements of the algorithm:

• The eigenproblem solution (57) is used to solve the partially constrained optimization

problem. An important feature is that any additional linear constraints on ujk of the

form (58) can be easily incorporated — obtain the eigenproblem (64).

• The solution adjustment operation (46) converts a solution satisfying the partial

constraint (42) into one satisfying the full set (41).

• The linear system solution (53) obtains the new values of Lagrange multipliers.

In its naïve form (without additional linear constraints) a convergence of the iterative

algorithm turned out to be poor. The major new result of the current paper is this iterative

algorithm with good convergence. Good convergence was achieved by considering additional
5 There are alternative ways to formulate an unconstrained optimization problem. In the unitary case where

D = n, one can use D(D + 1)/2 parameters to parametrize a Hermitian matrix. A unitary matrix is then

obtained through matrix exponentiation (11); functional optimization, however, requires the derivatives of

the matrix exponent, which complicates the problem[34, 35]. There is an option to parametrize a unitary

matrix using the Cayley transform U = (I − A)(I + A)−1 for a skew-Hermitian matrix A† = −A, see

for example [36, 37]. Both methods are problematic to use, especially in the case of rectangular ujk with

D < n. See also [28, 38] for other methods of unitary parametrization.

https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://en.wikipedia.org/wiki/Cayley_transform#Operator_map


17

linear constraints in the eigenproblem at each iteration step. Consider Lagrange multipliers

λjj′ , a matrix of dimension D ×D, to approach optimization problem (40) with constraints

(41)

L =
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′uj′k′

+
D−1∑
j,j′=0

λjj′

[
δjj′ −

n−1∑
k′=0

ujk′uj′k′

]
−→
u

max (49)

Variating L over usq obtain (51)

bsq =
D−1∑
j′=0

n−1∑
k′=0

Ssq;j′k′uj′k′ (50)

0 = bsq −
D−1∑
j′=0

λsj′uj′q (51)

Here and below we consider the Lagrange multipliers matrix to be Hermitian λjj′ = λ∗j′j.

This condition ensures the existence of an extremal solution[29]. The variation (51) contains

Dn equations. The Hermitian Lagrange multipliers matrix λjj′ has D2 real parameters

(D(D + 1)/2 independent ones) for real space and 2D2 real parameters (D2 independent

ones) for complex space. Thus, for a general ujk, the variation (51) cannot be fully satisfied.

The most straightforward way to obtain Lagrange multipliers for a given ujk is to take the

L2 norm of the variation (51) and obtain the λij that minimizes the sum of squares.

D−1∑
i=0

n−1∑
q=0

∣∣∣∣∣biq −
D−1∑
j=0

λij + λji
2

ujq

∣∣∣∣∣
2

−→
λij

min (52)

λij = Herm
n−1∑
k=0

uikbjk = Herm
D−1∑
j′=0

n−1∑
k,k′=0

uikSjk;j′k′uj′k′ (53)

The minimization yields a Hermitian matrix λij, which is obtained as a solution to a linear

system, see com/polytechnik/kgo/LagrangeMultipliersPartialSubspace.java:calc

ulateRegularLambda for an implementation. A more general form of λij is presented in

Appendix A below. The problem can now be considered as maximizing a quadratic form

with the matrix Sjk;j′k′

Sjk;j′k′ = Sjk;j′k′ − λjj′δkk′ (54)
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′uj′k′ −→
u

max (55)



18

subject to constraints (41). Consider the eigenproblem6

D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′uj′k′

D−1∑
j,j′=0

n−1∑
k=0

ujkQjj′uj′k

−→
u

max (56)

D−1∑
j′=0

n−1∑
k′=0

Ssq;j′k′u
[s]
j′k′ −

D−1∑
j′=0

λsj′u
[s]
j′q = µ[s]

D−1∑
j′=0

Qsj′u
[s]
j′q (57)

with an additional Nd linear constraints added (their specific form, which provides good

convergence of the algorithm, is discussed below in Appendix A 1)

0 =
D−1∑
j=0

n−1∑
k=0

Cd;jkujk d = 0 . . . Nd − 1 (58)

A common method of solving eigenproblem (56) with homogeneous linear constraints (58)

is the Lagrange multipliers method[39]. This approach, however, creates difficulties when

both linear and quadratic constraints are present, especially when the number of constraints

is large. A better approach to dealing with linear constraints is to convert (58) to a form

that expresses rank(Cd;jk) components of ujk in terms of its other components, with the

coefficients given by the selected components C̃d;jk being zero. We simply moved some of the

terms in (58) from the right-hand side to the left-hand side.

uj[d]k[d] =
D−1∑
j=0

n−1∑
k=0

C̃d;jkujk d = 0 . . . rank(Cd;jk)− 1 (59)

Then any ujk satisfying the linear constraints (58) can be expressed as a linear combination

of selected components. Let us denote these components as some general variables Vp,

p = 0 . . . NV − 1

NV = Dn− rank(Cd;jk) (60)

ujk =

NV −1∑
p=0

Mjk;pVp (61)

6 From the variation (51), it follows that the most interesting u
[s]
jk states have a value of the functional

(56) close to zero. Therefore, the matrix Qjj′ in the denominator can be chosen as any positively definite

Hermitian matrix to improve convergence. Choosing Qjj′ = δjj′ gives familiar results; another choice can

be Qjj′ = λjj′ , i.e., having the Lagrange multipliers in the denominator instead of adding them to (54):

consider a variation of
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′uj′k′

/ D−1∑
j,j′=0

n−1∑
k=0

ujkλjj′uj′k over ujk to obtain the same result

as (51); see com/polytechnik/kgo/KGOIterationalLagrangeMultipliersInDenominatorU.java.

https://en.wikipedia.org/wiki/System_of_linear_equations#Homogeneous_systems


19

Substitute (61) back to (56) to obtain an unconstrained generalized eigenproblem (63) with

respect to NV generalized variables Vp. The linear constraints (58) are incorporated into new

variables Vp, resulting in a reduction of the total number of variables by the rank(Cd;jk).7

The transformation in (61) is actually a regular Gaussian elimination, which is a special form

of LU decomposition. A simple implementation with row and column pivoting is used in com

/polytechnik/utils/EliminateLinearConstraints_HomegrownLUFactorization.java.

For a very large number of linear constraints, a transformation such as RRQR factorization

is probably more numerically stable. The new eigenproblem involves the matrices Sp;p′ in the

numerator and Qp;p′ in the denominator.

Sp;p′ =
D−1∑
j,j′=0

n−1∑
k,k′=0

Mjk;pSjk;j′k′Mj′k′;p′ (62a)

Qp;p′ =
D−1∑
j,j′=0

n−1∑
k=0

Mjk;pQjj′Mj′k;p′ (62b)

The λp;p′ converts in the same way. We can express eigenproblem (56) in the following form:

NV −1∑
p,p′=0

VpSp;p′Vp′

NV −1∑
p,p′=0

VpQp;p′Vp′

−→
V

max (63)

NV −1∑
p′=0

Sp;p′V
[s]
p′ −

NV −1∑
p′=0

λp;p′V
[s]
p′ = µ[s]

NV −1∑
p′=0

Qp;p′V
[s]
p′ (64)

The cost of this conversion is that if we originally set Qjj′ = δjj′ , then in the Vp basis, the

denominator in (63) is no longer a unit matrix. This is not an issue, as any modern linear

algebra package internally converts a generalized eigenproblem to a regular one. See, for

example, DSYGST, DSPGST, DPBSTF, and similar subroutines.

Let the original eigenproblem (57) be already solved, and extremal u[s]jk satisfying the

partial quadratic constraint (42) are obtained. Consider the Lagrangian variation δL/δusq. If

7 Note that at this stage, some of the vectors that were removed by the constraints can possibly be reintroduced

into the Vp basis. They can be directly added as additional column(s) to Mjk;p. This changes only the size

of the Vp basis to NV = Dn− rank(Cd;jk) +Ninj . A better option, however, is to modify Cd;jk initially

and avoid injecting vectors into the basis.

https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/RRQR_factorization
https://www.netlib.org/lapack/lug/node54.html


20

the state ujk is extremal in (56), then the variation (51) is zero

0 =
D−1∑
j′=0

n−1∑
k′=0

Ssq;j′k′uj′k′ −
D−1∑
j′=0

λ̆sj′uj′q (65)

λ̆jj′ = λjj′ + µ[s]Qjj′ (66)

It is exactly zero (for all Dn equations) if ujk is one of the u[s]jk and the Lagrange multipliers

are as in (66). However, this ujk may not satisfy the full set of constraints (41). It is adjusted

with (46) to satisfy all the constraints, and a new λjj′ is calculated to use in the problem

(57). A difficulty we encountered in [29, 30] is that this iterative algorithm, when λjj′ (53) is

used, does not converge to a solution. In this paper, this difficulty is overcome by solving the

eigenproblem (57) with additional linear constraints (58). The improved iterative algorithm

becomes the following:

1. Take initial λij and linear constraints Cd;jk to solve the optimization problem (63)

with respect to Vp. The solution method involves solving an eigenvalue problem of

dimension NV , which corresponds to the number of columns in the Mjk;p matrix. A

new ujk is obtained from Vp using (61). The result: s = 0 . . . NV − 1 eigenvalues µ[s]

and corresponding matrices u[s]jk reconstructed from V
[s]
p . The value of NV is typically

Dn− (D − 1)(D + 2)/2.

2. A heuristic is required to select the ujk among all NV eigenstates. Trying a number of

them and selecting the maximum (i.e. from all s = 0 . . . NV − 1 select the best state

among the top eigenvalues µ[s]: try all positive and 10 highest negative ones) providing

a large value of the original functional (47) typically results in only a local maximum.

Numerical experiments show that the index of the eigenstate is a good invariant: always

selecting the state V [s]
p with the largest µ[s], second largest µ[s], third largest µ[s], etc.,

converges to a different solution of the original problem. Starting with about the fifth

largest eigenvalue, convergence may not always be observed. The global maximum of

F typically corresponds to selecting the largest µ[s]. A good heuristic is to run the

algorithm n times, always selecting the state of the n-th largest µ[s]. Then select the

global maximum among these n runs; the remaining n− 1 solutions are also good —

this way we managed to obtain up to a dozen different solutions. At worst — a cycle

without convergence (usually with a period of 2 iterations) is observed; this was an



21

issue in [29]. With the linear constraints technique of Appendix A1 this difficulty is

overcome.

3. The obtained ujk is not partially unitary since constraint (42) is a subset of the full

constraints (41). Apply the adjustment (46) and calculate the λij (53) in the adjusted

state; these are the Lagrange multipliers for the next iteration.

4. For a good convergence, in addition to λij, we need to select a subspace for the next

iteration’s variation of ujk. Using the full size Dn basis leads to poor convergence

[29]. There are two feasible options to improve it: either use an advanced method

for calculating λij, as detailed in Appendix A below, or constrain the subspace of ujk

variation, as discussed in Appendix A 1 below. The latter technique of additional linear

constraints Cd;jk (58) provides superior results.

5. Insert this new λij into (54) and, using the basis Vp obtained (61) from Cd;jk, calculate

the matrices for the numerator and denominator of the generalized eigenproblem (62)

to be used in the next iteration. Repeat the iteration process until converging to

a maximum (presumably global) of F with ujk satisfying the constraints (41). If

convergence is achieved, the λij stops changing from iteration to iteration, and the µ[s]

of the selected state in step 2 above is close to zero. On the first iteration, take initial

values of Lagrange multipliers λij = 0 and have no linear constraints.

If, in the eigenvalue selection step 2, the state of the maximal eigenvalue is unconditionally

selected, the algorithm becomes linear: it contains no conditional expressions, no selectively

executed instructions, no “branching”. In this case, it possesses a very simple flat logic that

converges to the global maximum of the objective function. This represents a repeated process

of: Finding the state corresponding to the maximal eigenvalue of an eigenproblem. Adjusting

the found state to satisfy the full set of constraints. Finding from it the Lagrange multipliers

λij and the constraints Cd;jk (a subspace for the next iteration’s variation). Such a flat

structure greatly simplifies the algorithm’s complexity analysis, computer implementation,

and offers great potential for parallelization.

Based on a number of numerical experiments, we can conclude that this iterative algorithm

almost always converges. Determining the exact convergence domain is a subject of future

research. A distinctive feature of this algorithm is that instead of the usual iteration internal



22

state in the form of a pair (approximation, Lagrange multipliers) (ujk, λij), it uses an iteration

internal state in the form of a triple (approximation, Lagrange multipliers, homogeneous

linear constraints) (ujk, λij, Cd;jk). Whereas most optimization algorithms use linear system

solutions (Newtonian iteration) as a building block, the algorithm in question employs

eigenproblem solutions as the building block. This allows us to develop a much more fine-

grained solution selection in step 2 above, which makes the algorithm less sensitive to

degeneracy and more likely to converge to the global maximum. The drawback of using an

eigenproblem solution as a building block is that it is more computationally costly than

a linear system solution or first-order gradient methods. However, the main goal of the

paper is to present a working proof-of-concept algorithm capable of solving a new algebraic

“eigenoperator” problem (39); the computational complexity of optimization is a separate

concern. An apparent optimization would be to replace a general-purpose eigenproblem solver

with one that finds only the largest eigenvalue in step 2, which is typically adequate and

expected to significantly enhance algorithm performance, see Appendix B for a preliminary

analysis.

A reference implementation of this algorithm is available at com/polytechnik/kgo/K

GOIterationalSubspaceLinearConstraints.java. There are dozens of other algorithms

implemented, but only this one provides iterative convergence.8 There is a driver in the c

om/polytechnik/kgo/KGOSolutionVectorXVectorF.java:main class for a quick test of

the algorithm. The driver generates a deterministic random sample from which the tensor

Sjk;j′k′ is calculated, and then the specified algorithm (taken from the command argument) is

applied to find the optimal partially unitary operator. Let us compare the convergence of this

paper’s iterative algorithm with the results from [29] (that uses vanilla Lagrange multipliers)

on the driver’s deterministically randomly generated data with default settings: D = 4 and

n = 19 of M = 13540 observations.

java com/polytechnik/kgo/KGOSolutionVectorXVectorF ITERATIONS_KGOIterationa

lSubspaceLinearConstraints 2>&1 | grep Selected

and

java com/polytechnik/kgo/KGOSolutionVectorXVectorF ITERATIONS_KGOIterationa
8 An equivalent implementation with additional features[40], com/polytechnik/kgo/KGOIterationalSubs

paceLinearConstraintsB.java, follows the same logic, but all calculations are performed in the original

basis without using v[s]jk . The result is identical to KGOIterationalSubspaceLinearConstraints.java,

which once again demonstrates the basis-invariance of our theory.



23

TABLE I. Comparison of convergence between the algorithm presented in this paper and the one

from our previous work [29], conducted on a data sample with D = 4, n = 19, M = 13540 for the

first i = 0 . . . 17 iterations. We present: µ – the eigenvalue of the selected state, F – the value of the

functional (47) normalized to the number of observations, and an indicator of unitarity
∑

1/λG.

KGOIterationalSubspaceLinearConstraints KGOIterationalSimpleOptimizationU

i µ F
∑

1/λG µ F
∑

1/λG

0 2296.97 7864.08 38.86 2296.97 7864.08 38.86

1 201.08 7936.32 20.02 239.84 8020.58 34.94

2 113.98 8010.69 27.04 110.62 8032.89 17.70

3 100.82 8178.92 7.07 53.94 8014.30 14.31

4 64.91 7890.37 26.06 150.60 8138.49 15.82

5 204.71 8078.93 32.47 57.33 8113.74 11.39

6 134.24 7873.87 34.30 109.05 8071.24 17.90

7 201.39 8112.94 24.76 38.24 8005.98 11.93

8 90.78 7869.54 34.38 92.91 8059.80 18.31

9 159.77 8057.35 12.58 49.79 8101.24 6.51

10 83.15 8212.67 8.06 148.46 8094.14 29.02

11 28.15 8194.82 6.22 86.11 8035.41 16.24

12 25.06 8292.05 4.03 156.60 8060.77 26.22

13 3.08 8302.52 4.02 95.37 8112.07 17.72

14 0.23 8303.46 4.00 73.73 8016.44 23.42

15 5.63 · 10−4 8303.46 4.00 202.11 8040.93 32.05

16 1.05 · 10−8 8303.46 4.00 93.91 7963.84 21.20

17 2.39 · 10−13 8303.46 4.00 192.02 8030.50 24.14

lSimpleOptimizationU 2>&1 | grep Selected

The output is grep-filtered to show only the iteration status. The results are presented in

Table I. From the table, we see that the algorithm cycles through a number of initial iterations

without convergence. However, once it enters a contraction mapping area, convergence becomes

very fast (faster than any geometric progression). The plain vanilla Lagrange multipliers

https://en.wikipedia.org/wiki/Contraction_mapping


24

method does not converge at all: optimizing (56) over the full Dn space severely violates

constraints (41), and problem degeneracy impedes convergence. This can be demonstrated

by running KGOIterationalSubspaceLinearConstraints in the standard manner for 20

iterations to obtain a perfect solution. Then, starting from iteration 21, turn off the linear

constraints (A8), effectively switching to the vanilla Lagrange multipliers method internally.

The result is that, for the next 4 to 7 iterations, the solution remains almost the same.

However, after 7-10 iterations, it starts to diverge due to accumulated floating-point errors,

leading to irregular cycling without convergence. This demonstrates the critical importance of

linear constraints (A8) for the convergence of iterative algorithms and the intrinsic instability

of vanilla methods.

There are several QCQP software packages available, both commercial and open-source,

such as [41], python qcqp, NAG QCQP among many others. A question arises: How well

can existing software handle a QCQP optimization problem like that in this paper? We

did not extensively test third-party software (although we plan to do so in the future), but

generally, the results were unsatisfactory, especially in terms of finding the global maximum.

The reason is that existing QCQP software packages were designed as general-purpose solvers

intended to solve any QCQP problem. Many of them are heuristic Newton-style solvers with

Lagrange multipliers often combined with some form of linear programming and convex

optimization. The optimization problem considered in this paper is special: it has only

quadratic equality constraints, is non-convex, and exhibits multiple solutions, local maxima,

and multiple saddle points. For such a problem, solvers based on single solution iterations

(e.g., Newtonian type (second order), gradient type (first order), etc.) are unlikely to identify

the global maximum. One may try Genetic programming solvers, but they lack knowledge

about the underlying algebraic structure of the problem. The problem of finding an operator

that optimally converts an operator from one Hilbert space to another requires a specialized

solver. Our use of the generalized eigenvalue problem as the algorithm’s building block has

the advantage of obtaining many solution candidates (eigenvectors) at once. With proper

selection, we can greatly increase the chances of finding the global maximum. Compared to

[29], the quality of our optimization algorithm has been greatly improved, and we intend to

use it as a “black box” for applying it to several problems for demonstration purposes. Let us

demonstrate the value of finding a partially unitary operator that optimally transforms a

vector from Hilbert space IN to Hilbert space OUT.

https://github.com/cvxgrp/qcqp
https://nag.com/solving-quadratically-constrained-quadratic-programming-qcqp-problems/
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program#Solvers_and_scripting_(programming)_languages
https://en.wikipedia.org/wiki/Genetic_programming


25

IV. A DEMONSTRATION OF RECOVERING UNITARY DYNAMICS FROM

PHASE-STRIPPED DATA

Consider an inverse problem. Let a dynamic system evolve with the equation X(l+1) = UX(l)

(31). The problem is to recover the orthogonal operator U from an observed sample X(l).

The problem would be trivial if X(l) were directly observed — a regression analysis could

reveal U , see e.g. the section “An application of LRR representation solution to dynamic

system identification problem” of [30]. What greatly complicates matters is that we consider

observations of a quantum channel type; hence, X(l) is observable only up to a phase. This

means that any wavefunction mapping (2) can only be observed with an unknown phase.

This can be modeled by multiplying the actually measured classical system values by random

phase factors. The problem is to determine the operator U from the sample given in (32).9

In this section a few simple examples are presented. All calculations are performed in real

space, using a ±1 factor instead of a complex phase factor. A timeserie is initially generated

with equation (31). The obtained vectors X(l) are then multiplied by random ±1 factors.

These new vectors (32) are now considered as observables. The problem is to recover U from

observable data. We present a recovery with two quantum channels: transforming the Gram

matrix of Section IIC and transforming the unit matrix of Section IID. Since the unitarity

of the test data is exact, both methods recover the underlying operator U exactly. Therefore,

only the Gram matrix quantum channel is presented below.

Let us start with a simple SO(3) rotation group. Rotation matrices can be represented

using Euler angles (φ, θ, ψ) (in a space of dimension d, there are a total of d(d− 1)/2 angles).

g(φ, θ, ψ) =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1



1 0 0

0 cos θ − sin θ

0 sin θ cos θ



×


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (67)

9 The operator itself is defined within a phase. Further degeneracy may arise from the data; for instance, if

some components Xj and Xj+1 consistently remain the same in the sample, then we cannot distinguish

between a unit matrix and a permutation matrix. The input data sample should be information-complete

(IC) [22].

https://en.wikipedia.org/wiki/3D_rotation_group
https://en.wikipedia.org/wiki/Euler_angles


26

Take U = g(φ = 0.1, θ = 0.4, ψ = 0.7)

U =


0.7018 −0.7113 0.0389

0.6668 0.6366 −0.3875

0.2509 0.2978 0.9211

 (68)

and apply it to transform the initial vector (0.0921, 0.5523, 0.8285) through 1000 transforma-

tions. The datafile SO3.csv is generated using

java com/polytechnik/algorithms/PrintOrthogonalSeq

Writing 1000 points to /tmp/SO3.csv .

There is a simple demo program that recovers operator U from sampled data (32) with

random phases ±1 possibly introduced into observations. This program maximizes (33) with a

crude regularization (36) (numerical stability depends on regularization, but the optimization

result does not [30]) and does not address possible data degeneracy. However, its simplicity

makes its internals clear.

java com/polytechnik/algorithms/DemoRecoverUnitaryMatrixFromSeq --data_file

_to_build_unitarymodel_from=/tmp/SO3.csv --data_cols=6:1,3:0

The program recovers the U identically

U =


−0.7018 0.7113 −0.0389

−0.6668 −0.6366 0.3875

−0.2509 −0.2978 −0.9211

 (69)

As discussed earlier, the operator U is defined within a ±1 factor in real space. The same test

was run on randomly generated orthogonal matrices of dimensions 3, 5, 7, 17, 40. All tests

can be run automatically using

java com/polytechnik/algorithms/PrintOrthogonalSeq\$TestAuto

The maximal difference in matrix elements (for all dimensions tried) is less that 10−13, which is

about floating point errors. This leads us to conclude that the developed numerical algorithm

in Section III can recover system dynamics from wavefunction measurements (without a

phase) for dynamic systems of high dimension. This algorithm is a powerful method for

solving the inverse problem in quantum mechanics.



27

V. A DEMONSTRATION OF POLYNOMIAL MAPPING RECOVERY

Consider polynomials in the [−1 : 1] interval. Let there be l = 1 . . .M points y(l) split

equidistantly in the interval. Define the data

x
(l)
k = ξ(l)Tk(y

(l)) k = 0 . . . n− 1 (70a)

f
(l)
j = ζ(l)Pj(y

(l)) j = 0 . . . D − 1 (70b)

Here, Tk is a Chebyshev polynomial and Pj is a Legendre polynomial. The ξ(l) and ζ(l) are

deterministic random functions of l that take the value ±1. The problem is to build the ujk

matrix that maximizes (5) subject to the constraints in (6). The mapping (4) for the (70)

data has the meaning of finding the coefficients that expand D Legendre polynomials in n

Chebyshev polynomials. The problem would be trivial (reduced to solving a linear system)

were it not for the random ±1 factors ξ(l) and ζ(l) in (70). With the presence of random

phases, any direct projection of one basis onto another becomes unavailable. The only feasible

way is to consider the quantum channel mapping (4). The solution is similar to that of the

previous section. Calculate the Gram matrices (19), (20) and the Sjk;j′k′ tensor (34). After

any regularization of the input data, for example (36), apply the algorithm from Section III.

Specifically, generate a data file named ChebyshevLegendre.csv by running

java com/polytechnik/algorithms/PrintChebyshevToLegendreMapping

Writing 500 points to /tmp/ChebyshevLegendre.csv

This file contains 500 points in the interval [−1 : 1] of (70) data, with T0 . . . T10 and P0 . . . P5

randomly multiplied by ±1 factors. Consider the simple task of converting T0 . . . T4 to

P0 . . . P4. Use a simple demonstration program that recovers the mapping (4) from sampled

data (70), with random phases ±1 possibly introduced into observations (the approach is

phase-agnostic). This program maximizes F , and its simplicity makes its internals clear.

java com/polytechnik/algorithms/DemoRecoverMapping --data_file_to_build_mod

el_from=/tmp/ChebyshevLegendre.csv --data_cols=21:2,6:14,18:-1:0

https://en.wikipedia.org/wiki/Chebyshev_polynomials
https://en.wikipedia.org/wiki/Legendre_polynomials


28

The program recovers the mapping identically (values below 10−15 are replaced by zero).

U = (71)

−1.0 0 0 0 0

0 −1.0 0 0 0

−0.25 0 −0.75 0 0

0 −0.375 0 −0.625 0

−0.140625 0 −0.3125 0 −0.546875


Exact values can be obtained using a polynomial library from [42], which is included with the

software for this paper[43]. Run in jshell new Legendre().convertBasisToPBASIS(5,new

Chebyshev()) to obtain Pj over Tk expansion

1.0

0 1.0

0.25 0 0.75

0 0.375 0 0.625

0.140625 0 0.3125 0 0.546875


(72)

i.e. P3 = 0.375T1 + 0.625T3. This matches (71) within a ± sign. In this n = D case we have

a perfect recovery. Now consider the same problem of polynomial mapping for D < n, let us

run it with D = 4 and n = 5.

java com/polytechnik/algorithms/DemoRecoverMapping --data_file_to_build_mod

el_from=/tmp/ChebyshevLegendre.csv --data_cols=21:2,6:14,17:-1:0

The obtained mapping

U = (73)
0 −1.29434 0 0.56023 0

−0.63950 0 −0.44948 0 0.07596

0 −0.67678 0 −0.69274 0

−0.14967 0 −0.62083 0 −0.50233


is not a subset of the D = 5, n = 5 mapping (71), a subset can be obtained by running with

D = 4, n = 4. We previously discussed [29] the difficulties of the D < n case. A mapping

between two Hilbert spaces of different dimensions sometimes leads to unusual behavior, as

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip


29

 0

 0.01

 0.02

 0.03

 0  5  10  15  20
 0

 0.25

 0.5

 0.75

 1
(F

m
ax

-F
o
ri

g
)/

F
o
ri

g

F
o
ri

g
/M

D

FIG. 1. For D ≤ n = 20, a sample ψl → ϕl is constructed with a known ujk, the “original” one. The

result is compared with the fidelity-maximizing solution of optimization problem (5). For D < n

(partial unitarity), the fidelity of the optimization problem solution is always greater than the original

fidelity. For D = n (unitarity), the original and optimization problem solutions match exactly. A

deviation of Forig/M from 1 indicates that the transform does not preserve trace — it is a trace

preserving map only for D = n.

the mapping is no longer trace-preserving. The value of F increases when going from D = 4,

n = 4 to D = 4, n = 5 but the mapping is no longer a subset. Consider a simple numerical

experiment demonstrating the behavior of trace-decreasing maps.

VI. A DEMONSTRATION OF PARTIALLY UNITARY BEHAVIOR D < n

Consider a numerical experiment with a partially unitary mapping where D < n. For

demonstration we select a unitary matrix with matrix elements Ujk j, k = 0 . . . n − 1 and

generate a sample of random ψl (each of dimension n) with M = 1000 observations. Then,

for a given D, we select the first D rows of Ujk and use them as the partially unitary operator



30

ujk, j = 0 . . . D− 1, k = 0 . . . n− 1. Applying it to every ψl, a corresponding ϕl (of dimension

D) is created, and the mapping (2) is obtained for all sample elements. Then Sjk;j′k′ is created

from the sample and the numerical algorithm of Section III is applied. For D = n, this is

essentially the same problem considered in Section IV above. Now we run the problem for all

D = 1 . . . n. For every D, we calculate the original ujk fidelity and the fidelity of the obtained

ujk as the solution to the optimization problem, run java com/polytechnik/algorithm

s/DemoDMUnitaryMappingTest 2>&1 | grep Map:. In the D = n case both fidelities are

identical as well as the operators ujk. For D < n, however, the fidelity Fmax calculated with

the fidelity-maximizing operator is greater than the fidelity Forig of the original operator used

to construct the sample (2). In Fig. 1 we present the result for n = 20 — the original operator

fidelity (normalized to sample size M = 1000) and its relative difference (Fmax−Forig)/Forig.

We determined that for D < n, Fmax is always greater than Forig. The behavior is determined

by the form of fidelity. For fidelity definition (5), the optimization problem solution in the

case of partial unitarity D < n produces greater fidelity than the fidelity of the mapping used

to construct the sample. Consider the case where D = 1. From the constraints (8) it follows

that
∑n−1

k=0 u
2
0k = 1 and the wavefunction transform is f0 =

∑n−1
k=0 u0kxk. The vector f (now

a vector of a single element) has a unit norm only if xk = u0k (for D = 1, this is actually

a projection). For D < n, the quantum channel (38) is a trace decreasing map, and the

algorithm finds a mapping with higher fidelity than the original mapping used to construct

the quantum channel in the first place.

VII. A DEMONSTRATION OF FUNCTION INTERPOLATION

In the two previous sections, we considered examples of constructing ujk when the data

of x → f form has vectors x and f already belonging to corresponding Hilbert spaces. For

classical measurements, this is often not the case; a transformation x → ψ, f → ϕ is required

to build Hilbert space states ψ and ϕ from the original observations x and f . The most

straightforward method to construct such states is to consider states localized at given x (or

f) as wavefunctions (23) and use them for the mapping (25). As considered in section II B

above, localized states ψy(x) use the same Gram matrix (19) for the scalar product, which is

obtained from l = 1 . . .M sampled data. Effectively this is sample average (18) with weight

multiplied by a localized at y non-negative function ψ2
y(x) (it is normalized as 1 =

〈
ψ2
y(x)

〉
).

https://en.wikipedia.org/wiki/Quantum_channel


31

It provides a Radon-Nikodym approximation of some characteristic g

gRN(y) =
〈
gψ2

y

〉
(74)

The approximated value here is a superposition of the observed g with the positive density

ψ2
y(x). The familiar least squares interpolation (22), which expands the value rather than

representing a probability, has a similar form.

gLS(y) = ψy(y) ⟨gψy⟩ (75)

Here, the average is taken with the density ψy(x) — it is not always positive as ψ2
y(x) in

the Radon-Nikodym (74) expression; the ψy(y) is a normalizing factor of 1/
√
K(y). The

expressions 74) and (75) differ in how they represent the delta function δ(x− y): as ψ2
y(x) or

as ψy(y)ψy(x).

Consider the scalar function interpolation problem in the form of mapping between two

Hilbert spaces with ujk. Let there be a scalar f(x) and M observation points f (l) = f(x(l)),

l = 1 . . .M . Convert this scalar mapping to a vector one (the ξ(l) and ζ(l) are deterministic

random functions on l that take the value ±1)

x
(l)
k = ξ(l)

(
x(l)

)k
k = 0 . . . n− 1 (76a)

f
(l)
j = ζ(l)

(
f (l)

)j
j = 0 . . . D − 1 (76b)

For numerical stability it is better, instead of monomials (powers of the argument), to use

Chebyshev or Legendre polynomials as x(l)k = ξ(l)Tk(ax
(l) + b) and f

(l)
j = ζ(l)Tj(cf

(l) + d)

with a, b, c, d chosen to bring the argument into [−1 : 1] interval. This greatly increases the

numerical stability of calculations. However, the result itself is invariant with respect to the

polynomial basis choice — the result will be the same with any polynomial basis. From the

obtained vector to vector mapping construct x(l) and f (l) localized states ψx(l)(x) → ψf (l)(f)

mapping (2) with the former one defined in (23) and the latter one obtained from it with

argument and index replacement (25). Put them into (28) and obtain (27). After solving

the problem for ujk an evaluation of interpolated f(x) can be performed as follows: From a

given x construct the vector x (76a). Substitute it to (29) to obtain the probability of a given

vector of outcome f . In the scalar case the outcome value can be evaluated, for example, by

constructing (76b) vector f from f and then finding the value of f that provides the maximal

value of probability (29). For scalar f this problem can be reduced to finding the roots of a

single variable polynomial.

https://en.wikipedia.org/wiki/Dirac_delta_function


32

 0

 0.25

 0.5

 0.75

 1

 1.25

-1 -0.5  0  0.5  1

 0

 0.25

 0.5

 0.75

 1
f P

x

f

fRN

f
max P

P(f
max P

)

P
max

FIG. 2. Scalar function f = x2 (red) interpolation with: green: Radon-Nikodym (74), blue: f

corresponding to the maximal probability (29), the dependence has discontinuities; some numerical

instability presents even in this D = n = 6 case. Pink: probabilities corresponding to (29) and (77a).

This approach creates a number of issues. An attempt to fit a scalar function f(x) to

Hilbert spaces mapping using moments like
〈
f jxk

∣∣K(x)K(f)
∣∣ f j′xk

′〉 (26) create difficulties

both in computations and in mapping back from Hilbert space to function value. As a simple

demonstration, let f(x) = xp with p = 2. This requires calculating x-moments of maximal

degree 2(n− 1) + 2p(D − 1), which for n = D = 6 gives a maximal polynomial degree of 30,

creating numerical instability difficulties. There is an additional problem of converting back

from the Hilbert space to the value of f by checking all extrema of (29) to find the f that

provides the maximal probability is a “switching” function that creates a non-continuous

solution when polynomial roots change. An example is presented in Fig. 2. For f = x2 (red

line), we calculated the Radon-Nikodym approximation (74) (least squares is identical to

the original f since x2 is in the basis, thus it is not presented in the plot), as well as f

corresponding to the maximum probability (blue line) and its corresponding probability

(pink). In the plot, one can see starting numerical instability (asymmetry in the plot) and



33

discontinuity in f corresponding to the change of the selected root. As expected for the x

where P (fmaxP (x)) = 1 the value of fmaxP is equal to the exact f(x).

Alternatively[29], we can consider (29) without the requirement (76b) that all components

of f are obtained from a single scalar f .

fmaxP
j =

D−1∑
j′=0

Gf
jj′aj′ (77a)

P (fmaxP )
∣∣∣
x
=

D−1∑
j,j′=0

ajG
f
jj′aj′ (77b)

The maximal value of the probability (29) at (77b) is an important characteristic of the

obtained solution. If the problem dimensions are balanced – the value is equal to 1 for all x

(pink line Pmax in Fig. 2), it can be lower in the case where D < n, which requires separate

consideration. In [29] we evaluated f(x) from the first two elements of the vector f : for a

polynomial basis Qj(f) (in (76b) Qj(f) = f j) we can obtain the value of f from the ratio

Q0 = fmaxP
0 and Q1(f) = fmaxP

1 . Back in [29], we believed that observed singularities were

caused by a poor solution to the optimization problem. While the algorithm developed in this

paper provides a very good solution to the optimization problem of Hilbert spaces mapping,

the method of obtaining the value of the scalar f from the ratio of the first two basis functions

does not work well.

Currently we do not have a good solution to the problem of converting two Hilbert spaces

mapping ujk into a scalar function f(x). This is a subject of future research.

VIII. CONCLUSION

The problem of mapping between Hilbert spaces, from IN of |ψ⟩ to OUT of |ϕ⟩, based on

a set of wavefunction measurement (within a phase) observations ψl → ϕl, l = 1 . . .M , is

formulated as an optimization problem maximizing the total fidelity
∑M

l=1 ω
(l) |⟨ϕl | U |ψl⟩|2

subject to probability preservation constraints on U . This optimization problem is reduced to

a novel QCQP problem of maximizing a quadratic form ⟨U |S | U⟩ → max subject to partial

unitarity constraints on U .

The operator U , represented by a rectangular matrix ujk of dim(OUT ) × dim(IN) di-

mensions with D = dim(OUT ) ≤ n = dim(IN), can be viewed as a quantum channel (38).

Time evolution represents a special case of this problem. The optimization problem involving



34

a quadratic function on U with quadratic constraints is solved using a numerical method

outlined in Section III. The method is an iterative approach with a generalized eigenproblem

as its building block. This differs from commonly used optimization methods that employ

Newtonian iteration or gradient iteration as their building blocks. This approach allows us

to find the global maximum for almost any input. In addition, instead of the usual iteration

internal state in the form of a pair (approximation, Lagrange multipliers) (ujk, λij), the

algorithm uses an iteration internal state in the form of a triple: approximation, Lagrange

multipliers, and homogeneous linear constraints (ujk, λij, Cd;jk). It is these linear constraints

that contribute to the convergence of the algorithm.

An important feature of the algorithm is that, on each iteration, there is no single solution

candidate. While Newtonian or gradient-based algorithms have a single iterative candidate,

our eigenproblem-based method provides multiple solutions simultaneously (eigenvectors),

the λij and constraints Cd;jk are then calculated from the selected eigenvector. Therefore,

instead of a single solution, a group of solution candidates (eigenvectors) is obtained at every

iteration. This is similar to genetic programming optimization, where multiple solutions “flow

around” local maxima and saddle points. It is the multiple solutions that allow us to identify

the global maximum.

This numerical method can be applied to various classical and quantum problems, such as

variational quantum algorithms and quantum mechanical inverse problems, like recovering a

Hamiltonian from a sequence of wavefunction observations. An operator U is obtained from

these observations, after which equation (16) can be applied to derive the Hamiltonian.

A demonstration of unitary dynamics X(l+1) = UX(l) for system identification involves

determining U from measured X̃(l), which are actual X(l) multiplied by random phase factors.

This was presented for a number of orthogonal operators U with dimensions n = D =

{3, 5, 7, 17, 40}. An exact recovery of U was observed. The technique was also applied to

problems involving polynomial bases mapping and scalar function interpolation. An exact

solution was obtained for polynomial bases mapping. However, solving the problem of scalar

function interpolation with the developed technique is challenging due to the lack of good

equivalence between the problem of mapping between Hilbert spaces and scalar functions.

The problem of optimal mapping between two Hilbert spaces is reduced to a new algebraic

“eigenoperator” problem (39). Currently, we only have a numerical solution for it. An important

generalization of Unitary Learning was made in this paper by considering Hilbert spaces of



35

different dimensions D ≤ n. A question arises about further generalization. An important

topic for future research could be Kraus’ theorem, which determines the most general form

of mapping between Hilbert spaces[44]:

AOUT =
∑
s

BsA
INB†

s (78)

with Kraus operators Bs satisfying the constraints that the unit AIN is converted to the unit

AOUT

∑
s

BsB
†
s = 1 (79)

This is a generalization of the transform (38); it is applicable to systems with quantum

decoherence. In Appendix I of [30], the corresponding optimization problem is formulated,

but its numerical solution is the subject of future research[40].

ACKNOWLEDGMENTS

This research was supported by Autretech Group, www.атретек.рф, a resident company

of the Skolkovo Technopark. We thank our colleagues from the Autretech R&D department

who provided insight and expertise that greatly assisted the research. Our grateful thanks

are also extended to Mr. Gennady Belov for his methodological support in doing the data

analysis.

V.M. is grateful to Professor Arthur McGurn. Working with him at WMU was an important

step in my education, where I learned approaches that combine quantum mechanics and

numerical computations. This paper is dedicated to Professor Arthur McGurn on the occasion

of his 75th birthday.

Appendix A: On Lagrange Multipliers Calculation With Selected States Variation

In this work, we do not iterate for Lagrange multipliers. Instead, at each iteration for the

current solution approximation ujk, we calculate Lagrange multipliers corresponding to an

extremum in this state. This enhances algorithm stability and allows for directly applying a

solution adjustment procedure (46) from the partial constraints (42) to the full set (41).

https://en.wikipedia.org/wiki/Quantum_operation#Kraus_operators
https://en.wikipedia.org/wiki/Quantum_decoherence
https://en.wikipedia.org/wiki/Quantum_decoherence
https://xn--80akau1alc.xn--p1ai/


36

The variation of the Lagrangian L (49) must be zero for the state ujk

0 =
1

2

δL
δuiq

=
D−1∑
j′=0

n−1∑
k′=0

Siq;j′k′uj′k′ −
D−1∑
j′=0

λij′uj′q (A1)

These are Dn equations. The Lagrange multipliers λij are a Hermitian D ×D matrix with

D(D + 1)/2 independent elements. Thus, for a general ujk, all Dn equations (A1) cannot be

simultaneously satisfied. They are satisfied in (65) for the eigenstate u[s]jk of (57), but after

the adjustment (46), this is no longer the case. A trivial solution is to take the L2 norm of

the variation vector (A1) and minimize the sum of squares (52) to obtain (53) as the solution

to the linear system. A direct implementation, however, has poor convergence [29]. The idea

is to calculate the sum of squares only in specific states. Consider the problem

Nv−1∑
s=0

∣∣∣∣∣
D−1∑
i=0

n−1∑
q=0

v
[s]
iq

[
D−1∑
j′=0

n−1∑
k′=0

Siq;j′k′uj′k′

−
D−1∑
j=0

λij + λji
2

ujq

]∣∣∣∣∣
2

−→
λij

min (A2)

The variation (A1) is projected onto v[s]iq , s = 0 . . . Nv − 1 states, and the sum of projection

squares is taken. If v[s]iq form a full basis, e.g., all the s = 0 . . . Dn− 1 eigenvectors u[s]jk of (57),

then (A2) is exactly (52). One may think about (A1) as the variation of the Lagrangian (49),

δL/δuiq. The sum of squares (52) is
〈
δL
δu

∣∣ δL
δu

〉
, the sum of squares in v[s]iq -projected states (A2)

is
∑Nv−1

s=0

〈
δL
δu

∣∣ v[s]〉 〈v[s] ∣∣ δL
δu

〉
, for any full basis v[s]iq they are the same. In practice, the v[s]iq

may not necessarily be full or orthogonal. If they are a subset of the original eigenstates u[s]jk

(57) from the iterative algorithm, they are orthogonal. If the (46) adjustment is applied to

them, they are not. One may consider cross states with a Dn×Dn Gram matrix, similar

to (23), as
∑D−1

j,j′=0

∑n−1
k,k′=0 ujkG

−1
jk;j′k′vj′k′ . However, this is usually not necessary since the

selection of vectors v[s]iq is performed solely to improve the algorithm’s convergence.

Once the vectors v[s]iq are selected – in the problem (A2) the D ×D Hermitian matrix λij

should be expressed via the vector λr of dimension D(D + 1)/2. A variation over λr gives

a linear system of dimension D(D + 1)/2 that can be readily solved. The number of v[s]iq

vectors should be at least D(D + 1)/2, otherwise the linear system will be degenerated. For

matrix to vector conversion and linear system solution see com/polytechnik/kgo/Lagra

ngeMultipliersPartialSubspace.java:getLambdaForSubspace, which implements this

functionality to solve the minimization problem (A2) and obtain λij from a subspace chosen



37

as the states of high eigenvalues of problem (57). The success of this approach is moderate:

The number of top-µ[s] states to select is not precisely clear, the linear system may become

degenerate, etc. One can check these attempts at com/polytechnik/kgo/LagrangeMulti

pliersPartialSubspace.java:getLambdaForSubspace and their usage in com/polytech

nik/kgo/KGOIterationalLagrangeMultipliersPartialSubspace.java. This leads us to

conclude that instead of considering a subspace for constructing λij we should consider a

subspace for variation of ujk.

1. Linear Constraints On Variation

Degeneracy of the problem and quadratic constraints require not only a good approximation

for Lagrange multipliers, but also a restricted subspace for variation of ujk in the (56)

problem. The difficulty arises from partial unitarity constraints (41). The optimization

(56) preserves only the partial constraint (42). Consider a full orthogonal basis v[s]jk , where

δss′ =
D−1∑
j=0

n−1∑
k=0

v
[s]
jkv

[s′]
jk , s = 0 . . . Dn− 1, and a variation vector δujk expanded over this basis

δujk =
Dn−1∑
s=0

asv
[s]
jk (A3)

as =
D−1∑
j=0

n−1∑
k=0

v
[s]
jkδujk (A4)

If we were working in a regular vector space, the only available operation would be the scalar

product

⟨v |u⟩ =
D−1∑
j=0

n−1∑
k=0

vjkujk (A5)

Now, when we study partially unitary operators (38), we involve a tensor

G
v|u
ij =

n−1∑
k=0

vikujk (A6)

The scalar product corresponds to ⟨v |u⟩ = TrGv|u, the Gram matrix (43) is Gu
ij = G

u|u
ij .

Consider a variation G
u+δu|u+δu
ij . To preserve the partial unitarity constraints (41) on ujk

within linear terms (on δu) we require all off-diagonal elements of HermGu|δu
ij to be zero

0 = G
u|δu
ij +G

u|δu
ji , i ̸= j (homogeneous) and the diagonal elements to be one (inhomogeneous).



38

The partial constraint (42) preserves the matrix trace; thus, it suffices to have the diagonal

elements equal, which forms a homogeneous constraint 0 = G
u|δu
ii −G

u|δu
i−1 i−1, i = 1 . . . D − 1.

Expanding δu in the basis (A3), we obtain the constraints

0 =
Dn−1∑
s=0

as

(
G

u|v[s]
ij +G

u|v[s]
ji

)
j < i, i = 0 . . . D − 1 (A7a)

0 =
Dn−1∑
s=0

as

(
G

u|v[s]
ii −G

u|v[s]
i−1 i−1

)
i = 1 . . . D − 1 (A7b)

There are (D−1)(D+2)/2 total linear homogeneous constraints on the expansion coefficients

as. Now, not all Dn coefficients as are independent; there are only Dn− (D − 1)(D + 2)/2

independent ones. The constraints (A7) are homogeneous

Nd = (D − 1)(D + 2)/2 (A8a)

doffd : 0 . . . D(D − 1)/2− 1 (A8b)

ddiag : D(D − 1)/2 . . . (D − 1)(D + 2)/2− 1 (A8c)

s : 0 . . . Dn− 1 (A8d)

Cd;s =

G
u|v[s]
ij +G

u|v[s]
ji if d ∈ doffd

G
u|v[s]
ii −G

u|v[s]
i−1 i−1 if d ∈ ddiag

(A8e)

Here d ∈ doffd corresponds to j < i, i = 0 . . . D−1 and d ∈ ddiag corresponds to i = 1 . . . D−1.

Equations (A8e) can be directly applied to (58) after the basis transformation.

Cd;jk =
Dn−1∑
s=0

Cd;sv
[s]
jk (A9)

There are D(D− 1)/2 constraints for zero off-diagonal elements (A8b) and D− 1 constraints

(one less the dimension) of diagonal elements equal to each other (A8c). In total there are

(D−1)(D+2)/2 homogeneous constraints. The constraints Cd;jk, like the Lagrange multipliers

λij , are calculated solely from the current iteration ujk; see com/polytechnik/kgo/LinearC

onstraints.java:getOrthogonalOffdiag0DiagEq for an implementation.

The result of the consideration above is: if, instead of a full basis v[s]jk of dimension Dn, we

take the basis Vp (61) that has rank(Cd;jk) = (D−1)(D+2)/2 fewer elements — the variation

of (63) will preserve partial unitarity of ujk within the first order. This drastically changes the

algorithm convergence. It begins to converge perfectly to a true solution only if both sets of

https://en.wikipedia.org/wiki/System_of_linear_equations#Homogeneous_systems


39

constraint (A7a) and (A7b) are satisfied; a single set alone does not ensure convergence. An

iterative algorithm that finds a partially unitary operator optimally converting an operator

from the IN Hilbert space to the OUT Hilbert space (38) is the main result of this paper.

The result was achieved by considering, on each iteration, not just a pair of approximation

and Lagrange multipliers (ujk, λij), but a triple: approximation, Lagrange multipliers, and

homogeneous linear constraints: (ujk, λij, Cd;jk). This approach addresses the challenges

posed by a quadratically constrained degenerate problem that exhibits local extrema and

multiple saddle points. A similar situation can be observed in dynamic systems with a

singular Lagrangian [45], where the solution can be obtained by considering a “constrained

Hamiltonian system” in which the evolution is constrained to a subspace of the phase space.

In the current work, the constrained subspace (determined by the coefficients Cd;jk (A9))

itself depends on the current iteration ujk.

A problem of optimizing the quadratic form
∑D−1

i,j=0 uiMijuj −→
u

max subject to a single

quadratic constraint 1 =
∑D−1

i,j=0 uiQijuj where Qij is a positively definite matrix can be

reduced to an eigenvalue problem. In Appendix F of [46] and later in [47] a quadratic

form optimization problem with two quadratic constraints was considered. An additional

constraint was in the form 0 =
∑D−1

i,j=0 uiCijuj . This problem is much simpler compared to the

one addressed in the current paper. For this problem, an algorithm using vanilla Lagrange

multipliers iterations converges without requiring additional linear constraints to be added, see

com/polytechnik/utils/IstatesConditionalV2.java for an implementation. However,

even in this simple case, it is necessary to try several starting values for the iterations to find

the global maximum. Numerical experiments have shown that adding a single linear constraint

on uj in each iteration greatly increases the likelihood of finding the global maximum. This

constraint takes the form 0 =
∑D−1

i,j=0 uiCiju
(cur)
j , where u(cur)j represents the value of uj to

compute the Lagrange multipliers for the current iteration. A reference implementation c

om/polytechnik/utils/IstatesConditionalSubspaceLinearConstraints.java on each

iteration solves an eigenproblem of dimension D − 1 (since a single constraint reduces the

dimension by 1), always selecting the maximal eigenvalue. This approach is akin to the

heuristic used in the algorithm described above. The result is almost always better than

that of IstatesConditionalV2.java which solves an eigenproblem of dimension D and

attempts to select the next iteration from a large number of vectors. This demonstrates the

advantage of considering the iteration state as a triple (solution, Lagrange multipliers, linear



40

constraints), even in the simple case of a single additional quadratic constraint.

Appendix B: A Preliminary Analysis of Computational Complexity

Let us estimate the computational complexity of the algorithm. From a sample of M

observations (2), the tensor Sjk;j′k′ is obtained and used to solve the algebraic problem (39).

The calculation of Sjk;j′k′ , for not very large samples, contributes little to the overall complexity;

that is, the complexity does not significantly depend on the number of observations in the

sample. The only requirement for the input sample is that it must be information-complete

[22] in order to recover the U .

The tensor has dimensions Dn×Dn. In each iteration, we solve an eigenvalue problem

(64). If it were not for the constraints in (58), the dimension of the eigenproblem would be

Dn. However, the convergence helper constraints from Appendix A1 reduce the dimension

to Dn− (D − 1)(D + 2)/2. This is the problem that requires the most computations. The

full list of problems of substantial computational difficulity is as follows:

• From M observations (2) of vectors with dimensions n and D, construct the tensor

Sjk;j′k′ . The calculations are similar to those used, for example, in covariance matrix

calculation. Each component of the tensor is a sum over all M observations; this task

can be trivially parallelized.

• LU decomposition (61) of the matrix Cd;jk (A9) with dimensions (D−1)(D+2)/2×Dn.

• Taking the square root to obtain the matrix Gu;−1/2 (45) requires solving an eigenprob-

lem of dimension D. There exist methods to calculate the square root of a positively

definite Hermitian matrix without solving an eigenproblem; see for example [48, 49]

and the textbook [50]. Since the dimension of this problem, D, is small compared to the

dimension of the eigenproblem (64) that we consider next, we conclude that optimizing

the square root calculation is not worth the effort.

• Solving the main eigenproblem (64), which has a dimension of Dn− (D− 1)(D + 2)/2.

This problem is the most computationally intensive one. The problem can be parallelized

[51–53], which can potentially greatly increase the algorithm’s performance.



41

• Calculating new values of Lagrange multipliers: for the problem addressed in this paper,

an analytic solution (53) is available. In the general case [40], a linear system with a

dimension equal to the number of independent components in the Lagrange multipliers

must be solved. For (53), this dimension is D(D + 1)/2.

The problem (64) is the most computationally difficult. For D = n (unitary learning), the

dimension of this eigenproblem is N = 1 + n(n− 1)/2. In each iteration, we need to solve an

eigenproblem of dimension N . Finding all eigenvectors has the same complexity as matrix

multiplication and is O(N3) in practice. However, it can be reduced to O(Nw) for some

2 < w < 3 [54]. The state selection step, however, typically requires only a single eigenvector

corresponding to the maximum eigenvalue. This problem has lower computational complexity,

which can be estimated as O(N2). Thus, the algorithm’s complexity can be optimistically

estimated at O(n4) in the unitary learning case.

Appendix C: Software description

• Install java 22 or later.

• Download the latest version of the source code code_polynomials_quadratures.zip

from [43] or from an alternative location.

• Decompress and recompile the program. Run a simple test to recover orthogonal

matrices of dimensions 3, 5, 7, 17, 40.

unzip code_polynomials_quadratures.zip

javac -g com/polytechnik/*/*java

java com/polytechnik/algorithms/PrintOrthogonalSeq\$TestAuto >/tmp/diag 2>&1

The diagnostics is saved to the file /tmp/diag

• Check the maximal absolute difference between the elements of the original and

recovered orthogonal matrices, do grep DIFF /tmp/diag

GRAM DIFF for dim=3 is 2.3314683517128287E-15

UNIT DIFF for dim=3 is 4.440892098500626E-16

GRAM DIFF for dim=5 is 6.439293542825908E-15

https://www.oracle.com/java/technologies/javase/jdk22-archive-downloads.html
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://disk.yandex.ru/d/AtPJ4a8copmZJ?locale=en


42

UNIT DIFF for dim=5 is 7.105427357601002E-15

GRAM DIFF for dim=7 is 5.064698660461886E-14

UNIT DIFF for dim=7 is 1.6431300764452317E-14

GRAM DIFF for dim=17 is 4.6851411639181606E-14

UNIT DIFF for dim=17 is 3.2807090377673376E-14

GRAM DIFF for dim=40 is 4.5630166312093934E-14

UNIT DIFF for dim=40 is 3.907985046680551E-14

Since the unitarity of the test data is exact — both quantum channels: the invariant

Gram matrix of Section II C and the invariant unit matrix of Section IID recover the

operator ujk exactly.

[1] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization

in the brain., Psychological review 65, 386 (1958).

[2] V. Vapnik and A. Y. Chervonenkis, The method of ordered risk minimization, I, Avtomatika i

Telemekhanika 8, 21 (1974).

[3] P. Hájek and T. Havránek, On generation of inductive hypotheses, International Journal of

Man-Machine Studies 9, 415 (1977).

[4] V. Vapnik, The nature of statistical learning theory (Springer science & business media, 2013).

[5] I. H. Witten and E. Frank, Data mining: practical machine learning tools and techniques with

Java implementations, Acm Sigmod Record 31, 76 (2002).

[6] L. A. Zadeh, Fuzzy sets, Information and control 8, 338 (1965).

[7] P. Hájek, Fuzzy logic and arithmetical hierarchy, Fuzzy sets and Systems 73, 359 (1995).

[8] Y. Bengio, A. Courville, and P. Vincent, Representation learning: A review and new perspectives,

IEEE transactions on pattern analysis and machine intelligence 35, 1798 (2013).

[9] A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini, and P. Perinotti, Optimal quantum learning

of a unitary transformation, Physical Review A 81, 032324 (2010).

[10] M. Arjovsky, A. Shah, and Y. Bengio, Unitary evolution recurrent neural networks, in Inter-

national conference on machine learning, NY, USA, 2016 (Proceedings of Machine Learning

Research (proceedings.mlr.press), 2016) pp. 1120–1128.

https://doi.org/10.1037/h0042519
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=at&paperid=8452&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=at&paperid=8452&option_lang=eng
https://doi.org/10.1016/S0020-7373(77)80011-4
https://doi.org/10.1016/S0020-7373(77)80011-4
https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1016/C2009-0-19715-5
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/0165-0114(94)00299-M
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1103/PhysRevA.81.032324
https://doi.org/10.48550/arXiv.1511.06464
https://doi.org/10.48550/arXiv.1511.06464


43

[11] S. Hyland and G. Rätsch, Learning unitary operators with help from u(n), in Proceedings of

the AAAI Conference on Artificial Intelligence, Vol. 31 (Association for the Advancement of

Artificial Intelligence (aaai.org), 2017).

[12] M. Razavy, An introduction to inverse problems in physics (World Scientific, 2020).

[13] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source Python framework for the

dynamics of open quantum systems, Computer Physics Communications 183, 1760 (2012).

[14] G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural

networks, Science 355, 602 (2017).

[15] J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse,

I. Bloch, and C. Gross, Exploring the many-body localization transition in two dimensions,

Science 352, 1547 (2016).

[16] M. Yan, H.-Y. Hui, M. Rigol, and V. W. Scarola, Equilibration dynamics of strongly interacting

bosons in 2D lattices with disorder, Physical review letters 119, 073002 (2017).

[17] P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M. Knap, U. Schneider, and I. Bloch,

Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems,

Physical Review X 7, 041047 (2017).

[18] M. Yan, H.-Y. Hui, and V. W. Scarola, Dynamics of disordered states in the Bose-Hubbard

model with confinement, Physical Review A 95, 053624 (2017).

[19] S. B. Ramezani, A. Sommers, H. K. Manchukonda, S. Rahimi, and A. Amirlatifi, Machine

learning algorithms in quantum computing: A survey, in 2020 International joint conference on

neural networks (IJCNN) (IEEE, 2020) pp. 1–8.

[20] B. T. Kiani, Quantum artificial intelligence: learning unitary transformations, Ph.D. thesis,

Massachusetts Institute of Technology (2020).

[21] Y.-M. Huang, X.-Y. Li, Y.-X. Zhu, H. Lei, Q.-S. Zhu, and S. Yang, Learning Unitary Trans-

formation by Quantum Machine Learning Model., Computers, Materials & Continua 68,

10.32604/cmc.2021.016663 (2021).

[22] G. Torlai, C. J. Wood, A. Acharya, G. Carleo, J. Carrasquilla, and L. Aolita, Quantum process

tomography with unsupervised learning and tensor networks, Nature Communications 14, 2858

(2023).

[23] S. Pai, B. Bartlett, O. Solgaard, and D. A. B. Miller, Matrix optimization on universal unitary

photonic devices, Physical review applied 11, 064044 (2019).

https://doi.org/10.1609/aaai.v31i1.10928
https://doi.org/10.1609/aaai.v31i1.10928
https://doi.org/10.1142/9789811221675_0001
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1103/PhysRevLett.119.073002
https://doi.org/10.1103/PhysRevX.7.041047
https://doi.org/10.1103/PhysRevA.95.053624
https://doi.org/10.1109/IJCNN48605.2020.9207714
https://doi.org/10.1109/IJCNN48605.2020.9207714
https://hdl.handle.net/1721.1/127158
https://doi.org/10.32604/cmc.2021.016663
https://doi.org/10.1038/s41467-023-38332-9
https://doi.org/10.1038/s41467-023-38332-9
https://doi.org/10.1103/PhysRevApplied.11.064044


44

[24] V. G. Malyshkin and M. G. Belov, Market Directional Information Derived From (Time,

Execution Price, Shares Traded) Sequence of Transactions. On The Impact From The Future,

arXiv preprint arXiv:2210.04223 10.48550/arXiv.2210.04223 (2022).

[25] B. T. Kiani, S. Lloyd, and R. Maity, Learning unitaries by gradient descent, arXiv preprint

arXiv:2001.11897 10.48550/arXiv.2001.11897 (2020).

[26] B. Kiani, R. Balestriero, Y. LeCun, and S. Lloyd, projUNN: efficient method for training deep

networks with unitary matrices, Advances in Neural Information Processing Systems 35, 14448

(2022).

[27] S. Lloyd and R. Maity, Efficient implementation of unitary transformations, arXiv preprint

arXiv:1901.03431 10.48550/arXiv.1901.03431 (2019).

[28] X. Wang, C. Yang, and M. Gu, Variational Quantum Circuit Decoupling, arXiv preprint

arXiv:2406.05619 10.48550/arXiv.2406.05619 (2024).

[29] V. G. Malyshkin, On Machine Learning Knowledge Representation In The Form Of Par-

tially Unitary Operator. Knowledge Generalizing Operator, arXiv preprint arXiv:2212.14810

10.48550/arXiv.2212.14810 (2022).

[30] V. G. Malyshkin, On The Radon-Nikodym Spectral Approach With Optimal Clustering, arXiv

preprint arXiv:1906.00460 10.48550/arXiv.1906.00460 (2019).

[31] T. A. Loring, Computing a logarithm of a unitary matrix with general spectrum, Numerical

Linear Algebra with Applications 21, 744 (2014).

[32] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean,

K. Mitarai, X. Yuan, L. Cincio, et al., Variational quantum algorithms, Nature Reviews Physics

3, 625 (2021).

[33] C.-Y. Park and N. Killoran, Hamiltonian variational ansatz without barren plateaus, Quantum

8, 1239 (2024).

[34] I. Najfeld and T. F. Havel, Derivatives of the matrix exponential and their computation,

Advances in applied mathematics 16, 321 (1995).

[35] A. Raza, Differentiating exponentials of Hamiltonians (2020), https://araza6.github.io/

posts/hamiltonian-differentiation/.

[36] K. Lu and X. Guo, Efficient training of unitary optical neural networks, Optics Express 31,

39616 (2023).

[37] K. Schäfers, M. Peardon, and M. Günther, A modified Cayley transform for SU(3), arXiv

https://doi.org/10.48550/arXiv.2210.04223
https://doi.org/10.48550/arXiv.2001.11897
https://doi.org/10.48550/arXiv.2203.05483
https://doi.org/10.48550/arXiv.2203.05483
https://doi.org/10.48550/arXiv.1901.03431
https://doi.org/10.48550/arXiv.2406.05619
https://doi.org/10.48550/arXiv.2212.14810
https://doi.org/10.48550/arXiv.1906.00460
https://doi.org/10.1002/nla.1927
https://doi.org/10.1002/nla.1927
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.22331/q-2024-02-01-1239
https://doi.org/10.22331/q-2024-02-01-1239
https://doi.org/10.1006/aama.1995.1017
https://araza6.github.io/posts/hamiltonian-differentiation/
https://araza6.github.io/posts/hamiltonian-differentiation/
https://araza6.github.io/posts/hamiltonian-differentiation/
https://doi.org/10.1364/OE.500544
https://doi.org/10.1364/OE.500544


45

preprint arXiv:2406.11337 10.48550/arXiv.2406.11337 (2024).

[38] A. Raza, Learning unitary matrices (2020), https://araza6.github.io/posts/

unitary-learning/.

[39] G. H. Golub, Some modified matrix eigenvalue problems, Siam Review 15, 318 (1973).

[40] M. G. Belov, V. V. Dubov, A. V. Filimonov, and V. G. Malyshkin, Quantum Channel Learning,

arXiv preprint arXiv:2407.04406 10.48550/arXiv.2407.04406 (2024).

[41] G. Frison, J. Frey, F. Messerer, A. Zanelli, and M. Diehl, Introducing the quadratically-

constrained quadratic programming framework in HPIPM, in 2022 European Control Conference

(ECC) (IEEE, 2022) pp. 447–453.

[42] V. G. Malyshkin and R. Bakhramov, Mathematical Foundations of Realtime Equity Trad-

ing. Liquidity Deficit and Market Dynamics. Automated Trading Machines, arXiv preprint

arXiv:1510.05510 10.48550/arXiv.1510.05510 (2015).

[43] V. G. Malyshkin, The code for polynomials calculation (2014), http://www.ioffe.ru/LNEPS/

malyshkin/code.html and an alternative location.

[44] K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory , Lecture

Notes in Physics, Vol. 190 (Springer-Verlag, 1983) Lectures in Mathematical Physics at the

University of Texas at Austin.

[45] J. D. Brown, Singular Lagrangians and the Dirac–Bergmann algorithm in classical mechanics,

American Journal of Physics 91, 214 (2023).

[46] V. G. Malyshkin, Market Dynamics: On Directional Information Derived From (Time,

Execution Price, Shares Traded) Transaction Sequences, arXiv preprint arXiv:1903.11530

10.48550/arXiv.1903.11530 (2019).

[47] L. Boudjemila, V. V. Davydov, and V. G. Malyshkin, On Quadratic Form Optimization Problem

With Multiple Constraints of the Quadratic Form Type, in The 5th International Conference

on Future Networks & Distributed Systems, 2021, Dubai, United Arab Emirates (Association

for Computing Machinery acm.org, 2021) pp. 568–571.

[48] Å. Björck and S. Hammarling, A Schur method for the square root of a matrix, Linear algebra

and its applications 52, 127 (1983).

[49] N. J. Higham, Newton’s method for the matrix square root, Mathematics of computation 46,

537 (1986).

[50] Å. Björck, Numerical methods for least squares problems (SIAM, 2024).

https://doi.org/10.48550/arXiv.2406.11337
https://araza6.github.io/posts/unitary-learning/
https://araza6.github.io/posts/unitary-learning/
https://araza6.github.io/posts/unitary-learning/
https://doi.org/10.1137/1015032
https://doi.org/10.48550/arXiv.2407.04406
https://doi.org/10.23919/ECC55457.2022.9838499
https://doi.org/10.23919/ECC55457.2022.9838499
https://doi.org/10.48550/arXiv.1510.05510
http://www.ioffe.ru/LNEPS/malyshkin/code.html
http://www.ioffe.ru/LNEPS/malyshkin/code.html
http://www.ioffe.ru/LNEPS/malyshkin/code.html
https://disk.yandex.ru/d/AtPJ4a8copmZJ?locale=en
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1119/5.0107540
https://doi.org/10.48550/arXiv.1903.11530
https://doi.org/10.1145/3508072.3508188
https://doi.org/10.1145/3508072.3508188
https://doi.org/10.1016/0024-3795(83)80010-X
https://doi.org/10.1016/0024-3795(83)80010-X
https://doi.org/10.1090/S0025-5718-1986-0829624-5
https://doi.org/10.1090/S0025-5718-1986-0829624-5
https://doi.org/10.1137/1.9781611971484


46

[51] J. J. Dongarra and D. C. Sorensen, A fully parallel algorithm for the symmetric eigenvalue

problem, SIAM Journal on Scientific and Statistical Computing 8, s139 (1987).

[52] K. J. Maschhoff and D. C. Sorensen, P_ARPACK: An efficient portable large scale eigenvalue

package for distributed memory parallel architectures, in International workshop on applied

parallel computing (Springer, 1996) pp. 478–486.

[53] T. Katagiri and Y. Kanada, An efficient implementation of parallel eigenvalue computation for

massively parallel processing, Parallel Computing 27, 1831 (2001).

[54] J. Demmel, I. Dumitriu, and O. Holtz, Fast linear algebra is stable, Numerische Mathematik

108, 59 (2007).

https://doi.org/10.1137/0908018
https://doi.org/10.1007/3-540-62095-8_51
https://doi.org/10.1007/3-540-62095-8_51
https://doi.org/10.1016/S0167-8191(01)00122-3
https://doi.org/10.1007/s00211-007-0114-x
https://doi.org/10.1007/s00211-007-0114-x

	Partially Unitary Learning
	Introduction
	Formulation of the Problem
	A Quantum System Time Evolution
	A Classical System xf Vector Mapping
	Learning Unitary Dynamics
	 Traditional Unitary Learning
	Variational quantum algorithms
	Algebraic Structure of the Optimization Problem

	Numerical Solution
	A Demonstration Of Recovering Unitary Dynamics From Phase-Stripped Data
	A Demonstration Of Polynomial Mapping Recovery
	A Demonstration of Partially Unitary Behavior D<n
	A Demonstration Of Function Interpolation
	Conclusion
	Acknowledgments
	On Lagrange Multipliers Calculation With Selected States Variation
	Linear Constraints On Variation

	A Preliminary Analysis of Computational Complexity
	Software description
	References


