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A first attempt at obtaining market—directional information from a non—stationary
solution of the dynamic equation “future price tends to the value that maximizes
the number of shares traded per unit time” [I] is presented. We demonstrate that
the concept of price impact is poorly applicable to market dynamics. Instead, we
consider the execution flow I = dV/dt operator with the “impact from the future”
term providing information about not—yet—executed trades. The “impact from the
future" on I can be directly estimated from the already—executed trades, the direc-
tional information on price is then obtained from the experimentally observed fact
that the I and p operators have the same eigenfunctions (the exact result in the dy-
namic impact approximation p = p(I)). The condition for “no information about the
future” is found and directional prediction quality is discussed. This work makes a
substantial contribution toward solving the ultimate market dynamics problem: find
evidence of existence (or proof of non—existence) of an automated trading machine
which consistently makes positive P&L on a free market as an autonomous agent
(aka the existence of the market dynamics equation). The software with a reference

implementation of the theory is provided.
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I. INTRODUCTION

Market Dynamics is the central concept of modern economic study. An ultimate form
of the study to be an evidence of existence (or a proof of non—existence) of an automated
trading machine, consistently making positive P&L (with a given value of risk) trading
on a free market as an autonomous agent. In our previous study[2, B] we have shown
experimentally that supply and demand match each other down to milliseconds time scale,
thus their disbalance cannot be a source of market dynamics. Moreover, supply and demand
cannot be measured or estimated from the data even after transaction execution|2]. In the
modern world all available data is typically represented in a form of recorded transactions,
where money, financial instruments, goods, etc. change hands. In each such transaction
there are two matched parties (e.g. “A” sold = goods to “B” and received y dollars for that)
what means that in recorded data supply and demand are matched. The disbalance of
supply/demand cannot (even in principle!) be measured from a sequence of transactions,
as any transaction assume the parties to match. An example of information source, that
is not a sequence of transactions, is the Limit Order Book. However, using Limit Order
Book as a source of information about Supply and Demand is fruitless[3] since at least
2008-2010 and exchange trading is now little different from dark pool trading. (We tried to
consider the Limit Order Book both: as not a sequence of transaction, and as a sequence
of add/{cancel|execute} transactions, but without much success; most typical limit order
book pattern is: added order spend almost no time in the order book, it either get almost
immediately executed or canceled. The ratio observed is that more than 90% of orders being
at best price level at some time end up being canceled[I] 4]. This is due to exchange fee
structure, because add/cancel order “round trip” cost (almost) no money and carry little
risk for market participants.) This make us to conclude that the disbalance of supply and
demand is not a practically applicable concept, because it cannot be measured from recorded

transactions.

For practical applications we need a concept that can be estimated from a sequence of
transactions. In [I| 2] a concept of execution flow (I = dV/dt a number of shares traded
in unit time, a number of dollars paid in unit time, etc.) was introduced and practical
approach to its calculation (based on Radon-Nikodym derivatives and their generalization)

was developed.



An application of this approach in quasistationary case was demonstrated in [2], where we
have shown that asset price is much more sensitive to execution rate I = dV//dt, rather than
to trading volume V', and dynamic impact (sensitivity to ) was introduced as a practical
alternative to regular impact[5] (sensitivity to V)] In this paper we make one more step
forward, demonstrating an application of this approach in a non-stationary case. First, we
show that price impact, the central subject of many studies, is poorly applicable to market
dynamics. A practical alternative to it is an impact from the future on I, that can be esti-
mated from past sample. Then we are trying to obtain directional information on price from
a knowledge of future I, with the goal to obtain trading strategy with a positive P&L. There
is a fundamental philosophical question|7] about positive P&L provided by an automated
trading machine: Assume one created a “Real Time Machine”, but looking only very few
moments ahead in the future. How to prove that a given “Time Machine” works? Attach it
to an exchange and show the P&L! In this sense any dynamic equation (Newton, Maxwell,
Schrodinger) can be considered as some kind of “Time Machine”. Moreover, any intelligence
can be considered as a “future prediction system” [§], thus, when applied to the market,
the P&L can be considered as an “intelligence criteria” of an automated trading machine.
There is a very deep difference between an intelligent agent and statistical approach. For
an intelligent agent a single observation is enough to make a prediction. For any statistical
approach a large number of observations is required to make any kind of inference. In [3]
we emphasized the inapplicability of any statistical approach to exchange trading and the
importance of the dynamical approach, a practical alternative to a statistical one.

The dynamic equation we introduced[I] “future price tends to the value that maximizes
the number of shares traded per unit time” in this direct form requires to know “future” prices
and flows, and can be easily solved only in quasistationary case|2]. In a non—stationary case
the best result of our previous study[l] was “maximizing the number of shares traded per
unit time on past observations sample”, but with a limited success. The concept of market
dynamics in its ultimate form requires to determine future market movement from past
observations sample. In this paper a substantial progress is made toward this goal. In

Section an estimation of the impact from the future on / is made, allowing (from

1 Also see later developed|6] concept of constrained optimization I — max subject to the constraint
(¢ | C'| ) = 0, considered for a number of operators |C||. This allows us, within the framework of a single
formalism of constrained optimization, take into account the driving force of the market I — max, and

the reaction, via the operator ||C||, of the market participants on it.



experimentally observed|2] fact that I and p operators to have the same eigenfunctions, at
least for the states with high I') to obtain price directional answer. This dynamic equation
solution is equivalent to some trending model, but have an automatic selection of the relevant
time scale, a critically important feature of any automated trading system|[I].

In Ref. [I], as a first application of the dynamic equation, the concept of liquidity deficit
trading was introduced: open a position on low Iy (Ij is defined in Eq. (41))), close already
opened position on high Iy, as the only way to build a strategy, resilient to catastrophic
P&L loss. In Ref. [I] market directional information was not obtained, thus only volatility
trading was available for practical implementation. In this new study we made a substantial
progress in dynamic equation application: to obtain market directional information from
the dynamic equation.

Computer code with a reference implementation of the theory is presented in the Ap-

pendix [G]

II. BASIS SELECTION

To operate with introduced in[I] concepts we need to convert market observable timeserie
variables (time, execution price, shares traded) to a set of distribution moments. The three
bases, performing time averaging with the exponential weight, are the most convenient for

market dynamics study. Laguerre basis:

r=t/T (1)

@uf) = [ Quia)f(®)expla)ds 3)

du :_exp(:v)dx (4)
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Shifted Legendre basis:

x =exp(t/T) (8)
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Qx(z) is a polynomial of k—th order (e.g. monomials {1;z;x?; x3;

.. }), but from numer-
ical stability point[I] for a good choice is the selection Qy(x) = Lj(—x), with L(x)
Laguerre polynomials, and for a good choice is the selection Qy(x) = Pi(2x — 1),
with Py(x) Legendre polynomials. This choice make the basis orthogonal in du measure:

[ Li(x) Ly(z) exp(—x)de = 6, and [, Pj(2x — 1)Py(2z — 1)de = 510, what drasti-

2k+1
cally increase the numerical stability of calculations. However, all results are invariant with
respect to polynomials selection. The specific choice affects only numerical stability of calcu-
lations, thus should be discussed separately[l, O-11]. Proper basis selection|[IT] allows us to
have the numerically stable results even for two-dimensional basis with 100 basis functions
in each dimension, i.e. with 10000 basis functions total for 64bit double precision computer
arithmetic.

The Eqgs. , and show how to calculate the (Qf) moments from a time-

serie sample f(t;). To simplify working with averages introduce quantum mechanic bra—ket

notation|12] (| and |):

(Quf) = / apQi(x) £ (1) (20)
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where the integral [ du in is calculated directly from a timeserie according to , or
depending on basis used. Familiar values can be easily presented with these definitions.
Price exponential moving average: put price at time t; as the f(¢;), then p. = (Qop) / (Qo)
is required moving average. From all the considerations above one can easily see that bra—
ket (| and |) notations from quantum mechanic are nothing more, than a “glorified moving
average”, and think of (Q | f|Q,) as taking a moving average with two basis functions
product: [ duQg(z(t))f(t)Q;(x(t)). Different du measures can be defined in a similar way.
However the measures and are special[I3], in a sense they allow to calculate the
(Qrdf /dt) moments from the (Q)f) moments using integration by parts. The following

condition also holds:

Q;(w0)Qk(w0) = (Q;(x)ED(Qr())) + (ED(Q;()) @ (7)) (22)

Infinitesimal time-shift linear operator ED(¢(x)) from () and (13), is different from plain
differentiation because exponent differentiation in (4)) and give an extra term. The
selection of basis functions as a function of price Qx(p(t)) in is extremely convenient
in the quasistationary casel2] but does not possess such a simple infinitesimal time—shift

transform.

A. I=4dV/dt as Radon Nikodym Derivative of Lebesgue Measures.

In this subsection we demonstrate price basis convenience for execution flow calculation in
the quasistationary case and it’s relation to Radon—Nikodym derivatives, the main technique
of our 2], 14] papers. The idea is to split price range on a number of AP intervals, then, for

each interval calculate:
e time spent
e volume traded

of timeserie observations when the price is inside the [P : P + AP] interval, see Fig.
for illustration. These calculations give us two Lebesgue measures: At = p,(P)AP and

AV = puy(P)AP. These measures give time spend and volume traded when the price is
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FIG. 1. The AAPL stock price on September, 20, 2012. Demonstration of Lebesgue Integral

concept: time spent or volume traded with price inside [P : P + AP] interval.

inside the range [P : P + AP]. By itself these two Lebesgue measures are very similar to
each other and are nothing more than a “glorified price-volume distributions”, both having
distribution maximum near price median, see Fig. 3 (top) of Ref. [2]. But when one
take a ratio of these two measures, it gives trades execution flow I(P) = py (P)/pu(P), with
singularities near price tipping points, see Fig. 3 (center) of Ref. [2]. The execution rate, the
central concept of our theory, I(P) = puy(P)/u:(P) can be considered as Radon-Nikodym
derivative of two Lebesgue measures u(P)AP and puy (P)AP. For numerical calculations
the described above histogram-like procedure works well only if discretization scale AP is
properly chosen, what is a non-issue for manual analysis, but can be a real problem for
an automated system. From numerical perspective there is a much better way to calculate
Radon—Nikodym derivative of two measures, a calculation from distribution moments, see
the formula below, the answer in the form of Nevai operator[I5]. Given sufficient

number of moments (what may be a problem to calculate numerically, unless a stable basis



is chosen[I]) the is a superior numerical estimator of Radon-Nikodym derivatives.

IIT. WAVEFUNCTION

Introduce a wavefunction ¢(x) to be a linear combination of basis function Q(x) (here

n is time-space dimension, typically n take some value between 4 and 20).

b1) =Y Qi) (23)

Then any observable (or calculable) market-related value f,, corresponding to a probability

density 1?(x) can be calculated as:

Wl fY)
To =01 (24
3 0 Q51 F1Qu)
fo= Lk:: (25)
.kZ_O a; (@5 | Qr) v

The is plain ratio of two moving averages, but the weight is not just a regular decaying
exponent according to or , but exponent, multiplied by the 1?(z), thus the ?*(z)
define how to average a timeserie sample f(¢;). The is with parentheses expanded
according to . This way any v (z) function is defined by n coefficients ay, and the value
of any observable variable, corresponding to this ¢ (x) state is a ratio of two quadratic forms
(built on «ay, coefficients) of dimension n, an estimator of stable form[I6]. The representation
of an observable in a form of two quadratic forms ratio is conceptually different from
the representation of an observable in a form of linear superposition of basis functions.
In a wavefunction ¢(x) is represented as a linear superposition of basis functions,
the ¢?(x)dp define probability density, then f, is calculated as f(t;) averaged with this
probability density|[I7]. This approach allows do decouple variables determining market
dynamics and variables determined by market dynamics, what is critically important for

any market dynamics study.

A. Interpolation Example

Given the definitions above, let us show some familiar answers. Let f(¢) be some function,

obtain B, such as the interpolation Aps(y(t)) = S r—¢ BrQx(y(t)), minimize least squares



norm: <(f(:c(t)) —S Bka(a:(t)))2> — min. Taking the derivatives of the norm on f
obtain the solution:

Ars(y Z Q; () (G )k (fQu) (26)

4,k=0

Here G~' is the inverse to Gramm matrix G, = (Q; | Qx) and the is a regular least
squares solution, a polynomial of n — 1 order, where the coefficients are obtained as the
solution of a linear system with Gramm matrix.

A much more interesting case is to obtain probability density wg (x)du, which is localized
at given y, then calculate Agn(y) = %, using probability density with interpolated
¥y(z). There are several forms|[I] of such localized (), the simplest one give (28)), Nevai
operator[15]:

Z Qi) (G Qs () (27)

7,k=0

S QG W)E ) Qe F1Q) (G Qu(v)

7,k,l,;m=0

Arn(y) = (28)

S Q) (C Q)

k=0
The is interpolated localized wavefunction (localized at y, compare it to Apg interpo-
lation ), then this localized at y probability density is put to to obtain , that
is now considered as Radon—Nikodym interpolation of f at y. In contrast with the least
squares answer (26)) (which is a linear combination of basis functions), the is a ratio of
two quadratic forms of basis functions, a ratio of two polynomials 2n — 2 order each in case

of polynomial basis. The 1} is used for numerical estimation of g—: = %

Radon-Nikodym derivative. The answer (basis-invariant answers and take

, considered as

very simple form[I], [I7] in the basis of eigenfunctions of operator, generated by the f), is typ-
ically the most convenient one among other available, because it requires only one measure
to be positive. Other answers[1] [I8] require both measures to be positive. Radon-Nikodym
interpolation has several critically important advantages|I} 1], 19] compared to the
least squares interpolation (26]): stability of interpolation, there is no divergence outside
of interpolation interval, oscillations near interval edges are very much suppressed, even in
multi-dimensional case[II]. These advantages come from the very fact, that probability den-
sity is interpolated first, then the result is obtained by averaging with this, always positive,

interpolated probability.
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B. Probability States

Considered in subsection [[IT A]localized wavefunction give a simple example, illustrating
the power of the technique. However, much more interesting results can be obtained consid-
ering not only localized states such as , but arbitrary ¢ (z). This allows us to decouple
observable variables and probability state.

As we emphasized in[I] system dynamics cannot be obtained from price. The price is
secondary and typically fluctuates few percent a day in contrast with the liquidity flow,
that fluctuates in orders of magnitude. (This also allows to estimate maximal workable
time scale for an automated trading machine: the scale on which execution flow fluctuates
at least in an order of magnitude. Minimal time scale is typically determined by available
market liquidity[3]). The main idea is to obtain the state ¢ from the variables, determining
the dynamics (e.g. execution flow I = dV/dt, execution flow changes dI/dt, etc.) and then
use obtained state to determine the values of interest (e.g. price, price change, or P&L).
A critically important feature of this approach is that both: the variables determining
the dynamics and the variables determined by the dynamics can be directly calculated
from recorded data, what is drastically different from Supply—Demand approach, where the
disbalance of it cannot be calculated from recorded transactions data, because in all recorded

transactions Supply and Demand are matched.

IV. PRICE IMPACT

Price impact [20H22] is typically considered as path—dependent impact of executed shares
number on asset price. However the price can be affected by a number of other factors
and, moreover, an impact defined in such a way may diverge or even do not exist. In a
style of previous section, define price impact as price change in a given ¢ (x) state. With
the approach we develop in this paper price impact is calculated in two steps. First, find
the state of interest ¢ (z) (e.g. corresponding to a large I or dI/dt, etc.). Second calculate
price change corresponding to the 1 (x) found on the first step. We define price change,
corresponding to the ¢ (z), as generalized price impact in the v state: A, P. The selection
of ¥(z) will be discussed in the next section. In this section we only demonstrate how to

calculate price impact for a given ¢(x). There are two practical answers:
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1. The moments (Qxdp/dt) can be directly calculated from a sample using (7)), or
(19) with the replacement of the factor f(t;)(¢t; — t;_1)/7 by the factor (p(t;) — p(ti—1))/7.
After the calculation of (Qrdp/dt) moments the Ay P can be obtained directly:

n—1

Wiy, (QlE Q)
pr— ’ nil

W 19) = —

3,k=0

AP =

(29)

The give an answer calculated directly from sample.

2. In some situations the moments (Qrdp/dt) are not convenient to use or not available
and only (QxpI) sampled moments are available. Then calculate the price p, corresponding
to the 1(z) state, and variate ¢)(z) using infinitesimal time-shift operator ED(¢)) from ()
or depending on the basis used.

Wl |w)
P = 51 T19) (30)
L ({EDW)|pI]Y)  {|pI|¥) (EDW)|I] )
BoP = 2( I @I @I > (31)

The is the first order variation of Rayleigh quotient , the second order variation of
Rayleigh quotient can be also calculated, see the below with ¢ = —ED(%), but note
that that ED(ED(¢)) terms need to be added to in general case.

The and may or may not give similar answer, because they treat the boundary
x = xo (time is “now”) differently. Substantial difference in between and typically
indicates a large contribution of the boundary, and is a signal of possible discrepancy in gen-
eralized price impact estimation. But, as we emphasized earlier[1], in practical applications

other than price, dynamics—related attributes (e.g. P&L or I) should be considered instead.

V. WAVEFUNCTION STATES IMPORTANT FOR MARKET DYNAMICS

Localized v state, considered in the subsection [[ITA] is of interest for interpolation prob-
lem only. For dynamic problem other 1) to be considered. There is a number of interesting
situations to consider, but consider the two forms of 1, the most promising for market

dynamics and for generalized price impact calculation.
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A. 1 Corresponding to Maximal [

We have already emphasized|2] the importance of the states, corresponding to maximal 1.

The problem of maximizing I on “past” sample[l] can be reduced to a generalized eigenvalue

problem :

<l/<}¢|}—|]l|;>b> — max (32)
n—1 n—1
Qi 111Qu) o) = A (Q 1 Qi) o) (33)
k=0 k=0
n—1
Do) =" ol Qulx) (34)
k=0

Generalized eigenvalue problem provide n solutions (i = [0...n—1]), each i corresponds
to the (eigenvalue,eigenfunction) pair ()\[Ii], EZ](Z‘)) The state %Hﬂ (x), corresponding to the

maximal A\, is a first good candidate for generalized price impact calculation.

B. 1 Corresponding to Maximal dI/dt

The state, corresponding to maximal d/dt can be also of interest for market dynamics.
In contrast with the (Q;|dp/dt|Qx), (Q;|I|Qk) and (Q;|pl|Qk) matrices the matrix
(Qj|dI/dt| Q) cannot be directly calculated from sample. However, in a presence of an

infinitesimal time—shift operator this matrix can be calculated by applying integration

(ol

G| @) = Q) u(an) — (D@ 110 ~ (@ 1T1ED@) (39

by parts:

Edge = = z, value I/ is unknown in general case. We have tried various values for I/, but
for simplicity of calculation let us put I/ = 0 in this section (see the Section below
for the case I/ = )\[IIH]). The I/ = 0 means that the trading “now” is expected to stop
at this price. Then the (Q);|dI/dt| Q) matrix can be obtained from (35| and generalized

eigenvalue problem can be written in a usual way:

<Q@) | @L;M — max (36)
> (|G| @) el =T @ 1@ (37)
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at (@ Za“Qk (38)

Generalized eigenvalue problem provide n solutions (i = [0...n—1]), each i corresponds
to the (eigenvalue,eigenfunction) pair ()\51, 5}(30)) The state [d H] (x), corresponding to

the maximal A7, is a second good candidate for generalized price impact calculation.

C. ¢ Localized at zg

Localized at x( (the state “time is now”) the wavefunction 1y(z) is of “interpolatory” type
and does not provide any valuable information about market dynamics but is useful in some
applications. Take and put y = zo to obtain the ¢y(z). In [I], 2], just for convenience,

we used normalized ¢y(x):

5 Q) (G )ula)
Yo(z) = ——= (39)
';0 Q;(20)(G™1) 5k Qr (o)
1= Wo | ¢0> <40)

The (39) is plain normalized , normalization factor cancels in the numerator and in the

denominator of when calculating an observable.

VI. DEMONSTRATION OF GENERALIZED PRICE IMPACT CALCULATION

In this section we calculate generalized price impact on ¢ states discussed in the previous

section. In Fig. [2| price change, corresponding to the state of maximal I from subsection
and dI /dt from subsection are presented. In these figures

Iy = (Yo |1 ] 4o) (41)

is the “I now”, calculated with the 1y from 1) the )\[IIH] = < [1H] ‘I ) z/;[IH >, max [
solution of 1) and )\BIL] = < Lrz] ‘ I ’ w[IL > the one corresponding to the minimal A; of
(33). The dp/dt(direct) is calculated using and dp/dt(var pI) is calculated using (31)).

From these charts it is clear that:
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e Boundary dp/dt contribution much exceed non-boundary contribution, especially for
large Iy; large dp/dt typically corresponds to the boundary, i.e. large trading have just
started (wa] (z) state is close to 1y(x)).

e The Eqgs. and give similar answers only when the boundary contribution is

small.
. . . [[H] : [[H]
e The dp/dt is typically much larger in the ¢; "'(z) state, than in the 1, ' (x) state.
This make us to conclude that:

1. The eigenfunctions of I operator are more important to market dynamics than

the eigenfunctions of dI/dt operator (37)).

2. The concept of price impact is poorly applicable to market dynamics, because of large
contribution of the boundary x = xy. Because future (z > xy) prediction is the goal
of any market dynamics study the attributes with large boundary contribution (e.g.

dp/dt) are poorly applicable[1].

3. Any consideration of infinitesimal time shifts (e.g. price impact in or form) is
poorly applicable to market dynamics. A multi-state consideration (e.g. two different

1 for enter and exit, not infinitesimal variation of some 1) may be required.

4. At large I the price has a singularity, same as in the quasistationary case[2]. In this
paper we do not use a “boundary condition ¥ (z¢) = 0" as we did in [I], so we always

have )\[IIL] <)< )\[IIH], see Fig. . Bounded to [0... 1] projections

wIL] < ‘w[IL]>2 (42)
[]H] < ‘¢[IH> (43)

wl and wa] are good indicators of “low” and “high” value of I (also see Eq. (95)
below for an alternative criteria). For a decision about “low” or “high” value of an
attribute, the estimation of wavefunction projection to the state of interest is a superior

approach to any classical one with a norm (i.e. L? or any other) and a threshold|19].

5. This confirms our approach[l] to make a transition from price dynamics to execution

flow and P&L dynamics. This to be considered next.
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VII. IMPACT FROM THE FUTURE.

While the quasistationary case|2] of dynamic equation is easy, in a non—stationary case
there are several fundamental questions to be answered before considering any practical
application. We start with the “infinitesimal future” problem: knowing the last price value,

what information about future price change can be obtained.

A. Open Questions (With Possible Answers)

e What “practically useful observable” can be directly predicted from the
dynamic equation[I]: “Future price tends to the value that maximizes the
number of shares traded per unit time”? Future value of Iy can be predicted.
The gives “current” value of Iy, it is calculated on already executed trades. Future
value of I (to be calculated on yet unexecuted trades) can be estimated as )\[IIH], the
very important fact is that future I, estimator )\[IIH] is calculated on already executed
trades! If trading “now” is slow (I, from is small), this means that at current
price buyers and sellers do not match well and asset price has to move. Asset price is
expected to move due to an increase in the “future” Iy, caused by the “future execution”.
In this sense the more slow the market now is, the more dramatic market move to be
expected in the future. The “past most dramatic I”, the )\[IIH], can be used as a

reasonably good estimator (44)) of the “future dramatic I”:

1§ = (44)
dI =1 — I, (45)
dI >0 (46)

Note, that similar ideology is often applied by market practitioners to asset prices or
their standard deviations. This is incorrect. Experimental observations|2] show: this
ideology can be applied only to execution flow I = dV/dt, not to the trading volume,

asset price standard deviation or any other observable.

e Given the role of the execution flow I, what is a criteria of presence (or

absense) information about the “future” in the “past data”? If current /; from
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1} is close to )\[IIH], this means that we have a “very dramatic market” right now and
there is no information about the future of this market. This is the condition of no

information about the future:
dl =0 (47)

But the most intriguing task would be to obtain directional information on price. The

condition of no directional information about the future:

[T J3po) = A [bo) (48)

is more restrictive than ([47). If the state “time is now”, the ¢o(z) from (39), is an
eigenfunction of ||I/|| operator , then past dynamics of / has no information about
the future (also note, that if 1(x) is ||I7|| eigenfunction, then it is ||7]| eigenfuction
either). The is a special case of . Imagine extremely high volume was traded
at x = x¢. Then the solution, corresponding to )\[IIH] is exactly the y(z), and
all other eigenfunctions (i # [ H) have w? (xo) = 0, what immediately give the .
Another example of condition is the case when execution occurred only “now” (z =
xo) and in the moments of ¢y (x) roots, that are the nodes of Gauss-Radau quadrature
built on the measure (zg — x)du, see Ref. [1] and computer code for calculating
Gauss-type quadratures[23]. One more example is, for an arbitrary HT ||, to consider
1 = 17 - % then this 7] give the q; |1Z7]|. There is one more very
important situation, when information about the future cannot be obtained: assume
we have a trading without execution flow fluctuations, I = const, then ||I|| operator

is degenerated (all eigenvalues are the same: )\[ﬁ = I = const), what immediately lead

to both and being satisfied.

While the I = dV/dt dynamics is more or less understood, how can it be
converted to a price dynamics? This is the most difficult problem. The relation
between p and I is the fundamential question of market dynamics. We started this
discussion in 2], and have shown experimentally, that execution flow affect price much
stronger (dynamic impact), than traded volume (regular impact). We also noticed

there, that p and [ often reach an extremum in the same 1 state, i.e. their operators
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have the same eigenfunctions. Introduce dynamic impact approximation assuming

asset price is affected only by the execution flow I, not by the volume traded:
p=p(I) (49)

If holds then p and I have the same tipping points, the behaviour we exper-
imentally observed in Ref.[2]. More generally, if price is only a function of I then
corresponding ||p|| and |||| operators to have the same eigenfunctions, the behaviour
we observed|2] for the states with high /. We already estimated future value of
Iy as )\[IIH] and can build || 17| operator , having dI contribution “from the future”
([@5). Then future value of price can be estimated considering the ||p™I/|| operator
, on eigenstates already found for ||I7]| operator (52). The price is secondary to
the liquidity flow, but their common eigenfunctions allows to use future value of I to

calculate future value of p.

B. Open Questions (Without Answers)

What is the role of infinitesimal time—shift operator, available in some
bases, e.g. @ and ? It is very seductive to use infinitesimal time—shift oper-
ator to define a Lagrange functional (combining price volatility and execution rate),
build an action S (like other dynamic theories do), then try to minimize S to build
a theory combining both trend following (due to execution flow) and price reverse
(due to price volatility)[I]. Despite all our effort we failed with this plan. Even first
order infinitesimal time—shift give the results similar to price impact of Section [V]]
above. Typical for other dynamic theories second order infinitesimal time—shifts give
an answer with even larger boundary z = x4 contribution, thus having little predictive
power. This make us to conclude that infinitesimal time—shifts are not very perspective

for market dynamics and finite variations to be considered instead.

What is the role of dp/dt in the dynamic equation, especially, whether price
volatility can be expressed through the (dp/dt)* term [1]? As we already
emphaised several times above “the price is secondary to liquidity flow”, the dp/dt

spikes are just a consequency of liquidity fluctuations, the charts of Section [VI] above
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seems to prove this. But this statement results in “future price does not depened on
past prices”, what make our theory too provocative, e.g. it predicts that all theories

of “trend following” or “reverse to the mean” based only on price trends are invalid.

What is the role of basis minimal and maximal time scale (how to determine
n and 7)? If we assume that the (Q; | f|Qk) matrix has all the information about
f, then we can easily calculate the values, that cannot be directly calculated from a
sample[I]. For example price volatility matrix in the form (dp/dt)?, that cannot be
calculated directly from sample, can be expressed through calculatable directly from
sample dp/dt matrix using f = g = dp/dt:

n—1

Qi1 fa1Qr) =" (Qi1F1Q) (G, (Qulgl Qi) (50)

I,m=0

Numerical experiment have shown this approach is not a very successful one. One can
also try to compare the ||p/|| matrix calculated directly (Q;|p! | Q) and Hermitian
part of calculated with f = p and ¢ = I. The 7 determines a “base” time scale,
n determines the time-scale variation. While this approach is a great advance from
“moving average ™—type of approaches with a single predefined time—scale (corresponds
ton = 1), now we automatically select the state out of n eigenfunctions with their own
time—scales (in practice n < 15), we still do not have a formal way to select proper n

and 7.

C. Impact From The Future Operator.

As we stated above maximal eigenvalue, the )\[IIH], can serve as an estimator of future

Iy. Then execution flow operator with an impact from the future is:

1711 = 1121 + [4bo) dI (o] (51)

The term |1)g) dI (1pg| is proportional to the execution flow of not yet executed trades dIf
from ; we now have <@/}0 | I’ ‘ @/}0> = Ig and (Yo | I |1o) = Ip. To find future equilibrium

wavefunction, according to dynamic equation, eigenvalues problem for ||I7|| operator needs

to be solved

el =

vih) (52)
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the Eq. is the same as the Eq. (33)), but with the ||7/|| operator from instead of ||/||
operator in . Eigenvalue selection in was easy, it was the state with the maximal
/\[Ii]7 according to our dynamic equation , from where we received the . But for 1)
the answer is not so trivial. As we demonstrated in [2], asset price is much more sensitive
to execution rate I = dV/dt, rather than to trading volume V', thus in dynamic impact

approximation the contribution of ’w%> state to future price changes is proportional

: 2
to the flow of not yet executed trades <w% ‘ ¢0> dI. For this reason we are going to keep

all eigenfunctions of problem. The ’w¥}> is ||I7|| operator eigenfunction , thus first
order variation is equal to zero for arbitrary |0¢)).

¢[i] )i 77Z)[i] i
Ty =

The ||[p™I/]| operator (for practical applications it is more convenient to consider operator

i) - o8

ool (vl

51/)> ~0 (53)

p™I instead of p™) with an impact from the future is:
lp™ | = [lp"™ L] + [o) PT™dI (3o (54)
me _ (Plast)m (55)

The term [t0g) P/™dI (19| for m = 1 is proportional to execution capital flow of not yet
executed trades at unknown future price P/! with known future execution rate contribution
dI from (45)). “The last price as P/ estimator ” is the simplest estimation, meaning the
best estimation of future price is current value. In equilibrium the ||p|| and ||I/]| to have the
same eigenfunctions )¢%>, at least for the states with a high )\[ﬁ, so the most promissing

idea is to consider |[p™I7|| operator on eigenstates of ||/]| and || £17].

D. Equilibrium Price in Naive Dynamic Impact Approximation

In pure dynamic impact approximation formal answer for future equilibrium price can
be obtained. This answer is not a very practical, so we would call it Naive Dynamic Impact
Approximation, but it is worth considering to compare it with the answer from our previous
work|[T].

Future equilibrium price P/ enter impact from the future operator from which F, is

calculated as:

_ (o | pI” [ 4o)

B = s w0 (56)
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FIG. 3. The AAPL stock price on September, 20, 2012. PUH (61)) (pink), P¥ (60) (green), and
T (shifted to 694 level to fit the chart). Calculated in Shifted Legendre basis with n = 7 and
T=128sec.

Now, assume ||pI/|| and ||I/|| are diagonal in the same basis, the solution of (52). Expanding
|1bo) = Z;:ol <¢o ’ ¢%> ‘¢EZ}> and assuming all off diagonal (i # j) matrix ||pI/|| elements
are zero: <1/J£lj]c ’p[’z/)y» = 0, same as we have for ||I7/] in . Then the F, can be

estimated only from diagonal elements of ||pI7|:

n— (4] (]
P S ALALO RN o)
=0 If

Then and with give the solution for P/:

n— (7] AL
il -5 . T ) oty o)
T=1—§<w01w¥}>4% (59)
=0 Ir
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CAR [2 ) (60)

1 n—1
Pl = le( (to | pI | o) +Z<¢H
i=0

Conceptually (but not practically) the directional answer is a giant step forward from
our previous work[I], where the best directional estimator was the difference between last
price and the price PUH] corresponding to the state of maximal I on past sample, the

@ZJBIH] > state 1} :

calculated on

plH — <¢ym }p IMIH» (61)

I\ [IIH}

This Ref. [I] answer is asset price averaged on past sample with always positive weight
2

< BIH}(SC)) Idu(x); no explicit information about the future is used in this averaging. The

answer is very different: it directly incorporates information about not yet executed

¢BZ}> obtained from 1} assumption about IJ. The T

trades from the future using d/ and

from formally define the degree of degeneracy, how much directional information can
be obtained from the sample, it is zero when [1)g) is eigenvector, condition (48)). Future
volatility prediction is easy, for example and projections can be used to estimate
whether current I is “low” or “high”, then use . Future directional prediction is much
more complicated, the (60)) is the simplest (naive) directional answer that can be obtained.
In Fig. |3 the PUH] , P/ , and T are presented. The degeneracy YT typically
has a value 1/2, but going to 0 at times of high Iy, what correspond to (48] condition. In
[1] the difference between last price and PUH! was used as a directional estimator. If P/ is
used instead, the result, as one see from Fig. [3|is very similar (sign does not change), but,
as expected, P/ is not close to last price at high I;. The is asset price averaged on past
sample, but, in contrast with , with the weight, which is not always positive. This lead
to a divergence in P/ (especially at low T and/or small dI). This divergence typically does
not change the P!* — P/ sign. Overall the seems to be a marginal improvement over
our old answer , this is why we call naive answer. For computer implementation
see the PnLdIDSk.Pf_from_pt_true_pi for P/ and PnLdIDSk.deg_from_pt_true_pi for

Y. Computer code structure is described in appendix [G 3
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VIII. SELECTION OF TIME-SCALE, THEN DETERMINE PRICE
DISTRIBUTION ASYMMETRY FROM QUADRATURE. TREND-FOLLOWING
VS. REVERSE TO THE MEAN

Equilibrium price estimation, let it be (60 of previous section or (61]) of our previous
work[1], and using the difference between P'%s! and calculated price as directional indicator,
typically does not give a satisfactory results, as price is secondary concept to market dy-
namics. The characteristics, describing the P&L distribution should be considered instead.

Let us start with the simplest problem of price distribution. As we discussed in Section
[11| a measure is defined by a wavefunction ¢ (z), the measure is ¢*(z)dpu, then price moments

Tm, m =0,1,2,3 are:

Tm = (@[ p™ T [ 1)) (62)

(similar expression without I can be used (¢ |p™ |4), but choice is better in appli-
cations). The expression selects the time scale based on v (z) choice. This way (via
¥ (z)) the (45) information about future I can be incorporated. Different 1(x) choices are
considered below. For now assume, that some v (x) is chosen and the goal is to estimate
price distribution on the measure generated by this ¢)(z) . The standard approach is to
consider price average, standard deviation and skewness. In the Appendix C of Ref. [1]
modified skewness estimator was introduced. The 7, moments describe how the price is
distributed at times of the support of the measure. The skewness of the distribution is typ-
ically used for estimation of future price direction. However, a much better, than a regular
skewness, answer can be obtained. The idea is to build two-point Gauss quadrature out
of my,, m = 0,1,2,3 moments then consider quadrature weights asymmetry (single—point
Gauss quadrature require two moments 7y and 7 to calculate and give price average as
the node: p; = m/m, the weight wy = m). It is very important, that besides weights,
two—point quadrature nodes can be used to determine threshold levels. The two nodes )\][DS ]

are generalized eigenvalue problem solution:

[s] [s]

T To o To T1 (o7
Al (63)
Tg T3 Oé[ls] P T T Oé[lsl

Py = N (64)



1
Wiiz) = 5 (65)
(a([){l,z}] "‘/\L{LQHQE{LQ}])
F:wl—w2:2ﬁ—p1—p2 (66)

wy + Wa D1 — D2
The quadrature nodes py; 2y are the eigenvalues (we assume p; < po), and the quadrature
weights wy; 9y are expresses via the eigenfunction , for numerical calculation see the class
com/polytechnik/utils/Skewness. java. Note that defined in skewness ' is similar
in concept to the “signed volume” (the difference between market—sell matched limit—buy and
market-buy matched limit-sell orders). As we emphasized earlier|3], regular signed volume
concept is not a practical one. Important, that definition allows us to obtain volume
difference from trades history only, no matching type knowledge is required. See alternative
formulas for in the Appendix C of Ref. [I] to obtain and by minimizing over

the py12) nodes the expression:

L*volatility = (¢ | (p—p1)*(p — p2)*1 | ¥) — min (67)

The @ is the definition of L* volatility, minimization of which give the pg 2y nodes .

Compare it to well known “minimizing volatility as standard deviation over the p”
L?volatility = <¢ ‘ (p—p)*I ‘ w> — min (68)

that gives the (73) expression for the average price p (single node Gauss quadrature) and
to kurtosis calculation as (| (p —p)*I| ). For two variables p and r a L*covariation,
correlating eigenfunction (they are proportional to Lagrange interpolating polynomials)
for p and r quadratures can be introduced, see Appendix [B] below for calculations.

Two point Gauss quadrature give exact integration answer for integration of a polynomial
of degree 3 or less (n point quadrature is exact for a polynomial of degree 2n — 1 or less).
Familiar average, standard deviation and skewness can be expressed by averaging at p; with

the weight w; and at p, with the weight ws:

T = W1 + Wo (69)
T = P1wi + paws (70)
Ty = piw + Py (71)
T3 = piwy + phwy (72)
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_ (5! w1 Wo
S - + 73
P o plwl + wo p2w1 + wo ( )
—\2 —\2 1 _\o W2
— = — ) — + — ) — 74
(p—p)" =(p1 —D) —— (p2 — D) R (74)
(p—p)" = —D) R (p2 — D) ot (75)

The distribution itself can now be considered as two-mode distribution: trading at p; with
the weight w, and trading at p, with the weight wsy. This gives huge advantage: an opportu-
nity to implement “follow the trend” type of strategy. For a single—point Gauss quadrature
the only node is price average p and only strategy available is “reverse-to-the-average”
type of strategy (average price as an attractor). For two—point Gauss quadrature one can
implement a “follow the trend” type of strategy (average price as a repeller, p( 2y as the
attractors), in a most simplistic way it is: “Open Short when p; < P! < p; Open Long
when p < P! < p,: combine with weights asymmetry”. The two new price levels: p; and
po allow to have a completely new look to trend—following trading: if 7, are moving—average
moments, then the p; and ps are much better thresholds than often used p+ o, because they
include the skewness of price distribution, the thresholds are now different for up and down
moves, according to the distribution skewness. This approach is much more generic, than

this simple demonstration. The key components of it are:

e Find the v of interest. Several choices of 1) are considered below. As we emphasized
above the most interesting v is the one maximizing the ||I/|| operator according to
the dynamic equation. However, other ¢ choices can be also considered, at least for

the purpose of the demonstration of the technique.

e Given ¢ obtain the measure ¥?(x)du to calculate price moments 7, from (62) Then
Gauss quadrature nodes py; 2y and weights wy; 2y to be obtained. This quadrature
determines the distribution of price in the 1 state. One can try to obtain some
directional information on price from this distribution (e.g. skewness estimation (66))).
Note, that when using operators, with an impact from the future term, future
price P/ is required to calculate the moments, “the last price as P/ estimator ” is
a very crude approximation. While future price P/ is unknown, all the calculations
above can be reperated using P/ as a parameter, see Appendix @ below where the

dependendce of T'(P7) on P/ is obtained (Dg).
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e In addition, some other value r (e.g. market index, etc.) can be considered and

cross—correlation of Appendix [B| below can be performed.

IX. DEMONSTRATION OF PRICE-DISTRIBUTION ESTIMATION FROM
TWO-POINT GAUSS QUADRATURE BUILT FOR A MEASURE OF INTEREST

Let us demonstrate the technique of building two—point Gauss quadrature out of m,

moments calculated for a number of 1 choices.

A. Measure: Moving Average and Moving Average —Like

The most simple example is moving average-type of measure (corresponds to (z) = 1,

also assume here, that there is no impact from the future: dI = 0). Calculate the moments:

T = (") (76)

Thenp, = m/mo = p o, T2, 1s regular exponential moving average. Gauss quadra-

ture nodes pyy 2y and weights wyy 9y are calculated according to (63), and T' from (66). These

values are presented in Fig. Even in this non—practical example (because of fixed time—
scale 7) we clearly see an asymmetry between D, and pg 2. Median estimator (p; 4 p2)/2 is
equal to average p, only in the case of zero skewness. We also see good skewness correlation
with price trend, but, as for any model with a fixed time-scale, there is fixed time delay
between price trend change and skewness change. However, the asymmetry between p and
p{1,2) is a remarkable feature that may be incorporated to a trading model, because three
levels now allow to implement a “follow—the—trend” type of strategy.

There is a characteristics, that is very similar to exponential moving average, but de-
scribed by a density—matrix state, it cannot be reduced to a state of some |¢). In its

simplistic form the 7, moments are matrix spur:

n—1

i=0
These are different from in Section below in absence of the impact from the future
term, dI = 0. (Note, that is invariant with respect to basis transform, also see[l]

n—1
Appendix E of the expression in a non-orthogonal basis: 7, = > (G, (Qx [ p™]Q;)).
k=0

P |uf) (77)
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FIG. 4. The AAPL stock price on September, 20, 2012. Top: Demonstration of Gauss quadrature

calculation with moving average moments, p = 71 /my — exponential moving average with

T7=128sec, p1, p2 — quadrature nodes calculated according to , and modified skewness r

(shifted to 694 level to fit the chart). Bottom: same thing with mixed state moments.
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The result is presented in Fig. [ bottom. It is very similar to moving average result, as
expected. These two kind of “moving average” with “pure state” and “mixed
state” moments, demonstrate wavefunction and density—matrix approaches. In this section

we specifically chose the situation, when both approaches give very similar result.

B. Measure: The Period of Maximal Future [

Consider the periods of maximal future I. The “future” time scale is determined by the

future state ‘w[IH]>, the eigenfunction of |D operator, the solution, corresponding to

If
H]

maximal eigenvalue )\[ff . The |[p™I/]|| operators and 7,, moments for m = 0, 1,2, 3 are:

IH] | m IH
7Tm:<5f}‘p Jf‘¢§f}> (78)
To practically calculate the m,, — the value of dI is known and last price P'*** can be
used as P'™ estimator . The result is presented in Fig. |5/ top.

Then compare the results with the ‘wym> choice for 1 (x), not having an impact from

the future contribution, when the moments
T = (0 [0 |0 (79

are calculated in the ’¢BIH]> state, the ‘} solution (without an impact from the future
term P’ estimator is not required). The result is presented in Fig. |5/ bottom. One can see
the importance of the impact from the future term, however in this simplistic form price

skewness has some issues as market directional indicator.

C. Measure: The Period of Maximal Future I with equilibrium P/ estimator

While moments from previous section are very promising they have one conceptional
weakness: using P! as P/ estimator . Consider ||p™I7|| operator with an impact
from the future. The idea is to modify estimator to obtain some “equilibrium” value of
pim.

As we discussed in Section the ||I7]| and the ||p™I7| operators to have the same

eigenfunctions, thus first order variation should be equal to zero for arbitrary |07)), same as

for [|77]] in (53):
< (4]
If

pm1 ‘ 5¢> - < o

P ol ) (o)

5¢> —0 (80)
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FIG. 5. The AAPL stock price on September, 20, 2012. Demonstration of Gauss quadrature
calculation with the state (moments 7, from ),corresponding to maximal ||I7]| (top) and (mo-
ments 7, from (79)), maximal ||I|| (bottom). The prices and skewness are presented as in Fig. [

above.
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FIG. 6. The AAPL stock price on September, 20, 2012. Demonstration of Gauss quadrature
calculation with the state (moments m,, from ), corresponding to maximal ||I/|| The prices and

skewness are presented as in Fig. [4] above.

The (53) holds for arbitrary |§), but for variations only a single parameter P/™ is
available, thus zero—sensitivity condition can be satisfied only for a single |01)), besides trivial

|0) = ‘w%> There are a number of options for |41)) variation to consider:

ED(@DBZ})> : Zero price impact (zero sensitivity to infinitesimal time-shift).
e |ty) : Zero sensitivity to ‘¢Ef;> — [1)p) transition.

wa]> : Zero sensitivity to ‘¢%> — ‘T?EIH]> transition.

among many others.

The PU/™dJ estimation, corresponding to 1@) equilibrium of operator on

iy
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state with |01)) variation is:

6 | g | i\ _ (|| 59)

<w,'f<w ) (o | 6v) < 4 ¢0>2

For the most interesting case |§1)) = |1)y) obtain:

< [Z]

g |l (v} |1 |wo)
i) =
~ {v}}

P
)
Then for the state with the maximal )\[IZ} (t=1H):

G -ty

= {u o)

Obtained 7, have a term <wyfm ‘pml ‘ ¢0> added to have zero variation . In Fig. @

pllfmar =

corresponding chart is presented. First, what is clearly seen is that Gauss quadrature does
not always exist. This is because may not always give a positive standard deviation.
However, the formulae for the first moment is actually similar to naive dynamic impact
approximation of Section and demonstrate an approach of searching a |§1)) to variate
(80)). Despite all our effort we did not achieve much success with this search of |§y), and
now think that variation can be a good option only for the first moment, what can give

only a equilibrium price (first moment).

D. Measure: The Period After Maximal Future 1

The m,, choices and are considering price distribution during the spikes for the
future and for the past I respectively. It is very interesting to consider the time period after

a spike in I. Consider V,, and T,,:

tnow tnow

Vi (t) = /pmfdt’: /pde’ (84a)
t t
tnow

Tn(t) = / pmdt’ (84b)
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FIG. 7. The AAPL stock price on September, 20, 2012. Demonstration of Gauss quadrature
calculation with the state (moments 7, from with the impact from the future), corresponding
to the state of the maximal ||I/]| (top) and (moments 7, from , without an impact from the

future), corresponding to the state of the maximal ||| (bottom). The prices and skewness are
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Here Vj(t) is traded volume, Vi (t) is traded capital, V;(t)/Vy(¢) is volume—weighted average
price, T1(t)/Ty(t) is time—weighted average price. These values are calculated for the interval

between t and t,,,,. Then for a given 1 (z)

T = (U Vin [ ¥) (85)

Note, that for the measures allowing an integration by parts (i.e. the ones with infinitesimal
time—shift operators such as @ or ) the can be interpreted as a transition from an
averaging with the 1?(z)dp weight to an averaging with the wy,(¢)dt weight:

t d ,
wi(t) = [ )G (36)
T = /pm]ww(t/)dt/ (87)

Wy (thow) = 1 follows from the t(z) normalizing. For and measures the (85) can

be calculated from the (Qgp™I) matrix elements using an integration by parts. For these

measures Egs. and are identical.
Consider a ¥(z), defining the spikes in I, the

¢B§H}> or lwa]> from the previous section.
Then (85) moments give very much a “moving average with automated time-scale selection”
measure. These averages are calculated for the period of time: between the spike in [ and
trow-

The results are presented in Fig. [7] They are worse than that of the previous sections,
what probably manifest the importance of the execution flow I dynamics over the volume V'
dynamics. This correspond to our earlier work [2], where an importance of dynamic impact
was emphasized experimentally. See also the discussion below in Section X1 where the V-

and - dynamics are discussed from a different perspective.

E. Measure: Density matrix mixed state of pure ‘wgl» states.

As we discussed in Section [VITC| above, in case of the impact from the future presence,

proper eigenstate selection is not a trivial question. In the Sections [[X B| and [[X C| the state,

corresponding to the maximal I, was considered. There are several alternatives. Consider

matrix—averages (introduced in the Appendix E of Ref. [I], see Ref. [I9] for quantum
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FIG. 8. The AAPL stock price on September, 20, 2012. Demonstration of Gauss quadrature cal-

culation with the mixes states: moments m,, from (top) and moments 7, from (bottom).

The prices and skewness are presented as in Fig. [4] above.
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mechanics density matrix mixed state relation):

n—1

=3 (0]

=0

1 [l (88)

(in this section, when estimating the ||p™I/]|| matrix elements, we assume (55) P/™ estima-
tion for simplicity). The answer is very much a moving-average type of answer , it
is basis-invariant (a unitary transform of ‘w%> basis does not change the result) and can be
considered as a density—matrix mixed state[I9] with equal contribution of each pure state.

2
¢0> contribution of a pure state

Alternatively, a density—matrix mixed state with <1/)BZ}

’¢BZ}> can be considered:

-1

m = 3 (1

1=

do) (59)

1wl ) ()

The result is not basis-invariant and implicitly assume dynamic impact approximation

of ||p|| and ||I7]| operators being simultaneous diagonal in the )w¥}> basis. The is
similar to (78)), because ||I/]| state with the maximal [t),) projection is almost always the

’1/J£.IfH]> state. The results are presented in Fig. . They are not much different from the

Sections X Al and [X B of above. This section demonstrate that density matrix approach is

a viable option for the market dynamics, but, at this stage of development, does not give

much compared to wavefunction pure states.

F. Measure: Combine maximal Future I and minimal price volatility

The approach of sectionwhere 1 corresponding to the maximum of <¢ ‘ I’ } ¢> /(| ) —
max was found on the first stage, then, for the ¢ found the py; 9y corresponding to the min-
imum of (¢ ’ (p— p1)*(p — p2)2I7 | ) — min are obtained @ Consider a “combined”
problem (despite it contradicts to the ideology we develop):

mfx,‘,?,ipﬂ (W] (p— p?);(ﬁb)— p2)21 | )

The idea is to find a saddle point of , the solution that has the maximum over ¢ and the

(90)

minimum over py; 23. The results are presented in Fig. @ (top: for ||I7]| operator with the
(55]) price estimation, bottom: for ||I|| operator). They are not very promising. This was

one of our many tries to built a functional, like an action S in other dynamic theories, to



699 T T T
P
698.5 PIHf4 I—
698 1
pp ]

697.5

697

696.5

696

695.5

695

694.5

694

693.5

693

699 : : :
P
698.5 pHe
698 P1
P

697.5

697

696.5

696

695.5

695

694.5

694

693.5

693

36

(Wi 'Wz)/ (wy ‘fW2) ’

975 98 985 99 995 10 10.05 10.1

10.15 10.2 10.25 10.3

(wy 'YVz)/ (Wi fW2) -

9.7 975 98 985 99 995 10 10.05 10.1 10.15 102 10.25 10.3

FIG. 9. The AAPL stock price on September, 20, 2012. Demonstration of Gauss quadra-

ture calculation with the state corresponding to mjux min <1/1 ‘ (p—p1)%(p — p2)2I7 ’ 1/1> (top) and
P1,p2

Y P1,p2
above.

max min <@D | (p—p1)%(p — p2)?I | 1JJ> (bottom). The prices and skewness are presented as in Fig. H
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search for a state of maximum / and minimum price volatility. As with the other approaches
of this type which we have tried, this specific one was also not a very successful. This make
us to think that price volatility minimization approach is probably not a very perspective

direction.

X. MARKET DIRECTIONAL INFORMATION AND P VS. ] PROBABILITY
CORRELATION

In Section [X] we provided a few demonstrations of price skewness estimation technique,
consisting in constructing a measure, building the 7, = (p"I) price moments on this mea-
sure (either “pure state” or “mixed state” of Section , depending on the measure
used), then a two—node Gauss quadrature is built out of them and price distribution skew-
ness is estimated as weight asymmetry . This approach has a built—in asymmetry of
P and I, because the (I"™) moments are difficult to calculate at best or they are non—exist
at worst. It is very attractive to introduce some basis-invariant formulation of skewness
concept, obtain P and I skewness, and then actually try to trade based on the skewnesses
obtained. In the Appendix a concept of probability correlation p(p, I) is introduced, but to
trade we only need generalized skewness. Assume we have an observable s, for m =0,1,2 a
basis @y, () (a polynomial of m-th order), and inner product (Q;(z)|s|Qxk(z)) (j,k =0,1)
are defined in a way it can be calculated directly from sample. Important, that now x and
s are not the same variables, in Section [VIII] for skewness calculation they were both equal

to price. Average s can be obtained in a regular way:

- <5Q0>
5= (_Qo> (91)
T 25 — Smin — Smax (92)

Smin — Smax

To build f, a similar to skewness—like estimator (like a difference between median and
average), we need Sy, and sp.x estimators of s. These can be obtained solving optimization

problem:
< [OéoQo(l’) + 041Q1(95)} 23>
(fanute) + ru@)])

— {min; max} (93)
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After parenthesis expansion the problem is reduced to n = 2 generalized eigenvalue problem
(C3)), the eigenvalues of which are quadratic equation roots. The min/max estimators of s

are equal to minimal /maximal eigenvalues A and AL respectively, what allows us to obtain

skewness—lik estimator I in {} If s = = p, then we receive exactly the I" from 1@}
which requires total 4 moments: (1), (p), (p%), (p®) to calculate. To calculate T' it requires
total 6 moments: (1), (z), (z%), (s), (sz), (sz?); (for s = & = p, there are only 4 independent
among them). See the file com/polytechnik/utils/Skewness.java:getGSkewness for
implementation example of numerical calculation of generalized skewness I. The most
important property of [ is that it can be readily applied to non—-Gaussian variables, e.g. I. In
our previous study|3] we emphasized the inapplicability of a regular statistical characteristics
(e.g. standard deviation) to market dynamics, and, instead, spectral operators should be
applied to sampled non-Gaussian data[I7, 24]. The generalized eigenvalue problem,

finding min/max s estimates A and ALY from operator spectrum is the simplest application.

A. I Skewness. A demonstration of skewness estimation for non—Gaussian

distribution.

Let us give a simple example of skewness estimation application. Consider s = [ =
dV/dt execution flow, polynomial basis Qr(x), and a measure (such as , , or ),
that can be calculated directly from sample: , or . The problem: to estimate I
skewness. “Classical” approach, that requires (1), (I), (I?), and (I*) moments to calculate
either traditional <(I — 7)3> estimator, or I' from is not applicable, because second
(I*) and third (I*®) moments are infinite (note that first moment (I) has a meaning of the
traded volume and zeroth moment (1) is a constant).

However the I' skewness from {' can be calculated directly. All six moments: (Qo),
(@Q1), (Q2), (IQo), (IQ1), (IQ2) are finite, 2 x 2 matrices (Q; | I | Qx) and (Q; | Qk) obtained
from these moments, eigenvalues problem solved by solving the quadratic equation
0=det| (Q;|I]|Qr) — A {(Q;|Qx)||; minI = )\[IO], max [ = )\[11] obtained, and T from 1)

calculated.

2 The is ¢¥(x) = const state |1)c) weight asymmetry expansion over the states corresponding to

min/max s: ' = <wc‘w£01>2 - <¢C "(/JE]>2. Instead of 5 = (o |s|vc) = (sQo)/(Qo) a different

s values can be used, e.g. sp = (¢p]|s]| o), corresponding to the state “time is now” |¢g) from :

o 01\ ? \? - .
o = <1p0 ’ Ps > — <¢0 ‘ s > = (280 — Smin — smax)/(smin — Smax), this “skewness”, (95| for n = 2,

describe sp asymmetry (compare it with f, that describe 5 asymmetry).



699

698.5

698

697.5
697
696.5
696
695.5
695

694.5 [

694
693.5
693

692.5

699
698.5

698 -

697.5
697
696.5
696
695.5
695

694.5

694 I

693.5

693
692.5

39

FIG. 10. Generalized skewness of I calculated with T' for 7 = 128sec and n = 2 (blue); same

but with f‘ﬁ(green), (in the T is replaced with (g | I|tg) ). Price P, average price p and P

for n = 2 are also presented. Top: for ¢t* basis and measure. Bottom: for p* basis and ((17)

measure.
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In Fig. [10| we present the calculation of I skewness for two measures: and (7). Blue
line: I from , the asymmetry of I; green line: the asymmetry of I, o= wyL] — wa] =
(21 — Ipin — Imax)/(.[min — Inax), calculated using and with n = 2. Positive [
skewness correspond to liquidity deficit event (low I, slow market), a signal to open a
position (but to determine the sing (long/short) of a position to open is a much more
problematic task). Negative I skewness corresponds to the liquidity excess event (high I,
fast market), a signal to close already opened position. From these charts one can clearly
see that both I’ and I'¥ can be a good indicator of slow/fast markets, but the IO skewness
is a better indicator as it shows how the I, (I now) is related to past min/max I. Note,
that calculated skewness of I does not carry market directional price information. Instead,
I-skewness tells us about when (at negative skewness of I) the position have to be closed
to avoid unexpected market move against position held, otherwise just a single such a move
can easily kill all the P&L collected. Directional information (whether to open long or short
position at positive /-skewness), cannot be decided from [—skewness, it to be decided from

price or P&L dynamics.

B. Price Skewness.

In the previous section we have considered I skewness, than generate “position open/position
close” signals. However the direction (open long or open short) cannot be determined from
that. Directional information to be determined from P&L dynamics. Consider the simplest
case.

According to the arguments presented in Ref. [1] price or price changes cannot be used for
directional predictions, and P&L dynamics should be considered instead[3]. P&L dynamics
includes not only price dynamics, but also trader actions. In Ref. [I] (Section “P&L operator
and trading strategy”) we used probability states trying to analyze P&L dynamics, but here
let us start with a very simple problem:

Assume exchange trading take place, and some speculator knows the future for specific
time interval (investment horizon) from Oracle Precognition. What trading strategy to be
implemented to maximize trading P&L and minimize introduced impact to the markets?
The answer is trivial: for the investment horizon calculate price median, then trade at exactly

the same time moments when “natural trading” to occur buying an asset when the price is
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below the median and selling it when the price is above the median, this is equivalent to
frontrun the buyers at price below median and to frontrun the sellers at price above median.
Why median price as a threshold? Only when price threshold is equal to the median, total
position held at the end of investment horizon will be zero. If one use average price as a
threshold then, depending on distribution skewness, speculator ends up with long or short
position accumulated (to maximize the P&L speculator have to trade all the time) at the
end of investment horizon (what means taking market risk because the future is assumed
not to be known outside of investment horizon). In the simplest case price skewness, that is
proportional to the difference between median price (estimated as midpoint % [)\[g + )\Eq)

and average price p can serve as directional price indicator. Consider a simple demonstration:

e Select a measure to define inner product (-), that can be calculated directly from

sample.
e Calculate price skewness 'p out of moments: (IQo), (IQ1),{I1Q2),{(pIQo), (pIQ1), (PIQ2).

In Fig. we present skewness calculation in two bases: tF and p” (top and bottom
respectively). For n = 2, we have I' (gray line), I' (blue line), and o (green line) calculated.
For p* basis =" (and also equal to I' in Fig. top), so gray line is not presented in this

ES}, and )\E] respectively.

case. The [ define how close average p is to min/max estimated as A
The IV do the same for pin |1bg) state. It is of interest to look in Fig. |11]top, where one can
see the difference between I' and T (gray and blue lines), that sometimes occur near price

tipping points.

C. Skewness of future /.

In Section [X|T concept 1) was introduced and, for n = 2, it can be rigorously defined
(along with probability correlation concept) in Appendix . However a modified concept

is convenient in applications. Introduce o (the s can be either price p or execution flow

I'=dv/dt) :

so = (Yo s]to) (94)

0 280 — Smin — Smax

FO

Smin — Smax
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FIG. 12. The AAPL stock price on September, 20, 2012. PUH] (pink), Pf (98) (green),
skewness ﬁpast (black, for ||I]]) and skewness fafuture (blue, for ||I7]|) are calculated according to
([95); (data shifted to 694 level to fit the chart). Calculated in Shifted Legendre basis with n = 7

and 7=128sec.

I'0 measure how s (s “now”) compares with sy, and sy, (min/max eigenvalues of |s|i)) =
A |¢) problem), calculated on past observations. For n = 2 we have o — <;DO | glmin S]>2 —
(o | pplmax s]>2, (as we already mentioned this, regarding , projections difference),
but for n > 2 this is not the case. For n > 2 the T'0 is plain indicator of how sy fares with
Smin and Spyax. The (95)) answers the major questions of our dynamic theory: “whether the
Iy we currently observe is low or high”. The IV is bounded to [—1...1] interval. IO value
close to 1 means we have liquidity deficit event (I is low), IO value close to —1 means we
have liquidity excess event (I is high). Note, that [ is a non-Gaussian variable with infinite

second moment (I?), so no approach utilizing a standard deviation of I can be applied.

Because we do know future ||I7| operator , the ' can be calculated for it. Now

consider ||pI/|| operator with unknown P/, and assume it has the same skewness on
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the states of || 17| operator, then:

200l pI [v0) = (i o1 [ 0f) — (0l |1 [ 0}")
R AT O P
oo (ot o) (o ) < (o3 ) (s )] o

Prart =1 [(ui [ ot [ ) - (4" [or | 01)")

= [2(wol ot [wo) — (v [ ol |07 = (0l |1 | 0lf™)] (98)

(96)

The is P/ that, for ||pI”’|| operator (54), give the same skewness as the one for ||I/]].
This answer is similar to naive dynamic impact approximation of Section (compare
with , and with ) The results are presented in Fig. . As for naive
dynamic impact approximation, the P/ from behave similar to P! from , and
have numerical instability for low Y. Future skewness Iy (for ||I7]]) is negative (the
impact from the future dI make it such). Past skewness ﬁpast (for [|I]|) is positive
during liquidity deficit and negative during liquidity excess. Trader should open a position
during positive fapast and close it during negative fapast, this is the only way to avoid

catastrophic P&L hit from an unexpected market move.

XI. ON A MUSE OF CASH FLOW AND LIQUIDITY DEFICIT EXISTENCE

We finally reached the point to decide what information can be obtained from historical
(time, execution price, shares traded) market observations deploying introduced in[I] the dy-
namic equation: “Future price tends to the value that maximizes the number of shares traded
per unit time”. While volatility trading is much easier to implement algorithmically[l], it
is much more difficult to implement practically, on exchange, because it requires building
some synthetic assets (such as Straddle [25]) using options (or other derivatives). Com-
pared to regular HF'T equity trading accounts, HF'T derivative trading accounts are much
more costly and derivative markets often have insufficient available liquidity for a practical
trading strategy implementation. In addition to that trading strategies including deriva-
tives are way more difficult to backtest for the reasons of data availability and insufficient
liquidity. In this section we are going to discuss whether a much more ambitions goal, to

obtain directional price information (not only volatility!), can be practically achieved with
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the dynamic equation. Our study show, that there are two pieces of information, required

to obtain directional information:

First. Price directional information of the past. A trivial information of this type is “last
price minus moving average” currently is in common use. We obtained few more sources
of this information, having the benefit of automatic time scale selection. These are: PUH]
(price corresponding to max I on past sample ), skewness of price on max [ state of
|p™ 17| operator with an impact from the future (Section [[X B), the skewness of price (or

P&L) of Section [X] and few other.

Second. Execution flow (I = dV//dt) directional information. Since Adam Smith[26] and
Karl Marx the volume of the trade is considered to be the key element of goods/money
exchange process between buyers and sellers. The concept of Velocity of money|27], velocity
of circulation, (I = dV/dt is the velocity of shares, pl is the velocity of money) while
being widely recognized as an important macroeconomic concept, is not in use among both
academics and exchange trading practitioners (at best they use the volume, assuming the
consumption of shares is limited by the number of shares bought: “The tailor does not
attempt to make his own shoes, but buys them of the shoemaker, page 350”|28|). Modern
exchange trading currently exists of market participants, that are simultaneously buyers and
sellers (modern “shoemaker” not only sells the shoes he made, but also buys shoes to sell
them later), and, because of leveraged trading, weakly sensitive to the volume V' (regular
impact[5]) of the position. As we have shown experimentally, they are much more sensitive
to the rate of trading I = dV/dt (dynamic impact|2]). The situation of market separation
of V—and I- trading can be currently observed in Electricity Market[29] that is separated
on Energy and Power markets on legislative level. Our exchange experiments show that
modern exchange trading is actually a Power-like market. The reason why the velocity
of money was not actively used for exchange trading is, from our opinion, the absences of
mathematical technique to estimate I (execution flows are non—Gaussian). Because Radon—
Nikodym derivatives can be effectively applied to non—Gaussian processes it is the proper
tool for velocity of money analysis. Two indicators of I are used in this paper. These are the
projections and difference that show whether current I is “low” or “high”, and the
skewness of I, the fvl from 1} (or more useful in practice 0 from 1} ). The skewness of [
can be estimated only from Radon—Nikodym approach, because regular skewness estimators

are not applicable for the reason of infinite (/?) and (I3).
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Practical trading to be this: Determine price direction (e.g. from PUHl (61))), or the
skewness of P, Section , with some measure). Then calculate /-skewness Io. Open a
position (according to price direction found) when IO is close to 1, close already opened
position (but do not take opposite position!) when IO is close to —1 to avoid catastrophic
P&L drain in case of unexpected market move against position held. Such a strategy do
provide provide a P&L, and, important, is resilient to unexpected market hits. In the next
paper I will try to present a demonstration of this strategy computer implementated. Do
not expect a big miracle, (even a “small miracle” of paper trading P&L), but avoiding big

P& L hits can also be considered as a miracle of some kind.
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Appendix A: Time—Distance Between ) States

For two v states from , already separated in I—space by the value of eigenvalue A;, the
separation in time space is often required. For this a “time-distance function”, d;; between
the w}ﬂ () and 1/)?] (x) states from is required. The dj; is an antisymmetric matrix,

showing which state Qﬁ ](x) or 1/1?] (x) is later (in time) and which one is earlier.
djk - _dkj (Al)

There are several d;j, choices, that can be applied to the task. All of them can be obtained

from two—point propagator-like expressions with some antisymmetric DI (z,y)

DI(z,y) = —DI(y,x (A2)
b= [ / DIw,) (¢9())” (W¥(0))° du(e)d(y (3

These are the most common DI(x,y) choices:

e Probability difference between “j coming after k” and “j coming before k” events. Can

be obtained from (A3]) with DI(x,y) = sign(z — y). It can be calculated analytically


http://systematicalpha.com/
http://www.cantor.com/
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for the measures and . See java classes {KkQVMLegendreShifted,KkQVML
aguerre,KkQVMMonomials}: _getK2 and {WIntegratorLegendreShifted,WInteg
ratorLaguerre,WIntegratorMonomials}:getEDPsi from Appendix [G] for software

implementation of probability difference function and infinitesimal time shift operator.

e Total volume traded

Vm_< |V Bj]> (A4)

CAY

djp = Vil K (A5)

Corresponds to (A3]) with DI(x,y) = V(x) — V(y). The state with a greater volume

can be considered as coming after the state with lower volume.

e Difference in projection to 1g(x) from (39):
d = (0520 — (¥ (20 A6
ik i (o) 1 (@o) (A6)

Corresponds to (A3) with DI(x,y) = D, — D,, with D, and D, infinitesimal time
shift operators on = and y. The state with a greater projection to 1y(z) is considered
to be the one coming after the state with lower projection. The distance (A6) is
degenerated: it is equal to 0 for any two ¢ (z) for which 0 = ¢(xy). Also note, that

Bﬂ (x0) = < P] 2/10> o(zp), i.e. the wy] (x0) differ from the <w;ﬂ

e One can variate the 1} with infinitesimal time shift of W, applying @ or

operator to receive (after normalization) a time—distance like this:

¢0> on a constant.

SVU = (| Vay = v [ ) (0 )" — Y (A7)
| | 0|y, vl

dll = <¢EJ]($O)>2 < o /\[Ij} ‘ ! > _1 (A8)

dy = bl — gt (A9)

The (AS8)) is a “second order distance”. In contrast with the volume (A4)), the (AS)
) ) 2
describe the difference in flows of volume since wy] till “now” per time (1#5]] (:z;o)) and

the rate /\[Ij].



48
Appendix B: L*5(p,r): Value Correlation of Variables.

For two variables p and r, with some positive measure (p"r?) = [ p™ (t)dp on them,

regular L?covariation and a new one L*covariation can be obtained by differentiation (B3|)

and :

{(p—P)*) — min (B1)
{(r —7)*) = min (B2)
L*covariation = }l%% (p—p)>(r—7)%) (B3)

2 (p=p)(r—7))
L ,T) = B4
= A e o
((p = p1)*(p — p2)?) — min (B5)
<(7’ — )% (r — r2)2> — min (B6)
L*covariation = 1—16%%%% <(p p1)2(p — p2)?(r —r)?(r — r2)2> (B7)

{(p=p1)(p—p2)(r —r1)(r — 7))
VA0 = p1)* (0 = p2)?) ((r = 1) (r — 72)?)
where pg 9y and rg 9y are quadrature nodes obtained from and (B6) minimization,
exactly as we did in Eq. above. The L*covariation (and correlation) covariate
p and r, but use higher order moments; for p = r it gives regular relations: L*volatility =

Licovariation, L*p(r,r) = 1 and L*p(r, const) = 0.

Lp(p,r) = (B8)

A much more interesting case is to consider the matrix L*covariation,, ,,, that covariate
j—th level of p with k—th level of r; (here j,k = 1,2 and s = {p,r}). Consider Lagrange
interpolating polynomials l,(f) built on quadrature nodes, (they are proportional to

eigenfunctions):
s S — 8{2,1}

1 A B9
i 2}( 9= S{1,2} — S{2,1} (B9)
l~([81),2} (8{172}) = 1 (BlO)
oy (5021) = 0 (B11)

w® (s OIR%
Wy gy = <l{1 2}> < <Z{1,2}> > (B12)

)8

(1) =wi” + w, dp (B13)

L*covariation,, ,, = <lj(»p)l,(f)> = /lj(p (P (r(t))dp (B14)
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The 2 x 2 covariation matrix can be interpreted as a joint distribution matrix of p
and r variables. Corresponding to quadrature nodes Lagrange interpolating polynomials l,(f)
are a useful tool to built such a matrix, because their inner product can be obtained for the
measures of interest. The covariance definitions have integrals over time, that can be
calculated directly from distribution moments, it can be obtained from observation sample
in a way similar to or . For p = r the matrix is diagonal: Lcovariations,,, =
<:gs> s )

L*covariation,, ,, matrix components have the dimension of the measure (1) from (B13)

and can be easily written for two—point Gauss quadratures built on p and r:

1 ((p—p2)(r—72))  —{(p—p2)(r — 1))
(P =p2)(r1 = 72) \ —((p—p)(r — 1)) ((p—p1)(r — 1))

4 .o o
L covariationy, , =

(B15)

quadrature weights wﬁ)Q}can be expressed through L*covariation,, ,, elements sum:
wg)g} = L‘lcovarz'azfz'onp{1’2},,n1 + L‘Lcova?"icutz'onp{172}m2 (B16a)
wg),z} = L%ovariatianmw“a} + L%ovariationmmﬂ (B16b)

From (B15]) immediately follow that the sum of all four elements of L*covariation,, ,, ma-
trix is equal to (1) . To obtain dimensionless “correlation”™like matrix the (B15]) can be
divided by (1) from (B13]), the difference between diagonal and off-diagonal elements of this

“correlation™like matrix can be called L*p(p,r) correlation:

2
(—=1)7=* Licovariation,, ,,
L p(p7 r) - 2 (B17)
> Ltcovariation,, ,,
k=1
_ DF — DT + pitp2 =\ (ritre _ Id
Lp(p,r) = L (%52 —7) (%5 = 7) (B18)

0.25(p1 — p2)(r1 — 72)

that is different from regular definition by the term (’% — ]‘9) (% — F) describing skew-
ness correlation. The (B18) means, that if two distributions have the skewness of the same
sign, their “true” correlation is actually higher, than the one, calculated from the lower order
moments as pr — pr. The formula for L*p(p,r) is obtained directly from joint distri-
bution matrix and has a meaning of values correlation: the L%ovariatz’onpj,rk element

of (B14) matrix is the probability that p = p; and r = r4. The conditions L*p(r,7) = 1 and
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L*p(r, const) = 0 also holds, same as for L*p(p, r) from (B8). We want to emphasize, that, in
applications, the most intriguing feature is not a new formula or for correlation,
but an ability to obtain (p,r) joint distribution matrix from sampled moments of two
distributions.

Quadrature nodes py; 2y and 79y are calculated from the moments and
respectively applying either formula above or the ones from Appendix C of Ref. [1]
(or the formulas from Appendix @ of this paper with dI = 0, what give P/-independent
answers). For (pr) term in one more moment (cross—moment) (7p); from (B19dc) is

required in addition to regular =, and p,, (m =0,1,2,3):

Tm = (p™) (B19a)
pm = (r'"™) (B19b)
(mp)1 = (pr) (B19c)

(to calculate matrix it requires total 8 moment, see the file com/polytechnik/util
s/ValueCorrelation. java for implementation example of numerical calculation of value
correlation). The definitions can be be generalized to matrix averages (see Appendix
E of Ref.[1]), that corresponds to mixed state in quantum mechanics, a generalization from

pure states of (¢ | p™r?I | 1)) form.

Appendix C: p(f,g): Probability Correlation of Variables.

Obtained from sampled moments joint distribution estimator (B15|) of previous appendix
is an important step in correlation estimation. However, it still has a number of limitations

to be applied to practical data.

1. It requires two quadratures (on p and r) to be built, this requires the moments (B19) to
be calculated from the data. Assume r is execution flow r = I = dv/dt of some security,
then, for example, (r?) is problematic to calculate: it is not possible to calculate it

directly from sample and approach does not always give a good result.
2. The cross—-moment (7p); from (B19¢) is often problematic to calculate.

3. Some of (B19) moments can diverge or even do not exist, their numerical estimation

often becomes a kind of numerical regularization exercise.
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If we generalize “correlation concept”, then the approach to joint distribution matrix estima-
tion can be extended to using the moments calculated in arbitrary basis, not only for the one
with basis functions argument as an observable, the case considered in Appendix [Bl Assume
we have two variables f and g (e.g. execution flow of two securities), some basis Q,,(x)
for m = 0,1,2 (z can be e.g. time or price; Q,,(x) is a polynomial of m—th order), inner
product (Q;(z)|s|Qx(z)) (where s = {f, g,const} and j, k = 0,1) is defined in some way,
such that the inner product can be calculated directly from sample. As we discussed in [17]
any observable variable sample can be converted to a matrix, then generalized eigenvalue
problems define the spectrum of the observable. For f and g this would be the equations
(similar to Eq. with n = 2):

1
Q11 Qn =A?ZXQAQQ%M (C1)

- HMH
o

(Q;191Qw) af —AMZ (Q;]Qx) af? (C2)

k=

[e=]

For n = 2 generalized eigenvalue problem |A|¢)) = A |BJy) is reduced to solving quadratic
on A equation: 0 = det | A — AB||, same as with Eq. (63):

(Qols1Qo) (@ols@u) | (g™ ) _ [ (Qo1Qo) (@ol@u) | [ o™

(@Q115]1Qo) (@Q1]s]Q1) ) \ a7l T L@Q1Q0) @i1Q) ]\ ot
[l state : Yl(z) = agQo(2) + a1 Qi (x) (C4)

(C3)

(s9%())
<¢2(x>>

= kzoa (@i 1Qu ™ s A = (!
7,
The square of eigenvectors scalar product define 2 x 2 matrix Pcorrelation

Li] > eigenvectors:

— {min; max}

7 : [0] (1]
S ‘ Vs >, and ordered eigenvalues A o) S A (f.0)"

i m], the ele-
>‘.[f]’>‘£’ 15

ments of which are the probabilities of how low/high f is correlated to low /high g:

. 2
Pcorrelation,,: ) ) = (Z Oéjf;m (Qj | Q) Oéi;[m]) (Ch)
j,k=0
1
So(=1)m PcorrelationA[i]’)\[gm]
p(f.g) =" (C6)
Z Pcorrelation,

i,m=0

[m]
f)\

The p( f, g) modified correlation is the difference between diagonal and off-diagonal elements

of Pcorrelation,) ,im) matrix. This is similar to (B17]) of previous section, but now the

ARG
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Pcorrelation, ) ,m matrix is built solely out from (Q; | s | Q&) moments, that can be defined
g

Al
in arbitrary basis. An important difference between and matrices is that the
(B14) elements are scalar product of eigenvectors, but elements are squared scalar
product of eigenvectors; the elements of both matrices have a meaning of probability, but
the probability is defined differently. The , as squared scalar product of eigenvectors, is

a correlation of probabilities. The Pcorrelation } is a probability of probabilityﬂ that

) £
f has a value )\Ef} and ¢ has a value AU, what is different from the Lcovariation,, ., Eq.

(B14)), that is a probability of p = p; and r = r;. Instead of (B16]) we now have:

1= Pcorrelation/\[{o,l}] \or + PcorrelationA[{o,m
FooN f

(C7a)

Ay

1 = Pcorrelation o1y + Pcorrelation,n o (C7hb)
g g

[0]
AP

the sum of the elements in any row or column of Pcorrelation | matrix is equal to 1.

AT G

If Qo(x) = const (typical situation), then, similar to definition, a skewness-like (like a
difference between median and average) characteristics [ of random variable s = {f,g} can

be introduced:

95 — A0 \[I
)\Lo] _ )\[51}

5= (sQo) / (Qu) (C9)

(0] f o1\ _ /1] ¥ [1]
v ‘:;} i?f ") (C10)

:< P ey = (b | el o

o)~ (o7
This skewness definition (C8]) has a meaning of () = const state |t)¢) expansion weights

el
I

(C8)

p(f.g9) =

LO] , corresponding to minimal s = ALO], and E] , correspond-
g

o\ ? 1\ 15 -

s > — <¢C ‘ Vs > . The ((C6)) probability correlation
p(f,g) can be also written in a similar “derivative-like” form (C10]): the difference between
f in the state ‘Q/)g)]> of minimal g, and f in the state ‘w![]”> of maximal ¢, divided by min-

asymmetry on the states:

ing to maximal s = )\[51]; I = <1/)C

imal and maximal f difference. For probability correlation classical condition p(f, f) = 1

3 In quantum mechanics a scalar product of two wavefunctions can be interpreted as “two wavefunctions
correlation”. Taking it squared obtain the probability of probability correlation. If the wavefunctions
are of the states f having specific value )\Ef] QD and ¢ having specific value )\[gm} li then squared
scalar product of corresponding eigenvectors can be similarly interpreted as a probability of probability

of f= )\?1 and g = )\gm]. This interpretation also corresponds to li normalizing.
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= <é ?) But another

holds, for f = g the 1) matrix is diagonal: Pcorrelation, yim
£

classical condition does not hold: p(f,const) # 0, if g = const then eigenvalues problem
(C2)) is degenerated and, without an extra condition on eigenvectors, the value of probability
correlation (C6|) can be arbitrary, depending on specific g— eigenvectors choice.

vh)

The distinction between “value” and “probability” correlations is an important topic of
modern research in both computer science and market dynamics. The problems of Distri-
bution Regression Problem[30] BI] (a number of observations of type “bag of instances to
a value” are used to build a mapping: probability distribution to value) and Distribution
to Distribution Regression Problem (a number of observations of type “bag of instances to
a bag of other instances” are used to build a mapping: probability distribution to prob-
ability distribution) are the most known generalization of regular Regression Problem (a
number of observations of type “value to a value” are used to build a mapping: value to
value) have been addressed from a number of points. Our contribution to it is based on an
application of Christoffel function|32], and Radon—Nikodym derivatives|33]. The difficulties
in probability estimation using real life data have been emphasized|34], but very different
mathematical technique have been used for probability estimation. The answer is, to
the best of our knowledge, the first probability correlation answer, that is calculated from
the moments of sampled data. To calculate matrix it requires m = 0, 1,2 moments:
({f,g,const}Qm(x)); total 9 moment, see the file com/polytechnik/utils/Probabilit
yCorrelation. java for implementation example of numerical calculation of probability
correlation p(f,g) from (C6)), also see the file com/polytechnik/utils/Skewness.java:
getGSkewness for calculation T from 1} A remarkable feature of these answers is that
they use only first order moments on f and g and higher order moments on @,,(x). This
separation of observable variables and basis functions allows the approach to be applied to
f and g having non—Gaussian distributions, even those with, say, infinite (f?) or (¢?), a

distinguishable feature of Radon—Nikodym approach[17].

Appendix D: Price distribution estimation with unknown future price P/ as a

parameter

In Section [VITI we solved the problem of price distribution estimation given =, moments

. However, future price P/ is required to calculate future moments 7/ ; “the last price as
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R R

FIG. 13. Several examples of I'(P7) dependence for different 7, and di. The T'(Pf) has maximum
and minimum at unperturbed (di = 0) quadrature nodes; the Pl — 400 asymptotic is .
Dashed line is T'(Pf) skewness for the measure with single support at average value (single node

quadrature).

P/ estimator ” is a very crude approximation, thus it is better to consider P/ as a pa-
rameter (This consideration is a special case of varying measures orthogonal polynomials|35].
In this work, instead of typicaly considered a sequence of measures, a measure, depending
on P/ as a parameter, is considered.) For a given [¢) the ||[p™I/|| operator from with

an impact from the future term give future moments 7 :
7wl =T+ (P dI (3 | o) (D1)

that are different from past moments 7, = (¢ | p™1 |¢) from by impact from the future
term: (Pf)™dI (¢ |1o)®. The value of P/ is unknown, however one can repeat all the
calculations of Section above, using P/ as a parameter. After simple algebra (see DiffS
kewness. java from Appendix below for numerical implementation) P/-~dependent I" from

, quadrature nodes py 0y (Pf), weights w; 23(P7), and monic second order orthogonal
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polynomial (D15)) (P/ —dependent orthogonal system) for the measure with (D1)) moments

are:

= dI (¢ | o)” (D2)
di
Tm
m = U + dl <D4)

A(P?) = (agay — a2) + (ash) P! — 2(asb) (P?)* + (asb) (P)*  (D5)

) (P
B(P’) = (asay — as) + (ash) P + () (P7)* = (1 = b)b (P')*  (D6)

D(PT) = (ay — a2) — 2(a1b) PY + (1 — b)b (PY)’ (D7)
D(Pf) —B(P?) — 2(ay + bP!)D(P?) (D8)
~ /BX(PT) — 4A(PT)D(P7)
[(Pf — +o00) = :I::J - ZZ (DY)
p{l,z}(Pf) _B(Pf) i \/B;E;D(];f; 4A(Pf)D(Pf) (DlO)
w f o + di

a2y (Ph) = SR /D (D11)

Dy (P + po( P ws( P
B(PT) = pi(P )wléif; 11;2(53% (1) _ o op! (D12)

! !
Pmia(PT) = ni(P) ;pz(P ) _ _0'51221;]”; (D13)
poPT) — pu(PT) = \/B2(Pf)1;(zg}c()Pf)D(Pf) (D14)

f f

Py(p, P1) = (p— (P (p — po(P1)) = 7 + DL, ALy

D(PY) D(PY)
E(P") = (asay — a2) + (aza1 — as(1 — b)) P? + (ay(1 — b) — a?) (Pf)2

as f as f \2 f
&= PG = palPT))? = ay + 2B H Az()](Dpi)+ (P)EP)

(0 —B(P7))? = D(PY) (D17)

(D16)

The is a ratio of third order polynomial in numerator and square root of sixth order

polynomial in denominator. The I'(P/) is a function with % maximum at Pf = p;

and % minimum at P/ = p,, p1 < ps, where P12y and wy 9y are quadrature nodes
and weights of two—point Gauss quadrature built on 7, moments (with di = 0, unperturbed
quadrature: w; + wy = my). The I'(P/) have (D9)) asymptotic for P/ — +oo. In Fig.

several examples for I'(P/) are presented, maximum, minimum and asymptotic are clearly
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observed.

When 7, moments are of single support point distribution the take a very simple
form: Gauss quadrature built on 7/, moments has the nodes: the support point and P7;
quadrature weights are: 7y and di; the I'(P/) is a step—function with values, changing
the value at support point; L*volatility from is zero. In Fig. this situation: two
support points: unperturbed average (with the weight w; +w,) and P/ (with the weight di)
is presented as dashed lines.

The py1.2y(PY) and w23 (P7) (perturbed quadrature nodes and weights) from and
are often of interest. In Fig. we present an example. The weight wy; oy (P/) has
wy1 2y + di maximum at Pl = P12y and wy; 93 minimum at Pf = p2,1y- The p1(PY) is
a function with minimum (equal to unperturbed p;) at P/ = p, and py(P7) is a function
with maximimin (equal to unperturbed py) at P/ = py, (parabolic behavior of pg 21(pg2,1} +
Ap) for small Ap; also note that pgi 2y (pri,2y) = Pri,2y(Pr2,13) = Pri,2y)- The behavior of
p{m}(Pf ) for a constant di and di — oo asymptotic is shown in Fig. as solid and dashed
lines respectively. In applications the midpoint (a function with min, max, having
Pmid(D1) = Pmid(D2) = Pmia(D)); the average (a linear function with b slope) can be
also of interest.

A very important characteristic is “volatility”-like characteristic , the difference be-
tween perturbed quadrature nodes: po(P7)—p;(P/). It is always positive, has the dimension
of price and can be used in place of standard deviation. This difference reach the same value
p2 — p1 for PY equal to unperturbed quadrature nodes py; oy and has | P/ — p| asymptotic for
P/ — +o0.

Appendix E: P&L Trading Strategy and Frontrun Asymmetry

In Section [X'B|we considered a simple frontrun strategy and have shown that the median
should be used as a threshold. It is of great interest to consider such a strategy in general
case. Important feature of trading distributions is that it is a discrete one (price levels
are discrete). Moreover, “real” distribution can be interpolated by Gauss quadrature and
discrete weights of the quadrature can be considered as interpolating distribution.

Consider a very simple example: let trading take place at price p; with volume w; and

at price py with volume w,, Fig. (we assume p; < py, and the wy oy is the number of
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FIG. 14.  An example of distribution (with p; = 0.1, wy = 1, po = 0.3, we = 0.2). Top:
The dependence (D10 of p1(P7) (red) and po(P/) (green) for di = 0.4 (solid lines) and di — oo
asymptotic (dashed lines). Bottom: The dependence (D11) of wy(P/) (red) and wo(P/) (green)
for di = 0.4
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FIG. 15. Top Left: past information available for |¢)) state: w; at p; and we at ps, where P{1,2)
and wyy oy are unperturbed quadrature nodes and weights built on past moments ; the median
is wi, because w; > we. Top Right: past and future information for |¢)) state, in addition to
the data from “the past” the following is also available: known impact from the future di at
unknown future price P/. Bottom: “Band structure” of Long/Short frontrunning alternatives. The

asymmetry is determined by “effective mass” difference (E9)).

matched buyers & sellers at price py1 23). This distribution has the median equal to p; or po,
depending what weight w; or ws is a greater one. As in Section [X B were a speculator knows
future trading profile, buying below median and selling above the median, the maximal P&L

a speculator can obtain is:
P&Linax = (p2 — p1) min(wq, wo) (E1)

At p; he should frontrun the buyers bidding at p; + 0 and at ps he should frontrun the
sellers offering at p; — ¢, maximal volume min(w;,wy) come from the fact that at the level
of highest weight (equal to the median) the speculator have to partially trade both long and

short to avoid position accumulation at the end of investment horizon. (If p; and py are
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considered as unmatched levels of limit order book — this two-level example is a classical
demonstration of market—-making, but the whole point of this paper is a transition from
unmatched volume (supply/demand) to describing matched data execution flow I = dV/dt
(both past and future (45])). This allows us to avoid using (unmeasurable from the data)
supply and demand and, instead, to work with (directly measurable from the data) execution
flow fluctuations). Similary, for n—point distribution (either actual or the weights of Gauss
quadrature, built out of 0. .. 2n—1 distribution moments), one need to find quadrature nodes,
the median, then frontrun the buyers below median, frontrun the sellers above median; at
the median partially trade both long and short to avoid position accumulation. The P&L
calculations is very similar to Quantile regression problem [36], but we will not discuss this
relation here. In this paper we are going to limit ourselves to two—nodes distributions only,
then all the calculations can be performed without full blown Linear Programming theory.

In real life we do not know complete future trading profile. We know impact from the
future di from , but at unknown future price P/, see Fig. right. As with any two—
level Hamiltonian arbitrary state can be expanded as a superposition of two—level states. If
P/ was traded at p; (frontrun buyers), then w; — wy + di, wo — wy. If P/ was traded at
p2 (frontrun sellers), then wy — wi, wy — wy + di. (In both cases pg1 2 do not change.).
These two alternatives (frontrun buyers/frontrun sellers) give identical price change, and,
if di < w9y, also give identical maximal P&L. Otherwise a term min(di, wy; 2y) similar to
the one in (E1f) arise.

To obtain directional information we need a criteria to distinguish the two alternatives.
They can be distinguished considering variations of P/. Assume execution flow to occur not
at specific single price P/, but within some price interval P/ + Ap. Note that according
to time—price symmetry argument[I] first order derivative cannot privide dynamics infor-
mation, thus the P&L should be invariant with respect to Ap — —Ap. Consider the P&L
corresponding to impact from the future execution flow di, with P/, distributed within the

pq1,2y £ Ap interval. Then

P&Lt 1ong (P) = (p2(P?) — P7) min(di, wy) (E2)
P&Lfrshort(Pf) = (Pf - pl(Pf)) mln(dz, wl) (Eg)
AP&Y/Lfr - P&Lfr long(pZ + Ap) - P&Lfrshort (pQ + Ap) <E4)

The pgi21(PY) is a function with min/max at P/ = pg1y, see Appendix @ Fig. [14]
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Long/short assymetry (E4]), can be considered as directional asymmetry and for infinitesimal

Ap second order term is:

(Ap)* [ OPP&Listons(P) P& Ly shont (P
AP&Ly ~ — E5
f APy e, AP |p,, (E3)
Ap2 [ (P (P
— [ B—— - 7 E
5 min(di, ws) S(PTE |, + min(di, wy) (BT |,y (E6)

The py1 23(P7) are similar to solid state physics “band structure”. It is convinient to introduce

an “effective mass” near zone edge:

1 82p1(Pf)
— = J E7
my (PT)? Pf=p, ()
1 82p2(Pf)
=== ) E8
ma = 0PI |y, "
D-— 4 — (E9)
ma mo

We have m; > 0 and my < 0, as for electrons and holes in a semiconductor, see Fig.
for this “transition” analogy. The D, directional assymetry of distribution, is related to

distribution skewness and, in some situations, can be used as a directional indicator.

Appendix F: Future Wavefunction Without Ig .

In the section we have determined future I] and made an attempt to convert
this information to price information using the dynamic equation of Ref. [I]. A question
arise what kind of answer can be obtained without information about [g ? It is clear, that
in this case only perturbation theory on dI/ Ig can be developed. Because dI > 0 some
information can still be obtained, even in case of unknown I} value.

Consider some wavefunction 1 (z) and corresponding execution flow I, calculated as in
. Consider simple variation d7)(x). Then second order Rayleigh quotient perturbation

1S:
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FIG. 16. The AAPL stock price on September, 20, 2012. Calculated in Shifted Legendre basis
with n = 7 and 7=128sec. The P/l P and P, are calculated according to , (F12) and (F13)

respectively.
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A rather complex perturbation theory on |§1)) can be developed in a style of our earlier work

D1 (F4)

[37] in a very different field of multiple-scattering, but we limit here all the considerations

to first order I variation only on 1 states, orthogonal to 1, i.e. (§1)|1) = 0. Then

Loy &~ % + 41 (F5)
Iy

61 =2 W0 2(b| o) (F6)

) = [11¢) (F7)

Thus 61 is represented as a scalar product of |b) and |d1)) vectors. What variation 1)

to provide maximal 077 The one, different from |b) only on a constant j, i.e.

|0) = 1) = [ T9) [¥) (F8)



16) = |6) B (F9)

The states provide maximal variation 1. The term (¢ | I |9) |¢) is subtracted in (F8))
to have (0y|¢) = 0. Put |¢) = |1)y) from Eq. to (F§), this immediately lead to

¢(xp) = 0, and consider I as a function of

’¢> = ‘IWU> - Wo ‘ I ‘ ¢0> Wo) (FlO)
(Yo + B[P0 + B)

As we noted in section [VII Al when [¢g) is an eigenfunction of (or I = const and the
problem is degenerated), then theory fails (now for the reason of (¢|¢) = 0 no first
order perturbation theory possible). Otherwise, because (¢ | |vg) = (¢|¢) > 0 we always

have # > 0 and in the first order perturbation two answers, let us call them, P, and P, in a

weak hope to get a poor-man PV
_ (@ pI | 4)
G T )
_(olpl|d)
B e o
VBT _ el — (ol 1)’ -
- (Wl Ilo) (o | 1']%0)

These answers, while being very crude estimates in practice, may be still useful (especially P,
from (F13])) in applications for their simplicity. The r (standard deviation —like estimate of [
on |t)y) state) from can serve as an estimate of how close is [¢g) to ||/ eigenfunction.
The major drawback of all these first order perturbation answers is that they are not as
good in automatic selection of proper time-scale, as eigenvalues problem. In Fig. [I6] the
PUH] P and P, are presented (calculated according to , and (F13)) respectively).
One can see that the P, has a similar to PUH] behavior, especially it tracks well market
direction change. The P;, because it is not averaged with always positive weight, is more
volatile than P,, but also can be of interest. A very important feature of P; and P
(F'13]) is that they are obtained without solving eigenvalues problem, but, nevertheless, still

provide some information, thus can be considered as a poor man PUHI.
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Appendix G: Computer Code Implementation

1. Installation and Data Preparation

Install java 19 or later.

Download from [23] NASDAQ ITCH data file S092012-v41.txt.gz, and the archive
AMuseOfCashFlowAndLiquidityDeficit.zip with the source code.

e Decompress and recompile the program:

unzip AMuseOfCashFlowAndLiquidityDeficit.zip

javac -g com/polytechnik/*/*java

Extract triples (time, execution price, shares traded) from NASDAQ ITCH data file:

java com/polytechnik/itch/DumpData2Trader \
5092012-v41.txt.gz AAPL >aapl.csv

Execution data and limit order book edges are now saved to tab—separated file

aapl.csv of 15 columns and 634205 lines. The columns of interest are:
— currenttime Time in nanoseconds since midnight.

— exe_price_last Last Price.

— exe_shares Shares traded.

e Run the command to test the program

java com/polytechnik/algorithms/CallAMuse0fCashFlowAndLiquidityDeficit \
--musein_cols=15:1:4:5 \
--musein_file=aapl.csv \
--museout_file=museout.dat \
--n=7 \
--tau=128 \

--measure=ImpactQVMMuseLegendreShifted

Program parameters are:


http://www.ioffe.ru/LNEPS/malyshkin/AMuseOfCashFlowAndLiquidityDeficit.zip
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--musein_file=aapl.csv : Input tab—separated file with (time, execution price,

shares traded) triples timeserie.

--musein_cols=15:1:4:5: Out of total 15 columns of aapl.csv file, take col-
umn #1 as time (nanoseconds since midnight), #4 (execution price), and #5

(shares traded), column index is base 0.
--museout_file=museout.dat : Output file name is set to museout.dat.

--n=7 : Basis dimension. Typical values are: 2 (for testing a concept), or some

value about [4...12] for more advance use.
--tau=128 : Exponent time (in seconds) for the measure used.

--measure=ImpactQVMMuseLegendreShifted The measure. The values Impact
QVMMuseLaguerre, ImpactQVMMuseLegendreShifted, ImpactQVMMuse_pi corre-
spond the measures (7)), (14)), respectively. The results of ImpactQVMMuse
Monomials (uses Qn(z) = z*) should be identical to ImpactQVMMuseLaguerre
(uses Qr(x) = Li(—x)), as the measure is the same and all the calculations are
Qr(x)-basis invariant (but numerical stability is worse for ImpactQVMMuseMonom

ials).
e The results are saved in the output file museout.dat.

e There is a short “bundled” data file dataexamples/aapl_old.csv.gz of 9 colums and
28492 lines, that contains only executions (no limit order book events). It can be used

for testing insead of aapl.csv obtained from S092012-v41.txt.gz:

java com/polytechnik/algorithms/CallAMuse0fCashFlowAndLiquidityDeficit \
--musein_cols=9:1:2:3 \
--musein_file=dataexamples/aapl_old.csv.gz
--museout_file=museout.dat \
--n=7 \
--tau=128 \

--measure=ImpactQVMMuseLegendreShifted
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2. CallAMuseOfCashFlowAndLiquidityDeficit.java

Output file is tab—separated file with columns corresponding the calculations of this

paper. Most output data is saved in the objects of Skewness type (skewness and generalized

skewness) and EVXData type (generalized eigenvalue problem |I|1)) = A|¢)) created by the

ImpactQVMMuse. Field number (and name) are printed in the first line of output file, so they

can be processed by any common plotting software (such as gnuplot or matlab). Below are

the description of most noticeable fields:

T Time in nanoseconds since midnight (copied from input).
shares Shares traded (copied from input).
P_last Execution price (copied from input).

I.x Correspond to |I]ip) = Al¢) eigenvalues solution with the given --n=. The
I.GammaO is 0 of past sample. The I.sL, I.sH, and I.s0 correspond to min/max
eigenvalues, and (1o | I |¢g). The I.wL and I.wH are squared in the output.

P.* Correspond to |pI|i)) = A|I|¢) eigenvalues solution with the given --n=. This

eigenproblem for price is presented just for completeness.

SK_P_TIH.* Skewness on max [ state from Section [[X B| with dI = 0. The SK_P_IH.xa
is equal to PUH] .

pnlss. * fields correspond to n = 2 (regardless of the given --n= value, use Laguerre
basis to have p* and t* basis similar behavior without --tau= adjustment), calculations
of Section [X] Regular price skewness along with the generalized skewness for
I and P are presented. Regular exponential moving average p, = (Qopl) / (QoI) is
equal to any of pnlss.{SK_P_average,gSK_P_average}.xa, and py; o) nodes are
pnlss.SK_P_average.{x1,x2}.

pnldidsk.* fields calculated by the PnLdIDSk class, most noticeable are: pnldidsk.
SK_spur__nodI the skewness of Section density matrix states, the pnldidsk.S
K_spur__nodI.xa is pP*" = Spur(||pl||)/Spur(||I]|), moving average, calculated via

operator spur (sum of diagonal elements). The pnldidsk.Pf_from_pt_true_pi is
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e pnlfutureSk.* correspond to Section [X C| calculations.

Current CallAMuseOfCashFlowAndLiquidityDeficit. java output 77 fields. The code can
be modified to adjust the output. You may also use com/polytechnik/scripts/plot_cha
rt.pl to select only specific fields, also you may run com/polytechnik/trading/Generat

eTrainingData. java to produce more data in output.

3. Code Structure

The codebase is huge. Most of the code are my past fault attempts to find a market
dynamics equation. Once an idea is decided to be a fault — all related code is moved to the

unit tests, thus increase the codebasd’]l To run all unit tests at once execute the command:
java com/polytechnik/trading/QVM

It may take a while to finish all the unit tests (about 2 days to run, the best usage I found
for these unit tests is to catch Java HotSpot JIT compiler bugs —). But for the theory
of this paper the calculations are extremely fast and there are actually very few classes of

interest. Most noticeable of them are described below.

com/polytechnik/trading/QVMDatal. java
com/polytechnik/trading/QVMDataP. java
com/polytechnik/trading/QVMData. java

These calculate the moments ( fQ) from a sequence of trades using Laguerre, Shifted Legen-
dre, or monomials basis for Q(z). The calculations are optimized to incrementallyﬂ update
already calculated moments, what make the calculations extremely fast, thus applicable to
a practical realtime HFT trading. To access calculated distribution moments use the classes

implementing the DataInterfaceToMoments<T>:

com/polytechnik/trading/QVMDatalDirectAccess. java
com/polytechnik/trading/QVMDataPDirectAccess. java

com/polytechnik/trading/QVMDataDirectAccess. java

4 This section is adjusted from the earlier version in order to reflect API changes in [6].

® Using the Q,(az+b) = >}, d;@")Qk (z) expansion, that is Newton Binomial (1+2)" = Y"}'_, C*2* mono-
mials basis generalization. For numerical implementation see setNewtonBinomialLikeCoefs method of
classes extending the com/polytechnik/utils/BasisPolynomials. java class, implementing the expan-

sion using three term recurrence of basis polynomials Q(x), see Appendix A “Non-monomials polynomial

bases” of Ref. [1].
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To manipulate distribution moments obtained in various Qg(x) bases there are few classes
(they all extend the OrthogonalPolynomialsBasisFunctionsCalculatable<T> and use a

reference to BasisPolynomials to manipulate polynomials):

com/polytechnik/utils/OrthogonalPolynomialsLegendreShiftedBasis. java
com/polytechnik/utils/OrthogonalPolynomialsLegendreBasis. java
com/polytechnik/utils/OrthogonalPolynomialslLaguerreBasis. java
com/polytechnik/utils/OrthogonalPolynomialsChebyshevBasis. java
com/polytechnik/utils/OrthogonalPolynomialsHermiteEBasis. java
com/polytechnik/utils/OrthogonalPolynomialsMonomialsBasis. java

com/polytechnik/utils/OrthogonalPolynomialsRecurrenceABBasis. java
Once the moments (f@Qy) are calculated from a sequence of trades, the classes such as:

com/polytechnik/trading/MomentsData. java

com/polytechnik/trading/SMomentsData. java

calculate and store the matrices: (Q; | Qx), (Qj | 1| Qx), (Q; |pI|Qk), (Q;|dp/dt|Qy) (and

others, the classes are different in attributes selection) from the moments data using basis
functions multiplication operator CZ o
j+k
Q;(2)Qu(z) = ) _ " Qi) (G1)
1=0
The c{ " coefficients are available analytically for all practically interesting bases, see Ap-
pendix A of Ref. [I] and references therein, the calculations are implemented in the classes

above, the ones extending the BasisPolynomials. The class:

com/polytechnik/utils/EVXData. java

given two matrices (Q); | Qx) and (Q; | I | Q) solves generalized eigenvalue problem |/ \wy]> =
A [

7 >, finds eigenvalues and eigenvectors, calculates <¢0 ‘ @/JEZ}> projections, and I, =

(1o | I'| o). The class:

com/polytechnik/trading/PnLSimpleSkewness.java

perform simple calculations of Sections [[X A| and (for n = 2 all the matrices
are 2 x 2). This class calculates: price regular skewness (skewness, quadrature nodes, and
weights are calculated), generalized skewness (f skewness, o skewness, AL and weights),

and, out of curiosity, probability correlation p(p, I) of Appendix [C| The class:
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com/polytechnik/trading/PnLdIDSk. java

performs naive dynamic impact calculations of Section along with some other

skewness-related calculations considered in Sections [[X Bl and [X El The class
com/polytechnik/trading/PnLFutureSk. java

performs the calculations of Section [X'C| It takes an instance of MomentsData and do the

following;:

e Solve generalized eigenvalue problem , find dI as and PUH] a5 .

Construct || 17| operator (51)).

e Solve generalized eigenvalue problem ((52)).

Find past 0 and future f‘vof skewness of I.

Find P7 as .

This class demonstrate reference implementation of this paper theory:

com/polytechnik/algorithms/CallAMuse0fCashFlowAndLiquidityDeficit. java

It read line-by-line tab—separated timeserie file of triples (time, execution price, shares
traded) to update a sequence of executed trades. For each new trade (new line read), it
callsﬂ com/polytechnik/trading/ImpactQVMMuse<T>, that incrementally (optimization
for speed) calculates the moments, obtains the MomentsData with (Q;|Qk), (Q; 1| Qx),
(Q; | pI | Qk) matrices, performs the calculations and creates the ImpactQVMMuse object,
then, finally, outputs the data out of the ImpactQVMMuse as described in the previous sec-

tion.
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