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We postulates, and then show experimentally, that liquidity deficit is the driving
force of the markets. In the first part of the paper a kinematic of liquidity deficit is
developed. The calculus-like approach, which is based on Radon—Nikodym derivatives
and their generalization, allows us to calculate important characteristics of observable
market dynamics. In the second part of the paper this calculus is used in an attempt
to build a dynamic equation in the form: future price tend to the value maximizing
the number of shares traded per unit time. To build a practical automated trading
machine P&L dynamics instead of price dynamics is considered. This allows a trading
automate resilient to catastrophic P&L drains to be built. The results are very
promising, yet when all the fees and trading commissions are taken into account, are
close to breakeven. In the end of the paper important criteria for automated trading
systems are presented. We list the system types that can and cannot make money on
the market. These criteria can be successfully applied not only by automated trading

machines, but also by a human trader.
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Thou art wearied in the multitude of
thy counsels. Let now the astrologers,
the stargazers, the monthly
prognosticators, stand up, and save
thee from these things that shall come

upon thee.

Isa.47:13

I. INTRODUCTION

Market dynamic study attract a lot of attention[1H5]. We start with a short review about
available data for equity trading market. Exchange trading is typically consist of sending
limit orders at specific price. Depending on liquidity available this order can be either
executed (matched to an order of opposite type), or, in case no matching liquidity available,
to be put into the order book. This is so called double auction process (both “buy” and
“sell” orders are put into the order book; we will use NASDAQ ITCH terminology, where
“bid orders” are called “buy orders” and “offer orders” are called “sell orders”), the difference
between best sell and best buy orders in the order book is spread. Our experiments show
that since about 2008 order book (tested on NASDAQ ITCH total view feed and on CME
data) carry no valuable information. Our study show that: 1) More than 90% of orders
being at best price level at some time end being cancelled, not executed (order-stuffing like
behavior). The Ref. [6] authors came to the same conclusion regarding cancellation. 2)
Spread is also very misleading indicator. Our experiments show that a limit order being put
inside spread interval has very high chances of being immediately executed. There are two
reason for that: many market participants do not show their liquidity if the price they can
accept is inside spread interval and “hidden” type of orders (the ones not being broadcast
as available in order book, but actually existing in exchange order book. Such “hidden”
type orders cost more on NASDAQ. Executed hidden order id was actually available before
October 6, 2010, but after this date NASDAQ broadcast 0 as hidden order id, see Appendix
A of Ref. 7). 3) There is a long discussion that order book observable spread is actually



higher that “actual” spread[8] because of order book manipulation (typically either stuffing

the book or attempting to frontrun).

Based on all the information above we state that even for a hedge fund order book
information is incomplete or manipulative[9].

We can imagine that to an exchange or to major brokerages some additional information
can be potentially available, but not to general public. So we go for a much more ambitious
goal - try to predict market dynamics based on price and volume of executed orders only. The
information of executed orders is legally required to be available (Dark Pools and brokerages
internal order matching can be a problem to some degree, but not much), and it is much
more costly to manipulate through actual trades. Whether market manipulation is possible
via trade execution is one of most fundamental problem of market analysis. Naive pump-
and-dump type of manipulation (buy shares to drive market up, then sell then) actually
never work because of concave type of impact[I0]. The volume required to “pump” shares
from current price to some higher price is greater that the volume on a way back. This way
a “manipulator” would not be able to sell all shares bought, and to sell the remaining shares
price should go below its initial value, thus this strategy would lose money. We disagree on
this type of “active trading strategy” with|I1] who observed convex demand on a number of
low liquidity stocks. Our experiments on low and medium liquidity stocks show that in a
situation when overall market is flat once price of some stock is driven by excessive buying
to some level the market maker (or some other market participant) start buying whatever
volumes is available, so after some price level almost no further price movement possible,
even on very high volume.

On NASDAQ placing a limit order and then cancelling it cost almost nothing, what create
a free opportunity to manipulate order book. From our opinion, the most effective way to
suppress order book manipulations can be an introduction, not an artificial delay, what
HFT opponents often propose, but order fee structure, similar in philosophy to currently
existing execution fee structure (exchange rebate and liquidity removal fee, but for orders
exchange rebate will be zero and liquidity removal fee will be small). Proposed fee structure

to suppress order book manipulation may be this:

e Your order in order book was matched by somebody else order — your get “exchange

rebate”, a fraction of a cent per each share, same as it is now on most exchanges.



e You matched somebody else order in the order book (remove liquidity) you are charged
“liquidity removal fee”, which is slightly greater than the “exchange rebate”, same as it

is now on most exchanges.

e New fee proposed: You cancelled your own order in order book: you are charged
“order removal fee”, which should be much lower than the difference between “liquidity

removal fee” and “exchange rebate” for executed orders.

This fee structure would make order book manipulation non—free, but in the same time it

would not not suppress actual trading (execution orders matching).

The major risk for manipulator through order execution is not so much the fees, but
market movement. With a spread about few cents market manipulator through execution
takes a huge risk of market moving against him. Currently only trade execution is expensive
to manipulate, so our theory uses only trade execution information: for a company “XYZ”
at time ¢ an order of size v was executed at price p. There are few other worth to mention
attributes, not used in this paper, but possessing some interesting properties (we are going

to discuss them in a separate publication).

Volume multiplied by spread.

Execution type: “sell” (when buy order matched sell limit order in order book) or of

type “buy” (when sell order matches buy limit order in order book).

A “signed volume” is used by some traders[I1]: when type is “sell” use order size v,

when type is “buy”, use —v.

Order book information, from out opinion, is only valuable[9]. as a product of (possibly
signed) order size multiplied by 7., the difference between execution time and limit
order origination time. An important property of this attribute 7,.dv/dt is that it
combines the characteristics of original limit order 7, and matching to it marker order
dv/dt (execution flow), thus the attribute can be considered(when signed volume is

used) as proportional to supply-demand disbalance.



II. KINEMATICS

Executed orders is a set of timeseries observations. We convert observations data from
timeseries space to an invariant basis space. Selection of the basis depends on a number of
factors. The simplest selection is polynomials basis Qg (x), where @ is a polynomial of a
degree k, with some measure selected to define inner product. The three bases below are
the most convenient ones to transform a timeserie f(¢;) to moment f; space.

Laguerre basis:

z=t/7 (1)
fr = /O Qr(x) f(t) exp(x)dax (2)
dp :_e;op(m)dm (3)
supp(u(z)) = & € [—o0, 0] (4)

Shifted Legendre basis:
z = exp(t/7) (5)
fv= /0 Qr(x) f(t) exp(t/7)dt/T = /1 Qr(x) f(t)dx (6)
dy :_ej:p(t/T)dt/T — dx : (7)
supp(u(z)) = = € [0,1] (8)

Price basis:

z=p (9)
fr = /0 Qr(p(t)) f(t) exp(t/T)dt/7 (10)
dp :;;op(t/T)dt/T (11)
supp(u(p(t))) =t € [—00,0] (12)

Any timeserie f(¢;) with thousands (and even millions) of observations can be converted to
a limited number of basis moments f;. The 0-th moment f; is exponential moving average
of f with timescale 7. For our theory we need large number of moments, typically at least
a dozen, what create numerical instability if f, are naively calculated. For three bases

above the basis functions are polynomials but the measure is different: , , . Let



us define average symbols <> (bra-ket quantum mechanics notations) as an integral over

measure support:
<g>u= / gdp (13)

All the results are invariant with respect to polynomial ;. choice as long it is of k-th order,
e.g. monomials can be used @ = z*. But this naive style of basis selection causes severe
numerical instability at large k, typically for all £ > 5. The specific basis selection is a very
delicate question|[I2] which we discuss briefly in Appendix and the problem to be discussed
in details in a separate publication. Short result : for numerical stability the basis Qg(x)
should be selected in a way Qr(z) are orthogonal with respect to some positive measure,
e.g. du(z). The simplest Qr(x) choice is orthogonal polynomials with respect to measure
du(x).

For Laguerre basis (3] selection Qx(z) = Ly(—x), where Ly (z) are Laguerre polynomials,
make basis orthogonal <QZQ]># = 0;;. For Shifted Legendre basis selection Qk(x) =

Py(2z —1), where Py(x) are Legendre polynomials make basis orthogonal (Q;Q;), = 5;70i;-

21+1
For Price basis the orthogonal polynomials are non—classic, but selection of monomials
Qi(z) = (p — p*)* or Hermite polynomials Qx(z) = Hy(EL") often give good enough nu-
merical stability for not very large k (Here p* is some price close to average and o is some
value close to standard deviation; again, the result does not depend on selection of p* or
o, only numerical stability of calculations may depend on these values.) The basis is
very convenient for quasi-stationary consideration of market dynamics [I3]. However, for
time-dependent dynamics it requires the dp/dt moments, that carry much less information
than the v, dv/dt and d*v/dt* moments. In the bases (3)) and (7)) the v and d*v/dt* moments
can be easily calculated from the dv/dt moments using integration by parts.

Before we go further, let us show some familiar calculations using the basis we introduced.

L.Interpolate price (assume f = p) by a polynomial of n-th order using least squares

approximation.

< [f - zf;ascgsm] > 5 min (14)

Gt =< Qul@)Qulx) >, (15)
ZQk )Gy (Qu(@)f), (16)

k,1=0



Here G~! is a matrix inverse to Gramm matrix G calculated in basis @} using inner prod-
uct . The interpolation polynomial is of n-th order and depend on the moments
(Qr(z)f), where k = 0..n (In Ref. [12] only monomials moments <£L‘kf> are called “moments”
and the (Qx(z) f) are called “modified moments”, we would call all of them “moments”). Note
that interpolation polynomial typically give good interpolation in the middle of interval, but
exhibit oscillations near interval ends (Runge oscillations).

2. Given two prices p and ¢ calculate covariance between then.

(r-pg-7 = (17)
= klzn (Qu(x)q), Gy (Qu()p), — < Qop >u< Qog > (18)
;li Qop >y (19)
7 =<Qoq >y (20)

The measure u in general case is not necessary normalized to 1 and because of this all
averages in should be divided by the normalizing factor < )y > equal to an integral
from a constant (g, but all three measures we consider have < 1 >= 1, so if )y = 1 this
normalizing factor can be omitted, see the see Appendix[E]for exact formulas in general case.
Note that provide very efficient(linear time) algorithm of stock prices cross-correlation
calculation. For every stock calculate [0..n] moments (Qx(z)p) forming a vector, then obtain
covariance through scalar product of these vectors with Gramm matrix inverse used as a
scalar product matrix (note here, that if original @y basis is orthogonal then Gramm matrix
is diagonal and its inversion process is stable, while in general case the process of Gramm

matrix inversion is numerically unstable[14]).

A. Radon—Nikodym derivatives and rational approximation

Consider reproducing kernel K (z,y, 1) for a positive measure dpu

M f] = < QifQ; >, (21)
K(z,y,1) = Qi(x) (M,[1]);; Q;(y) (22)
K(x,y,p) = Q2)G,'Q(y) (23)

(Here and below we assume a summation [0..n] over “silent” indexes i, 7. Another notation

we will use from time to time is vector notation, where bold Q define the entire vector ()



and matrix indexes are omitted. The Eq. is exactly the same as but written
in vector notation.) For arbitrary P(y) = a;Qi(y) (22) gives P(z) = (K(z,y, 1) P(y)) .-
The 1/K(z,x,u) is a Christoffel function, related to the “density” of measure p at point
x, for example Gaussian quadrature weights built for the measure p are equal to exactly
1/K(z,z, 1) at x equal to quadrature nodes|I5].

Consider two positive measures dyu(x) and dv(z). Their ratio Z—Z is called Radon-Nikodym
derivative[16] and is of extreme importance in market analysis[17]. The most important for
us would be to estimate shares trading rate, or executed orders flow, 1

_dv

= —
dt

(24)

I is the number of shares traded in unit time and is always positive. The higher I is the
more active trading is.

The problem is to estimate Radon—Nikodym derivative Z—Z at x given the only moments
of measures 1 and v. This can be estimated, for example, through Christoffel functions
ratio[I§]

dv, « _ K(z,z,p)

@(x) - K(x,z,v) (25)

The estimation (25 is a ratio of two polynomials of order 2n. In contrasts with least squares
approximation (16]) (use f = dv/dp in (16)), the preserves sign of interpolated function
dv/du, does not diverge when z — 00, it tends to a constant instead, and does not exhibit
diverging oscillations near measure support edges. The estimation requires 0..2n moments
to be known (instead of just 0..n moments for least squares approximation). As we stated
in the beginning of the Chapter [II| numerical estimation for large n is unfeasible (because
of numerical instabilities) unless a basis ()5 orthogonal with respect to some measure (not
necessary the u, but u is often good enough) is chosen. This approach allows us to calculate
Radon—Nikodym derivative to very high n (up to 15-20 in Shifted Legendre basis and up to
12-15 in Lagurre basis, Chebyshev basis sometimes allows to use n up to 30).

The approximation (25)) requires both measures to be positively definite. There is exist
a different numerical estimation of Radon-Nikodym derivative, requiring only one measure

du to be positive:

1
M,

)

ij
[1]);‘1 Mu;j

1 (26)

B =
—_ | =t
==
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~
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SN—



where 7 is some positive measure, e.g p. If we formally replace Hermitian matrix (M,[1]) "
by non-Hermitian matrix (Mu[l])_l/2 (M,[1])"* and its transpose then we receive original
expression . The Radon-Nikodym derivative estimator can be used for interpolation
of arbitrary function f. Just put 7 = p and dv = fdu. See Appendix [D] as an example of
Runge oscillations suppression. The expression in this special case 7 = p and dv = fdu
is plain Nevai operator|19]

TR @) f(0)dp)

¢ K(z,x)

(27)

That can be easily estimated numerically (see the code from com.polytechnik.utils. Nevai-

Operator. getNevaiOperator) as a ratio or two polynomials of order 2n:

Qi(z) (MH[1]>7j_jl Mu;jk[f] (Mu[lbl:ll Qi)
Qi) (M,[1]);;" Q;(x)

This Nevai operator matches exactly the simplistic form (7 = u) of Radon—Nikodym deriva-

(Gf)(x) =

(28)

tive in function approximation like in (D4)). The Radon—-Nikodym derivatives approach is
based on matrices, not vectors as least square approximation is. This matrix approach can
be also effectively applied to average calculation, see Appendix [E[ for an example of two

stocks price covariance calculation.

B. Example of executed orders flow [

In subsection [TA] we provided a theory allowing to numerically calculate the executed
orders flow. To show this theory practical value let us apply it to calculation of executed
order flow I for stock AAPL on September, 20, 2012. All the charts we present will be for
this specific day. In our analysis we actually analyzed about 4 years period. Optimized
ITCH parser along with recurrent calculation of the moments (given the moments on inter-
val [—o00, —7] (old moments) the new moments on interval [—oo, 0] (t=0 is “now”) can be
calculated using old moments and performing timeserie scanning only on [—7,0] interval).
Such optimization allows to run entire trading day analysis for hundred of stocks in less
than 15 minutes. But this massive data analysis is not the point of the paper. This would
be important were we building some statistical arbitrage model. But for dynamic model -
single day is enough to demonstrate the key elements of the theory. The September, 20,

2012 was chosen for simple reason that it had bear market before 10:00 and bull market
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FIG. 1. The AAPL stock price on September, 20, 2012 round 10am. The time on x axis is in
decimal fraction of an hour, e.g. 9.75 mean 9:45am. Red line AAPL stock price. Black line -
execution order flow Iy (in arbitrary units shifted to fit the chart) at interval edge(time="now”)

calculated in Shifted Legendre basis with n = 6 and 7=128sec.

with high volatility after 10:00. Such market behavior almost always lead to severe losses
by automated trading machines, so this day is a good one for testing.

On Fig. (1| we present execution flow Iy (I at t = 0) calculated in Shifted Legendre basis
as x = exp(t/7), du = exp(t/7)dt and dv = exp(t/7)dv, then I from can be estimated
as Radon—Nikodym derivative dv/du calculated at ¢ = 0. On Fig. [I| the [y (scaled to fit
the chart) show large fluctuations, with alternating periods of low and high trading activity.
High trading activity events exhibit singular type of behavior in I, that manifest itself in
price as a peculiarity, not as singularity. This allows us to suggest that in market dynamics
executed trades flow is primary and price changes are secondary.

The minimal calculable time scale of I spikes can be estimated as 7/(n + 1) for Shifted
Legendre basis and as 7 for Laguerre basis. If we accept the hypothesis that fluctuations
in [ cause market dynamics then we can estimate time scale on which automated trading
machine can potentially work. The idea is to have large fluctuations Av/At (fluctuations

can be many orders of magnitude, but for our way to calculate Radon-Nikodym derivatives

10.3
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they are limited to minimal time scale). If minimal time scale is set large enough (about
an hour) volume fluctuations on this scale become small and such small fluctuations of
orders flow cannot be the source of predictable price movement. In the same time too small
time scale provide little liquidity and only companies with very advanced infrastructure can
potentially take advantage of such small time scales. This make us to conclude that workable
time scales are bounded at low values - by insufficient liquidity available and at high values
- by low I fluctuations.

One can extract some additional important facts from this chart, but the main question
with Iy is: What is the scale the [ should be compared to to tell that we have liquidity
excess (I > Iry) or liquidity deficit (I < I;). Any values calculated from fixed time scale
(e.g. < I >, which used 7 as time scale) cannot provide workable values for I;5 and I;;.

The next section is dedicated to this problem.

C. Generalized Radon—Nikodym derivatives and Generalized Eigenvectors problem

The Eq. can be rewritten in the form

U(x) = Q(z) (Mx[1]) ™" Q(x0) (29)

v, <ul>,

and for simplest case T = p
Q(z) (Mu[1]) ™" Q(x0)
Yo(z) = (31)
VQao) (M,[1]) ™" Qo)

dl T _ < 77DO|Q/)O >y

dﬂ< 0) < to|tho >, (32)

where the is a “wavefunction” localized at = zy and is the value of Radon—
Nikodym derivative at = xy. Let us remove the localization restriction , then the

<Y > _

<> -
M, 1] > = AD M, [1][pD) > (34)
<YW V) >, = < D |M,[1] YY) >=1 (35)

can be considered as generalized eigenvalues problem with scalar product < alb >=<

a|M,[1]|b >. The upper index (j) numerate eigenvalues and eigenvectors. If matrix M,[1]
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is positive, (e.g. dp = w(t)dt with w(t) > 0) then has exactly dim M = n + 1 real
eigenvalues A\Y) and corresponding to them eigenvectors [1)/) >. This problem is invariant
to basis transform. A good basis selection (e.g. or @ ) make matrix M, [1] diagonal and
the problem is trivially reduced to a regular eigenvalues problem. In general case gen-
eralized eigenvector problem is not any more problematic, than regular eigenvalues problem
and can be solved numerically using standard, e.g. LAPACK]J20] routines dsygv, dsygvd

and similar.

The problem is much more generic than its “localized” Radon-Nikodym version
(26). Trivial usage of is to find minimal/maximal value of Radon-Nikodym derivative
(or a function, for this just put dv = f(z)du), this will be the minimal /maximal eigenvalue
A. (Note, that the eigenfunction, corresponding to minimal/maximal eigenvalue has very
noticeable topological properties, such as: 1. If highest order polynomial coefficient of
eigenfunction ¢ (x) is non zero (if it is zero, then it can be varied to some infinitesimal value)
then the ¢(x) (a polynomial of n-th order) has exactly n simple real distinct roots (but not
necessary on the support of du or dv). This property does not hold for ¢(x) corresponding
to other than minimal /maximal eigenvalue. 2. The measure df = dv — A, dp (or similarly
for maximal eigenvalue take df = \,..dp — dv) generate n + 1 orthogonal polynomials, the
last one the n-th order polynomial equal (within a constant) exactly to ¢(z), corresponding
t0 Apmin, and has the norm with measure df exactly equal to zero < ¥|¢) >p= 0 A Gaussian
quadrature can be build on this measure df, all nodes are located at i(x) roots and all

weights are positive. We expect to put more study of this interesting topic separately.)

But before we go this direction, let us show some simple illustrative example, when
dv = P(t)du, where P is asset price. Then all eigenvalues are just the prices near which the
asset was traded the most. In Price basis the eigenvalues are the nodes of Gaussian
quadrature built on measure . In Laguerre and Shifted Legendre basis the result is
very similar, but does not have a meaning of quadrature nodes (it is now related to M, [P]
matrix spectrum). In case n = 0 there is a single eigenvalue, which is equal exactly to
moving average with the measure du. So this technique can be considered as moving average
generalization. Putting price into does not provide one with any information about the

future. The Fig. [2] serve just as an illustration of generalized eigenvalues technique.
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FIG. 2.  The AAPL stock price on September, 20, 2012 around 10am. The time on x axis is
in decimal fraction of an hour, e.g. 9.75 mean 9:45am. Red line AAPL stock price. Other lines
- eigenvalues of with dv = P(t)dp, calculated in Shifted Legendre basis with n = 6 (seven

eigenvalues: 0..6) and 7=128sec.

D. Example of thresholds calculation

The v from Eq. is a state localized at xy. Consider zy to be interval end (zo = 0
for Laguerre basis and 7o = 1 for shifted Legendre basis (8)). All functions t(z)
orthogonal to (31)) with respect to measure du have 1)(z9) = 0. Then we can write generalized

eigenvalues equation (34)) with a “boundary condition™

<Yl >,

<¢|¢>fA (36)

M, [1[pD > = XD M, [1][pD) > (37)

<P >, = <V IM AR >=1 (38)
Y(xo) =0 (39)

The boundary condition can be removed by introducing two measures dji = (x —x¢)*du
and dv = (z — x0)?dv, then

< ¢lp >3

=\
<06 > (40)

10.3
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FIG. 3. Same chart as Fig. (1| with addition I;;, and I7pg thresholds and price (corresponding to
Yrp) are calculated. The I;;, and I;y are minimal and maximal eigenvalues of . Because of
the boundary condition the corresponding matrix has the dimension one less the original matrix

dimension.

MUIY > = X910 (1)
< ¢0)|pV) >z =1 (42)
U(x) = (x = z0)¢() (43)

we receive regular generalized eigenvalues problem and 1 from obey the required bound-
ary condition . Any solution v of is orthogonal to because it is equal to 0 at
xg, e.g. it carry no information about “now”, only about “the past”. The minimal /maximal
eigenvalues of I, and I;y are the thresholds we were looking for|21].

On the Fig. [3| we present execution rate I and thresholds /77, (“low”, minimal eigenvalue)
and Iy (“high”, maximal eigenvalue) calculated only from “the past”. One can observe two
highly distinctive behavior at Iy < I (liquidity deficit) and Iy > Iy (liquidity excess). It is
important to note that the time scale corresponding to I7;, and I7y is not fixed, but selected
automatically from the time scales available in matrix M,[I] (for a matrix of dimension d

the 2d — 1 time scales are used). The events when [y > I;y are rather seldom, and as we
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would show later they are exactly the events portfolio position to be closed. The events
Iy < Iy, are much more common and as we would show later they are exactly the events
portfolio positions to be opened. The price Pry (blue curve) is the price corresponding to
Vg =< Yru|pl|Yim >, ) < Yrallvie >, (as a very crude direction estimator a difference
between last price and Py can be used). Similarly to I = dv/dt same theory can be applied
to calculation of dp/dt at t = 0 and corresponding thresholds for dp/dt. The problem with
dp/dt is the contribution to dp/dt at t = 0 is so large that it exceeds the thresholds calculated
on past data most of the time. This again manifest our statement that price alone carry no
information about dynamic.

On Fig. we present one more chart to show prices behavior at various |¢) > states.
For n = 6 and 7 = 128sec the Pry,n calculated from generalized eigenvalues problem
without using boundary condition ¥ (z¢) = 0 (matrix dimension is n + 1), P;g calculated
from generalized eigenvalues problem ({41)) with boundary condition ¢ (zg) = 0 (the original
matrix dimension is n 4+ 1, but boundary condition reduce it by 1 to use the same
moments), and exponential moving average Paygpr. What one can very clear see is while
PavEer is always delayed from the stock price by a fixed time 7 the delay for P,y is variable
and depend on localization of v;g. This is very important for market trending identification:
one do not need to wait time 7 to identify trend change. The P;y.y, is a solution of similar
eigenproblem, but without boundary condition ¥ (x¢) = 0. When I, (I at 2o or t = 0, i.e.
“now”) is high then the solutions for the problems with and without boundary condition
differ(one has ¢ (x¢) = 0, another one is localized at ) and corresponding prices (dark and
light blue) also differ significantly (this difference, calculated on liquidity excess events can
also serve as a crude estimator of market trending direction). When I is low then Py
and Py, n are almost the same because corresponding states |¢) > are not localized near z.
What is the most important — the states corresponding to maximal[22] I select the timescale
automatically among the ones available in matrix M, [/], what is drastically different from

moving averages, which has only a fixed time scale 7.

E. P&L operator and trading strategy

Before we go further we would like to emphasize the importance of variables selection.

As we discussed earlier the price fluctuations are small (below few percent) and only reflect
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are presented.

liquidity fluctuations. Nevertheless most traders and Automated Trading Machines focus
on price prediction. From our opinion prices cannot be predicted on real markets. But if
you look deeper, a trader is not actually interested in prices, what actually of his interest
is the P&L. From our point of view the P&L, not price, should be a value to predict. Let
us define the position change dS - the amount of shares bought (dS > 0) or sold (dS < 0)
during time interval dt. Then the P&L can be written in the form:

P&L = — / pdS (44)
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0 = / ds (45)
The constrain (45)) means the total asset position should be zero in the beginning and in the

end of trading period. Integrating by parts one can obtain a P&L expressed via price
changes dp:

P&L = / S(t)dp (46)
0= S(tstart) = S(tend) (47)

where constrain explicitly indicate that the position S(t) should be 0 in the beginning
and in the end of trading interval.

Now the problem can be formulated in the following way: find the position function
S(t) providing positive P&L. There is a trivial solution: S = dp/dt to put to (46| or
dS = dtd*p/dt* to put to . This means that position increment dS should behave as
second derivative of price. This sounds trivial (if you know future price change you can make
money), but it is actually not. The very important is the symmetry of position increment.
Position increment should have the symmetry of second derivative of price (first derivative
is good only for entire position, not position increment. An Automated Trading Machines
trading in position increment but using a variable with a symmetry of first price derivative
cannot give a success).

Let us give some other trivial, but nevertheless useful examples of position function S(t)
providing positive P&L.

Assume we have sufficient liquidity to buy shares in any time moment and trade a single
share in just two moments (sell/buy or buy/sell) of unit length. Then we can take position

increment in the form
ds = wl?uy(x>d:u - wgell (fl?)dﬂ (48)
1=<y?>, (49)

for normalized v the condition satisfies automatically and the problem is

reduced to the following generalized eigenvalues problem:

- [< wbuy’Mu[prbuy > =< wsell’Mu[prsell >] =
P&L [< 7vbbuyuwu[l]W)buy > =< @stell'Mu[l”@bsell >] (50)
P&L — max (51)
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the solution for maximal P&L in is rather trivial. Solve generalized eigenvalues problem
M, [pl|Y >= AM,[1]|¢p > then take )y, as ¢ corresponding to minimal A and take ¢, as
1 corresponding to maximal A, then P&L = A,00 — Amin. The answer is trivial buy low
(p = Amin) and sell high (p = A\,..) and not practical (as we stated earlier price carry no
information about future price change) but nevertheless very useful: it indicates the power
of the technique: P&L optimization problem is reduced to matrix spectrum analysis.

Another trivial example: hold some fixed average position.

S = *(x) (52)
l=<®>, (53)
0= =—o0) =9(t=0) (54)

The set average position held and boundary condition require no position to remain
outside of trading interval. Then using we receive:

< Y|My[dp/dt][p >=P&L < ¢|M[1][¢ > (55)
P&L — max (56)

which has a simple solution: Solve generalized eigenvalues problem M, [dp/dt]|y >=
AM, (1] >, find Ay and Apeq, select the one with maximal absolute value, the cor-
responding v is the answer. This answer is also trivial if market go up (dp/dt > 0) hold
long position, if market go down (dp/dt < 0) hold short position. Again, the example is not
practical, it just indicates how P&L optimization problem is reduced to matrix spectrum
analysis. One more note about P&L is that it is typically calculated on cash basis (require
no shares held outside trading interval, then calculate P&L cash difference), but for some
trading strategies asset-based definition can be more useful (require no cash held outside

trading interval, then calculate P&L as shares number difference).

III. DYNAMICS
A. Observable and Unobservable variables

What variables can be potentially used for market dynamics? We already worked with

such variables as price p and executed orders flow I = dv/dt. They are real, they are
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reported on execution tape by exchanges. There are other variables, which are slightly
more difficult to observe, e.g. spread, order type (buy/sell), time the order type was put to
order book, orders distribution in order book, etc. And there are other, “virtual” variables,
such as supply or demand. A schematic supply—demand chart is presented on Fig. 5 We
will treat supply and demand as flow (number or units in unit time dN/dt), not as total
number of units. If some supply-demand chart is stationary and has a form similar to Fig.
it is clear that only the price corresponding dNyy,/dt = dNge/dt = I is the stationary
solution and execution take place only at this equilibrium price. When, for any reason,
execution take place at price, different from the equilibrium the supply-demand disbalance
formally give orders accumulation with time. This accumulation actually never happen in
practice (either orders flow stops or price changes), but the accumulation can be formally
considered as an increase in limit order execution time. But limit order execution time is
actually known, this is the time the order spent in the order book before execution. The
product of signed I by time the limit order spent in the order book before execution can
serve as a supply-demand estimator. We are going to discuss observable supply-demand
estimators in a separate publication, and touch here only fundamental properties having the
goal to transform supply=demand condition to the one expressed only in terms of observable
variables.

The question: what can we tell about supply and demand curves at prices different
from equilibrium one. The answer is: nothing. The orders flow at prices off current is
not measurable and, we would tell even stronger, actually do not exist at any price except
currently executed (unexecuted order book orders flow is not a supply/demand, this is just
manipulations and traders pipe dreams).

Stationary chart like Fig. or even non-stationary supply-demand dependencies are
conceptually incorrect in equity trading, because it operates with values, which cannot
be measured or even estimated. A theory can work with unobservable concept, e.g. our
theory, same as quantum mechanics, operate with ¥ (z), but only 1?(z) enter into measurable
values. The supply=demand classical approach can be replaced by the one working only

with observable variables:
I(p) — max (57)

The means : “the price tend to the value, maximizing future I(p)”. The stationary
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FIG. 5. Schematic plot of supply and demand as a function of price.

theory on Fig. |5|is equivalent to Eq. , reverse is not true and the is much more
generic and can be applied to securities trading dynamics. Critically important that
operates only with observable variables (observable postfactum, the I we were calculating
in Section [[1] is calculated on past(already observed) values, but even this is much better

than supply=demand classical theory where the values of supply and demand cannot be

measured even postfactum.
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B. Volatility

Price volatility is a very old concept, and “reverse-to-the mean” type of theories is actually
equivalent to: price tend to the value, at which volatility (measured as standard deviation

calculated on past sample) is minimal.

Volatility = <(p - PAVER)2> (58)
Volatility — min (59)
Pivgr = <p>/<1> (60)

while this type of strategy would never work in practice (see Section for description of
the reasons), there are critically important questions: What volatility actually is? Does
“true” volatility correspond more or less to price fluctuation or to I fluctuation? Is volatility
a concept of the same nature as I or they are completely different concepts? Looking at
charts we see that price volatility is typically large at large I, but this may be like kinetic
to potential energy transform in mechanics.

The other definitions of volatility can be introduced as price fluctuations, e.g. Volatility =
{(dp/dt)?) , the problem with this definition is that it diverges at small time scales. (One
derivative is compensated by the integral, and another one is translated to measure support
boundary, what lead to expression divergence at small time scales.) The M, [(dp/dt)?] matrix
cannot be directly calculated from price timeserie sample, and the formal expansion in a
style of Appendix [E| M,[(dp/dt)?] = M,[dp/dt]G;,* M,[dp/dt] is not a good one because it
introduces basis minimal scale into the expansion.

Let us give alternative volatility definition:
Volatility = (|dp/dt|) (61)

This definition uses first derivative, so all the moments can be directly calculated from
price timeserie sample, as [ Qr(x)w(z)|dp|, this expression is essentially the same as dp/dt
moments, but absolute value of price change should be used in the sum corresponding to
the integral. Technically this calculation is almost the same as dv/dt moments calculation,
with the difference that “trading events” occur in the points of price change and the “trading
volume” is absolute value of price change. On the Fig. [6] we present real execution flow

I = dv/dt (black line) and artificial one J = |dp|/dt (green line). They are very similar in
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nature. This probably means that supply-demand and price volatility are the entities of the
same nature, at least for equity trading. When trading volume is unavailable the |dp| can
be used as a substitute of dv.

During our attempt to build dynamic equation we spent substantial effort in an attempt

to define Lagrange functional L and then build action S like in other dynamic theories:

L= %Volatility i (62)
S = / Ldt (63)
S — min (64)
S — 0 (65)

This approach is very attractive: it requires to minimize price volatility (like in “reverse-to-

mean” type of theories) and to maximize execution flow I (like in supply-demand theories),
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but possibly fruitless. We spent substantial time pursuing this route using various volatility
models and constrains on action variation with no improvement compared to using just
I and only supply-demand functional . This means that the “effective mass” m in
is close to 0, at least for equity trading. At this point we do not have an answer
to the fundamental question about price volatility role, and whether other therms, similar
in their nature to volatility, should be put to Lagrange functional along with supply-
demand term [ = dv/dt. In all the calculations below we would assume m = 0. Note
that in stationary case on Fig. [5| these volatility—like terms play no effect, they play role
only in dynamic situation, when price change, so our approach can be considered as a
“quasistationary approximation”. We can give another reason why price volatility (but not
the terms like (dv/dt)®, that lead to Schrédinger — like equation, which was also tried
without much success) should not enter the dynamic equation: as we discussed earlier,
price fluctuations are secondary to liquidity fluctuations, and position enter/exit conditions
should be calculated without price used. Then, only on the last step, when P&L need to be

calculated the price should be used to calculate the direction.

C. Price corresponding to maximal I on past sample

The Psygr introduced in Subsection is calculated as average over some time (or
volume) interval . This price(calculated on past sample) has no any degree of freedom
available and correspond to a strategy buy below Payggr, sell above Paygpr thus maximize
trading volume (to have the condition satisfied one have to use median, not average
price, but for practical calculations median and average are close enough). Now, instead of
trading to maximize volume consider trading to maximize I, Eq. . What is different,
we now have dim M degrees of freedom (1) components) available, that are selected to have
I maximized. Calculations still uses only “charted” past prices (because both measures Idu
and dp are positive), but the time scale is now selected automatically. This is the most
critical improvement when doing a transition from maximizing volume to maximizing 1.
The corresponding price Pry (two versions calculated with different boundary conditions
were already presented on the Fig. , but now we are going to perform an analysis it in
terms of P&L dynamics.

The problem can be formulated as to find a strategy, maximizing the P&L. Let us present
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a simple, but nevertheless practical, trading strategy, which exhibit all the important ele-
ments of the theory.

Input: at time ¢; execution with price p(t;) and trading volume dv(t;).

Continuously calculate Iy, I7r, Irg, and Prg as we did in the previous section. There
is one more variable dir, which determine the direction of position opening, and threshold

constant th, that is typically selected about 0.8-0.9. Then apply the following heuristics:

1. If Iy < I7p, enter long position if dir > th, enter short position if dir < —th, otherwise

hold no position.
2. If Iy > I1g:

e Recalculate dir. First calculate P;y (see Section with boundary condition
Y(x9) = 0, then build matrix M,[(p — Pru)I] from M,[p] and M,[pl] matrices
calculated directly from the moments of observable samples. The matrix M, [(p—
Pr)I] corresponds to P&L matrix in scenario “enter position at 1;5”. Note that
if entering position take unit time, then the I;5 is the maximal volume which
can be accumulated in unit time on past sample.

e Determine how “exit now” scenario is good for P&L operator. Solve generalized

<$|Mu[(p=Pru)1]lv> _

eigenvalues problem (without boundary condition () = 0) === LS =

Apgr, find Ypgrmin and Ypgr.max, corresponding to min and max values of Apgr,,

then
dir = < Yo|UpgLimax > — < Yo|UpgLimin > (66)

where 1)y is from Eq..

e Remember dir for later use on stage [I}

o If dir > th close long position, if dir < —th close short position.

Conceptually the described heuristics is similar to pj.s — Prg directional trading (all supply-
demand type of theories are directional theories), but generalized eigenvalues techniques is
used to estimate the thresholds and time scale. Note that if one need just a prediction of
I - the result is very accurate: If current I is large (Ip > I;y) then future Iy will be low
(Io < Irp), similar if current I, is low (Iy < I;z), then future Iy will be high (I, > I;g).

This may look trivial (alternating periods of low and high liquidity availability) but this
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mean that liquidity(not price!) undergo large oscillations, and price changes are just the
consequences of large changes in liquidity.

The key element of the strategy is that it actually trades liquidity, providing liquidity
during deficit and taking it during excess. Our HF'T experiments to be discussed in details
in a separate publication, here we just put briefly only the most important qualitative
observations.

Among a number of different strategies tested — only this one provided no eventual
catastrophic P&L drain (“Black Swan”[23] —like events). The reason is simple: the strategy
of holding zero position during liquidity excess make the system resilient to the situation
when market moves against position held, but in the same time entering the position during
liquidity deficit (when the volatility is small) make the system collecting most of the market
movement juice.

Our experiments (especially for other than equity markets) show that in a situation
when market direction is known by a human trader the value of dir can be set manually
according to trader’s view and the system would effectively collect the P&L on small market
movements, in the same time avoiding catastrophic P&L drains on the events when market
moves against position held. On Fig. we present calculated dir for Iy > I;y. The
calculated during liquidity excess the value of dir should be saved for liquidity deficit (Iy <
I71) time moments for determination of position opening direction. The chart shows time
scale auto adjustment, what is drastically different from Psygr on Fig. , where time
scale is exactly 7. The result is stable in a sense the time scale of dir sign change is greater
than minimal time scale available in M,[/] matrix.

Testing the strategy on real data (even paper trading, not to mention real trading) is a
complex task, because all the fees, commissions, delays should be taken into account. In
this paper we will give qualitative description of results obtained as a “paper trading” on
four year period, the detailed results to be published elsewhere.

Any attempt to use Paygr (corresponding to maximizing trading volume on past trades)
give losses. When used in trade following strategy because of 7 delay in trend switch
identification. There are relatively small losses on almost all days. When using “reverse
to Paver’ type of strategy most of days are profitable, but because of catastrophic P&L
drain on relatively seldom trending days (like the one we used in this presentation) overall

P&L is negative. Use of Py (corresponding to maximizing I = dv/dt on past trades) to
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FIG. 7. The AAPL stock on September, 20, 2012 around 10am. Price P, Py, and dir (at

Iy > Ijp) are presented.

determine market direction dir and then using this direction to enter position during liquidity
deficit and closing position during liquidity excess typically give profit on both volatility days
and trending days. Very important is that this strategy give no days with catastrophic P&L
drain. Total number of trades per day is about few hundred for high liquidity stocks. Average
daily return vary from -1% to 2% depending how execution price is modeled and exchange
commissions. Our main result is that self-adjusting time scale and liquidity(not price) based
enter/exit conditions is critically important for a reasonable Automated Trading Machine.
Our approach to market dynamics as maximizing I(p), Eq. , (even on past trades, what
we do in this paper, without volatility terms discussed in Section [[ITB] that are not well
understood), give very promising results. The most important is experimental evidence that

there is no catastrophic P&L drain in liquidity trading strategy.
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D. Volatility Trading

In previous section [[ITC| we did out best to build directional trading machine, that was
trying to predict, with some success, future price. But price prediction is extremely difficult
because, as we stated earlier, price fluctuations are small and are secondary to liquidity
fluctuation, so our P&L trading theory from section was an attempt to overcome this
issue. A question arise whether liquidity deficit can be traded directly. If we accept experi-
mentally observed in section [[ITB| fact that liquidity deficit is an entity of the same nature
as volatility then the answer is yes, and liquidity deficit can be traded through some kind
of derivative instruments. Let us illustrate the approach on a simple case — options trading.
Whatever option model is used, the key element of it is implied volatility. Implied volatility
trading strategy can be implemented through trading some delta-neutral “synthetic asset”,
built e.g. as long—short pairs of a call on an asset and an asset itself, call-put pairs or similar
“delta—neutral vehicles”. Optimal implementation of such “synthetic asset” depends on com-
missions, liquidity available, exchange access, etc. and varies from fund to fund. Assume
we have built such delta-neutral instrument, the price of which depend on volatility only.
How to trade it? We have the same two requirements: 1) Avoid catastrophic P&L drain and
2) Predict future value of volatility (forward volatility). Now, when trading delta-neutral

strategy, this matches exactly our theory and trading algorithm become this.

1. If for underlying asset we have [y < I;; then enter “long volatility” position for “delta—
neutral” synthetic asset. This enter condition means that if current execution flow is
low - future value of it will be high, what exactly correspond to price dynamics from
section [[ITC} If at current price the value of Iy is low — the price would change to

increase future I.

2. If for underlying asset we have I, > I;g then close existing “long volatility” position
for “delta—neutral” synthetic asset. At high I future value of I cannot be determined,
it can either go down(typically) or increase even more(much more seldom, but just few
such events sufficient to incur catastrophic P&L drain). According to main concept of

our P&L trading strategy, one should have zero position during market uncertainty.

The reason why this strategy is expected to be profitable is that experiments show that

implied volatility is very much price fluctuation—dependent, and execution flow spikes I, >
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I;y in underlying asset typically lead to substantial price move of it and then implied
volatility increase for “synthetic asset”. This strategy is a typical “buy low volatility”, then
“sell high volatility”. The key difference from regular case is that, instead of price volatility,
liquidity deficit is used as a proxy to forward volatility. The described strategy never goes
short volatility, so catastrophic P&L drain is unlikely. We performed the strategy testing
on much more limited data we have available to us (about 1 month of CME data) than
we did for testing directional strategy on data for NASDAQ ITCHJ7] (4 years of data), but
the effect, nevertheless, clearly exist, but more testing is required to get the final conclusion
about applicability of liquidity deficit as a proxy to implied volatility. In addition to that
we want to emphasize, that despite our theory seems to predict implied volatility much
better than price direction, actual trading implementation require the use of “delta—neutral”
synthetic asset, what incur substantial cost on commissions and execution, thus actual P&L

is difficult to estimate without existing setup for high—frequency option trading.

IV. SPECULATIONS

In this paper we presented a theory trying to describe kinematics and dynamics of the
market. The effect is relatively weak, so it is difficult to make money directly, but provided
theory can state very clear what kind of Automated Trading Machines CANNOT make
money. In best case they will be making little money for some time, then lose more than

they made in a single event. Specifically:

e Any system that uses only single asset price (and possibly prices of multiple assets,
but this case is not completely clear) as input. The price is actually secondary and
typically fluctuates few percent a day in contrast with liquidity flow, that fluctuates
in orders of magnitude. This also allows to estimate maximal workable time scale:
the scale on which execution flow fluctuates at least in an order of magnitude (in 10

times).

e Any system that has a built-in fixed time scale (e.g. moving average type of system).
The market has no specific time scale. Minimal number of time scales is 3 (the time
scales of 2x2 matrix , typical value to make system some-kind working is 13 time
scales (all time scales of 7x7 matrix (21))).



29

e Any “symmetric” system with just two signal “buy” and “sell” cannot make money.
Minimal number of signals is four: “buy”, “sell position”, “sell short”, “cover short”.
The system where e.g. “buy” and “cover short” is the same signal will eventually

catastrophically lose money on an event when market go against position held.

e Any system entering the position (does not matter long or short) during liquidity
excess (e.g. I > I;y) cannot make money. During liquidity excess price movement
is typically large and “reverse to the moving average” type of system often use such
event as position entering signal. The market after liquidity excess event bounce a
little, then typically go to the same direction. This give a risk of on what to bet:
“little bounce” or “follow the market”. What one should do during liquidity excess
event is to CLOSE existing position. This is very fundamental - if you have a position
during market uncertainty - eventually you will lose money, you must have ZERO
position during liquidity excess. This is very important element of the P&L trading

strategy.

e Any system not entering the position during liquidity deficit event (e.g. I < Ij;) typi-
cally lose money. Liquidity deficit periods are characterized by small price movements
and difficult to identify by price-based trading systems. Liquidity deficit actually
mean that at current price buyers and sellers do not match well, and substantial price
movement is expected. This is very well known by most traders: before large market
movement volatility (and e.g. standard deviation as its crude measure) become very
low. The direction (whether one should go long or short) during liquidity deficit event
can, to some extend, be determined by the theory from Section [[II] and balance of

supply—demand generalization (57)).

e An important issue is to discuss what would happen to the markets when this strat-
egy (enter on liquidity deficit, exit on liquidity excess) is applied on mass scale by
market participants. In contrast with other trading strategies, which reduce liquidity
at current price when applied (when price is moved to the uncharted territory the
liquidity drains out because supply or demand drains out as on classical Fig. , this
strategy actually increase market liquidity at current price. This insensitivity to price

value is expected to lead not to the strategy stopping to work when applied on mass
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scale by market participants, but starting to work better and better and to markets

destabilization in the end.

e While proposed theory was developed and tested mostly on US equity market, it

can be extended to other global markets (Treasury, FX, Sovereign Debt, etc) with

corresponding time scale adjustment. Noticed in Section [[IT B similarity between dv

and |dp| behavior can probably allow the theory to be applied even to the markets,

where trading volume is not available, using |dp| as a substitute.

Appendix A: Non-monomials polynomial bases

A number of numerical algorithms use monomials basis z*. However, selection of other

bases can be greatly beneficial to numerical stability improvement.

satisfying recurrent relation.

Qr(z) = (o — k) Qp—1(x) — V6 Qr—2(x)
has some important stability properties[12] 24].

For our calculations we use the following four bases:

e Laguerre: (see com.polytechnik.utils.Laguerre)

k}Lk(ZL’) = (2]{7 —-1- [E)Lk_l — (k‘ — 1)Lk_2

e Legendre: (see com.polytechnik.utils.Legendre)
k’Pk = 37(2]{ — 1)Pk_1 — (k‘ — 1)Pk_2
Py=1
P,l = 0

e Chebyshev: (see com.polytechnik.utils.Chebyshev)
Ty = 22T — Ty

Th =1
lex

A choice of a basis

(A1)

(A8)
(A9)
(A10)
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e Hermite (actually He basis): (see com.polytechnik.utils.HermiteE)

Hk = ka:—l - (l{? - 1)Hk_2 (All)
Hy=1 (A12)
H,l == (Alg)

To use these bases in calculations we need to be able to perform standard operations on
polynomials in these bases F/(x) = S¢=7 f.Qx(2), where f is now the coefficient by Qy, not

by z* as in monomial basis.

1. Multiplication operation:

k=i+j

QiQ= > A Qx (Al4)
k=0

For the four mentioned bases the coefficients ¢} from are known: For Laguerre
basis: Ref. 25l For Legendre Basis: Ref. 26, formulae 8.915.5, A(9036), page 1040.
For Chebyshev Basis: Ref. 27|, formulae 22.7.24, p. 872. For Hermite Basis: Ref. 28
or 29 formulae 4.5.1.11 page 569.

2. Multiplication by az 4+ b. Use 3 term recurrence relation.

3. Given a set of observations x; and w; calculate the moments as >; Qn(zj)w;. Use 3

term recurrence relation (see the method calculateMomentsFromSample).

4. Expand ax + b argument @Q,,(ax +b) = Z;ig dg-")Qj(x). Use 3 term recurrence relation

to find d\™.

k=ng

5. Synthetic division. For a given polynomial P = ZZig” prQr and D = 37— di Qs find
polynomials R and ) such as P = Q * D + R. For ngy = 1 result can be calculated
directly from three term recurrence (Alf), for ny; > 1 use the (Al4) coefficients and

solve linear system with respect to R and @) coefficients.

6. Calculation of Y¥=1 fQx(x) at 2. Use Clenshaw recurrence formula see Ref. [30, page

56.
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7. Integration and differentiation of a function 35=0 f,Qx(x) at 2. Use Q(z) integration
and differentiation formulas from Refs. 26, 27, and 29 then apply Clenshaw recurrence

formula.

8. Given F(z) = Y¢=0 £1.Qr(z) find the roots(possibly complex) of F(z) = 0. Build
confederate matrix[31], 32] the eigenvalues of which give the polynomial F(z) roots.
See getConfederateMatrix(final double || coefs) method and com. polytechnik. utils.

PolynomialRootsConfederateMatrix ABasis class.

We have a numerical library implementing these (and also some other) polynomial oper-
ations for the four bases in question (see mentioned above four classes extending the com.
polytechnik. utils. BasisPolynomials). The code is availble from authors[33]. To show sim-
ple application of these bases let us apply them to quadratures calculations. This will be

demonstrated in Appendix B

Appendix B: Quadratures calculation

In this section given the moments < @), >, we apply the operations from Appendix @
to calculate Gauss, Radau, Kronrod and Multiple Orthogonality quadratures.

Gaussian quadratures. Using multiplication coefficients obtain matrices M, [z] and
M,,[1]. The first one is obtained initially by multiplication by x, then using , the second
one is obtained by direct application of . Solve generalized eigenvalues problem

My[z][¢ > = AM,[1][¢) > (B1)

2
The eigenvalues are the quadrature nodes zy, k = [0..n] and the weights wy, = 1/ (w(k) (xk)> :
where ¥*)(2,) is the value of k-th eigenfunction at xj, which is Z?ig J(-k)Qj (x). Because
< DM, [1]|p®) >= 6 the K(z,y,p) from and corresponding Christoffel function

has a very simple form in [¢)*) > basis:

k=n

K(z,y, 1) =Y v®(2)p® (y) (B2)

k=0
The ¢*) () are equal(within a constant) to the Lagrange interpolating polynomial built on
zj, 7 = [0..n] nodes (¥®(z;) =0 for j # k).

Radau quadratures. Using multiplication coefficients (A14]) obtain matrices M, [(xo—x)z]

and M,[(xo — x)], then use Gaussian quadratures for nodes and weights calculation.
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Kronrod quadratures|34) [35]. Build Gaussian quadrature first, then obtain n-th orthog-
onal polynomial P, on measure y (e.g. by multiplication ¢)*) by 2 — x; or in some other
way), then calculate < Q) P, > moments using and calculate Gaussian quadrature
once again on these new moments. If successful - the result give Kronrod nodes. Once
Kronrod nodes are known Kronrod weights can be easily calculated from first and second
Gaussian quadrature weights. See the code in com.polytechnik.utils. OrthogonalPolynomi-
alsABasis. getKronrodQuadratures.

Multiple orthogonality[36]. See the code in com.polytechnik.utils. OrthogonalPolynomi-
alsABasis. getQuadraturesForMultipleOrthogonalPolynomial

Java code is available from authors [33].

Appendix C: Distribution Parameters Estimation with Gaussian Quadratures

The quadratures we have built in Appendix [B|can be applied for distribution parameters
estimation. For a positively definite measure dy with existing moments [0..2n — 1] it is
possible to build n-point quadrature rule, such that the relation

k=n

(T(x)) = D T(ap)wr (C1)

k=1

is exact if II(x) is arbitrary polynomial of degree 2n—1 or less. The nodes xj and the weights
wy, define Gaussian quadrature[I2], 15 [37] While most quadrature applications focus on using
for integrals estimation, it can be viewed as interpolation of the measure du itself by
a discrete measure with support on quadrature nodes, i.e. by delta functions at points
and magnitude wg. (See the Ref. [I5] for distribution of zj (the roots of the n-th order
orthogonal polynomial with respect to measure du) review in various cases). Some trivial
usage of a quadrature can be an estimation of a quantiles (e.g. median) of the measure du
using the discrete measure wy, as a substitute.

In this appendix we present a new skewness estimator for a distribution. Given the
(Qr); k =0,1,2,3 moments it is possible to build two point quadrature rule. Assuming the
quadrature nodes are ordered in ascending order z; < =5 define the skewness as asymmetry
of nodes weights

W1 — W2

w1 + wa

(C2)
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FIG. 8. Skewness for chi-squared distribution. Solid line: half of regular skewness /8/k. Dashed
line: modified skewness from (C9)

The definition (C2)) is bounded to [—1; 1] interval because all wy, are positive.

Practical Gaussian quadrature calculation can be rather complicated for a large n because
of numerical instability, but for n = 2 calculation is trivial and can be performed even in
monomials basis. Consider L? extremal problem of [(a + bx + x?)?du, what lead to linear

system and the values for a and b are:

d = (2*)(1) — (z)’ (C3)



a= ((@*)(z) — (@*)*) /d (C4)
b= ((2%)(z) — («*)(1)) /d (C5)
then the nodes are the a + bz + 22 roots and the weights are:

B —b+Vb? —4da

]3172 = 5 <C6)
T — Io
= (1 c7
o= (1) 2 (1)
1 — T
= (1
Wa < %1 — &g (CS)
Then ((C2) becomes
2T — 1 — T2 2T + b
I'= = — C9
Ty — X Vb2 —4a (C9)

The skewness defined in (C2|) and calculated in (C9) is very similar to regular skewness v;

from ((C13|) when applied to commonly used distributions.

T = () /(1) (C11)

2 _ ((z—7)%)
o° = ) (C12)
_ (@ —7)%)

On Fig. |8 a plot of regular skewness 7, from and “modified” skewness I from are
presented for chi-squared distribution as a function of degree of freedom k (regular skewness
is equal to exactly \/8/7, on a chart it is divided by two to have the same asymptotic as
(C9) at & — o). In some situations a definition of skewness, having the dimension of x is
required (e.g. a difference between mean and median used in nonparametric skew). For such
estimation half of nominator can be used, what gives as a difference between
the midpoint of x; and x5 and mean Z. Note that the T is the root of first order orthogonal
polynomial P;(x) built on dp and z; and x5 are the roots of the second order orthogonal
polynomial Py(x) built on dpu, thus the is a difference between a midpoint of P(x)
roots and Pj(x) root. See the com.polytechnik.utils.Skewness for the code calculating I"
from the [0..3] moments in arbitrary basis.

First [0..2n — 1] moments of a positive measure can be one-to-one mapped to n-point

Gaussian quadrature. A modified skewness estimation as asymmetry of two—point Gaussian
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quadrature weighs is proposed. This modified skewness has additional important properties,
such as bounded to [—1..1] interval and being applicable well to two-mode distribution, it
gives exact answer, for example, in case of discrete distribution with two support points.
Note, that discrete distribution is a typical problematic case for skewness estimation|38].
While quadratures approach can be easily applied to skewness estimation, kurtosis estima-
tion from Gaussian quadrature is not possible if input moments are limited to the same
ones used in classic definition of kurtosis. Classic kurtosis estimation requires [0..4] mo-
ments for estimation, but 3-point Gaussian quadrature requires [0..5] moments. In this sense
quadrature—based skewness estimation is some kind special, because it can be built using the
same input moments as classically defined skewness. In practical applications the Christoffel
function asymptotic 1/ K (z,z, 1) can be much more successfully, than kurtosis, applied
for testing a distribution on “fat tails”. Technically Christoffel function behavior can be bet-
ter understood in the eigenfunctions basis (in which K (x,y, ) has a very simple form
(B2))) rather than in the original Q(x) basis, in which K (x,y, ) has a general form (22)).
Given distribution sample to obtain K (x,z, u) select a basis out of four bases considered
(for numerical stability choose the one the measure of which is most similar to distribution
of the sample and scale = to the basis measure support), then use basis implementation of
com.polytechnik.utils. BasisPolynomials. calculateMomentsFromSample to obtain < Q) >
moments, after that make the M[1] matrix using com.polytechnik.utils. OrthogonalPoly-
nomialsABasis .getQQMatr, inverse it (obtain G~') by applying e.g. com.polytechnik.utils
Linsystems .getInvertedMatrix, and finally calculate the polynomail Q(z)G~'Q(z) by us-
ing the com.polytechnik.utils. OrthogonalPolynomialsABasis .getKK. Java code for e.g.
Chebyshev basis would look about like this:

/** The method calculates K(x,x) (2d-1 elements returned, the polynomial of 2d-2 order)
* in Chebyshev basis from observations sample x[].
*/
static double [] getKxxFromSample(final int d,final double [] x){
final com.polytechnik.utils.OrthogonalPolynomialsABasis Q=
new com.polytechnik.utils.OrthogonalPolynomialsChebyshevBasis();
return Q.getKK(d,com.polytechnik.utils.Linsystems.getInvertedMatrix(d,d,

Q.getQQMatr(d,Q.B.calculateMomentsFromSample (2xd-1-1,%))) ,d);
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-0.2

FIG. 9. Original Runge function f, Least Squares approximation Args and Radon—-Nikodym

approximation Agy
Appendix D: Runge Oscillations supression

We take Runge function

1

- D1
1+ 2522 (D1)

(=)

And interpolate it on [—1; 1] interval choosing the measure du = dz and n = 6. Apg(z) is

least square approximation and Ary(x) Radon-Nikodym approximation ([26]).

Gij = [ d2Qi(@)Qy(x) =< Qu(w)Q;(w) >= My[1] (D2)

Ans(r) = Qu(n)Gi}' < Qy(a)f >= Q)G < Qf > (D3)
Q)G < QS > Gl Qi) _ Q)G MG Q)

Apn(z) = Qi(SC)G[lej(SC) " Q(z)G'M[1]G'Q(z) (D4)

The results are presented on Fig. [0l One can see that near edges oscillations are much
less severe, when Radon—Nikodym approximation as polynomials ratio is used for the in-
terpolation of f. One can see from the chart typical behavior difference for least square
and Radon-Nikodym approximations: Least squares have diverging oscillations near mea-
sure support boundaries and tend to infinity with the distance to measure support increase.
Radon—Nikodym have converging oscillations near measure support boundaries and tend

to a constant with the distance to measure support increase. The code calculating Agy(x)
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from < Q > and < fQ > moments is very similar to an example calculating the K (z, z, i)
polynomial at the end of Appendix [C| with the difference that the calculations now have
to be performed twice: first time for denominator, what give exactly K(z,x,u), and sec-
ond time for nominator, with only difference is that instead of the matrix G=! the matrix
G7'M[f]G™" should be used. See the com.polytechnik.utils. NevaiOperator. getNevaiOp-
erator as an example where these calculations are implemented and the polynomials for
nominator and denominator are calculated from the moments in a given basis.

Another, worth to mention point, is related to derivatives calculation. For this the
moments (Qrdf /dz) should be calculated first (for the measures like or this can
be done using (Qrf) moments and integration by parts), and only then applying Radon—
Nikodym approximation like using the derivative moments. If one, instead of using
the (Qrdf /dx) moments, would differentiate f approximation expression directly — the

result will be incorrect.

Appendix E: Matrix averages

In the beginning of Section [[I] we mentioned an effective way of average and correlation
calculation. Specifically we need an effective way to calculate < fg > given only < Qi f >

and < Qg > information. The approach mentioned in Section [I]is actually
Gij = < QiQ; > (E1)

— <Qf>G'<Qg>
9= <Q>G1<Q> (E2)

(in this appendix we mix vector < Qf > and index < Qpf > notations for notation

compactness, but this should not mislead the reader).

The expression(E2) can be also considered as conversion of f(¢) and g(t) timeseries to
vectors < Qf > and < Qg > then taking inner product of them with matrix G~! defining
inner product (another way to look at this is to consider least squares approximation of f(x)
and g(z) then taking average of two interpolated functions product).

In a way how Radon—Nikodym derivatives improve interpolation of a function, the transi-
tion from a vector < Qf > to matrix M|[f] can similary improve calculations of an average.
Let us use the M;;[f] =< Q;fQ; > from and define an average f:

Spur (G~'M[f])

f= dim G

(E3)
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where Spur is matrix trace (sum of diagonal elements) operator. It is easy to see that the def-

inition immediately give (note that G = M[1] and Spur (G—'M[f]) = Spur (M[f]G™1))

dim G = Spur (G7'G) =n+1 (E4)
— _ Spwr (G™'M[f]IG~"M[g])
19 = dim G (E5)

The average is related to quantum mechanics [39] density matrix —type of average,
and it has all the regular properties of average, but operates on matrices (an equivalent
of quantum mechanics density matrix), not on vectors. This greatly increase stability of
calculations (both because of using more moments [0..2n] instead of [0..n] and because of
matrix nature of the expression (E3))). If the basis Qx(z) is chosen in a way the G is
a unit matrix then all G=! terms vanish and f is just Spur(M|[f])/dim G and fg is just
Spur(M[f]M]g])/ dim G. Interesting properties arise when matrices M|[f] and M|g] have
some special properties (e.g. have common basis in which both are diaginal, commutate,

etc.).

Note, that the formulae (E5|) practically allows to calculate stock cross correlation in
linear time. To obtain price covariance of any two stocks p and ¢: obtain M|p|] and M|q]

matrices from [0..2n] moments of p and ¢ timeseries, then use the (E5) for pg — p 7.
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