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The problem of an optimal mapping between Hilbert spaces IN and OUT, based
on a series of density matrix mapping measurements p(l) - o, 1 =1...M,
is formulated as an optimization problem maximizing the total fidelity F =
Zf\il wOF (g(l),zs Bsp(l)B;r> subject to probability preservation constraints on
Kraus operators Bs. For F(p,0) in the form that total fidelity can be represented
as a quadratic form with superoperator F =) (B|S|Bs) (either exactly or as an
approximation) an iterative algorithm is developed. The work introduces two impor-
tant generalizations of unitary learning: 1. IN/OUT states are represented as density
matrices. 2. The mapping itself is formulated as a mixed unitary quantum channel
AOUT = 3~ lws|2U ANUT (no general quantum channel yet). This marks a crucial
advancement from the commonly studied unitary mapping of pure states ¢; = Uy
to a quantum channel, what allows us to distinguish probabilistic mixture of states
and their superposition. An application of the approach is demonstrated on unitary
learning of density matrix mapping o) = UpOut, in this case a quadratic on U
fidelity can be constructed by considering \/W — \/ﬁ mapping, and on a quantum
channel, where quadratic on Bj fidelity is an approximation — a quantum channel
is then obtained as a hierarchy of unitary mappings, a mixed unitary channel. The
approach can be applied to studying quantum inverse problems, variational quantum
algorithms, quantum tomography, and more. A software product implementing the

algorithm is available from the authors.
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Dedicated to the memory of Ivan Anatol’evich Komarchev

I. INTRODUCTION

The form of knowledge representation stands out as a crucial and distinctive feature in
any approach to Machine Learning (ML). The utilization of unitary operators for knowledge
representation has garnered increasing attention recently[l—3]. In nature most of dynamic
equations are equivalent to a sequence of infinitesimal unitary transformations: Newton,
Maxwell, Schrédinger equations. This inherent connection with unitary transformations
makes it particularly appealing to represent knowledge in this form. Most of the existing
works consider algorithms that take wavefunction as input and construct a unitary operator
providing a high value of mapping fidelity[2—1|; they are mostly different in parametrization
of unitary operator [5] and optimization details. Such a pure state to pure state mapping
is a limited form of quantum evolution. There are a few works[(6-9| that consider unitary
learning with density matrix input. Real systems probability should be described by a mixed
state (density matrix) what allows to distinguish probabilistic mixture of states and their
superposition. There are two sources of mixed states: 1. The input data itself can be in
mixed state. 2. IN — OUT mapping of a general quantum channel can transform a pure
state input into a mixed state output. Unitary mapping is a simple example of a quantum
channel converting a pure state into a pure state.

In our previous works|[10, 11| the quantum mechanics inverse problem of optimal unitary
mapping of pure states was converted to a QCQP (Quadratically Constrained Quadratic
Program) problem, a novel algebraic problem (43) was formulated, and an efficient iterative
global optimization algorithm was developed. This algorithm can be applied to quantum
inverse problems, variational quantum algorithms [12—11] with a cost function in the form
C(0) = Tr OU(0) pold'(#), quantum tomography]|15—18], various classical problems, and many
others. We do not have a formal proof of the developed algorithm’s convergence, but among
the millions of test runs, only a few did not converge to the global maximum. This could
possibly be caused by numerical instability. In the current work, we generalize our algorithm
to mixed states and further extend it to quantum channels. This generalization is possible
as long as the total fidelity can be represented as a quadratic form on quantum channel

mapping operators.
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In the case of unitary mapping (D = n, Ny = 1) of mixed states there are several good
choices for fidelity, for example a quantum channel mapping the square root of density matrix
VP — /0 with a unitary operator (3), it provides the exact fidelity as a quadratic form.
Together with the available iterative algorithm, this problem may be considered mostly
solved.

In the case of a general quantum channel (4) constructing fidelity as the quadratic form
of Eq. (16) on quantum channel mapping operators can be challenging. We have developed
several approximations that can be used with the iterative algorithm and have constructed a
hierarchy of mapping operators (52) as a mixed unitary channel. A demonstration of several
approximations is presented in Section IV A. The problem of finding a good quadratic (on
mapping operators) fidelity for Kraus rank Ng; > 1 quantum channels requires more research
and is related to a physical meaning of quantum channel mapping. Even when fidelity is
expressed as the quadratic form of Eq. (16), we currently only have a numerical algorithm to
approximate the data using a mixed unitary channel. A general reconstruction of quantum
channels is not yet available.

The paper is organized as follows. After formulating the problem, the unitary mapping
of mixed states is considered in Section III. Section IV focuses on the construction of a
hierarchy of unitary operators. In the conclusion, we discuss the results obtained for the
problem of quantum channel reconstruction. Appendix A provides a detailed description of
the numerical solution that uses algebraic techniques. Appendix B presents a generalization of
the novel algebraic problem (43) to the nonstationary case and introduces a time-dependent
Schrodinger-like equation for unitary operator dynamics (B1). Appendix C explores poten-
tial generalizations to states with memory, while Appendix D estimates the algorithm’s
computational complexity.

This paper is accompanied by a software which is available from Ref. [19]; all references

to code in the paper correspond to this software.

II. FORMULATION OF THE PROBLEM

In [11], we considered data of vector-to-vector pure state mapping, [ = 1... M,

Yi(x) = ¢y(F) weight w® (1)
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The weights w® are typically all equal to 1.! However, they can be set to different values if
the observations are made with different accuracy, this is particularly convenient for classical
systems. The usefulness of w® weights also arises in models that comprise a number of
identical mappings; in this case one may consider only distinct mappings and set w® equal
to the number of times the observation was encountered in the sample. The problem of
maximizing total fidelity

M 2

F= ZW(Z)‘ (o[ U n) ‘

=1

2
7 max (2)

was considered, and a numerical algorithm finding the global maximum of F was developed.

Found solution ¢, a partially unitary matrix of dim(OUT) x dim(IN) (D x n)
AT = Y ANYT (3)

converts any operator between two Hilbert spaces, for example it converts a pure state
AN = |4y (1| into a pure state ACUT = [U|yp) (Y[UT]. For D = n it is a trace preserving map,
and for D < n it is a trace decreasing map quantum channel. The input data (1) represent
pure state to pure state mapping. This type of mapping is not the most general, it cannot
describe systems with effects like quantum decoherence. For example a simple Markov chain
system converts a pure state 1) (¢| into a density matrix state, see Appendix I of Ref. [20].

In this work a more general mapping between Hilbert spaces IN of [¢) (dimension n) and
OUT of |¢) (dimension D) is considered. Kraus’ theorem determines the most general form

of mapping between Hilbert spaces[21-23]:
No—1
AT = " B,A™B] (4)
s=0

the number of terms in the sum Ny is called the Kraus rank, see Choi’s theorem [24] and
Belavkin’s Radon-Nikodym theorem for completely positive maps [25]. The Kraus operators
B, satisfy the constraints that unit A’ is converted to unit A°YT. There are other options to
construct a quantum channel, in [10, 11| we considered a quantum channel that transforms

the Gram matrix in space |¢) into the Gram matrix in space |¢); with proper regularization

1 Some authors use w®) =1 /M to normalize the fidelity to the range [0 : 1]. However, this approach is
inconvenient because F is no longer an extensive quantity in the sense that, for two sets of observations,
the total fidelity is no longer the sum of the two — losing its additive property. For this reason, normalizing

to the number of observations is preferred over normalizing to [0 : 1].
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it can be reduced to the same form.
Ne—1

> BBl=1 (5)
s=0
We further generalize Kraus operators B, by considering them to be rectangular D x n
matrices instead of being limited to Hilbert space mapping into itself. The term “partially
Kraus” is used in the same sense as “partially unitary” — we consider rectangular matrices
D < n mapping Hilbert spaces of different dimensions.? For D < n a partially unitary
quantum channel (3) does not preserve the density matrix trace. For a large enough Ny, as
in the condition (56), the form of Eq. (4) allows us to construct a trace preserving quantum
channel, for example to implement an operation of partial trace.
Kraus operators selection is not unique. In addition to the familiar exp(i¢) phase factor
(£1 for real space), there is a gauge that regulates redundant degrees of freedom. The most

well-known is the canonical form:
TtB,B} =0 for s # t (6)

However, other gauges can be used. See Appendix A 1 for an algorithm transforming Kraus

operators to canonical form.

Back in [10, 20] we considered, instead of (1), the data of density matrix to density matrix
mapping (7) — just replace Sk from (19) by (18) or (30). Whereas input/output data in
density matrix form distinguishes probabilistic mixture of states and their superposition, the
transform (3) cannot map such data exactly, it has insufficient expressive power. Only a general
quantum channel (4) mapping has sufficient expressive power to construct learning models
from general data, for example with a decoherence effect, or a much more seldom but very
interesting effects of pure state formation from mixed state input — spontaneous coherence,
exhibited in entropy decrease, synchronizing, coherent responses of (¢4 + ¢B)2 > 0%+ 0%
type, etc.

2 Here, instead of the usual constraint Zi\fzg ' BiB, =1 (55) we use the constraint (5) to fully utilize our
numerical algorithm in the case of Ny = 1. Constraint (5) imposes D(D + 1)/2 independent conditions,
whereas constraint (55) imposes n(n + 1)/2 independent conditions. When D = n both definitions coincide.
However, for Ny = 1 and D < n, the constraint (55) fails to satisfy the minimal Kraus rank condition
(56), but the constraints (5) are applicable in the numerical study of trace-decreasing maps when Ny =1
and D < n. Additionally, the Lagrange multiplier calculation method described in Appendix A 4, along
with the convergence-helper constraints in Appendix A 5, facilitates the incorporation of quadratic form

constraints of any type.


https://en.wikipedia.org/wiki/Partial_trace
https://en.wikipedia.org/wiki/Gauge_theory

Consider the density matrix mapping of [ = 1... M observations
P — o® weight w (7)

The p is a measured Hermitian density matrix n x n in the 1) space, while the oW is a
measured Hermitian density matrix D x D in the |¢) space. Both p and ¢ density operators
are Hermitian matrices with positive eigenvalues and having unit trace (the sum of diagonal
elements). Previously considered data (1) corresponded to p = |¢;) (4] and o) = |¢;) (¢y].

The optimization problem becomes

F = Zw ,o) — max (8)

=1
where o = A°YT and p = AN — the o is the p passed through the quantum channel.

It should be noted that while for wavefunction mapping (1), in the seldom case of a
classic system with known wavefunctions phases, a regression type technique is sometimes
applicable, for density matrix mapping (7), which is always quadratic on U (3), no regression
can possibly be applied.

We need to define the total fidelity F of the (4) transform, which is a sum of contributions
from all M observations. For each observation of the IN to OUT mapping, an accuracy factor
F ranging [0 : 1] should be defined. For the theory presented in this paper to be applicable,
this factor must be quadratic with respect to the operator U (an instance of By). For pure

state to pure state mapping (1) it is a squared projection, the fidelity
2
—[(o1ulv)] 9)
For mixed state mapping (7) a similar expression
P (g,0) = Tr oo (10)

is bounded between 0 and Trp? < 1, it has the meaning of a measured probability of probability
that reaches the maximal value 1 only in pure states. A standard definition of fidelity between

mixed states o, 0, [20] p. 409, [27] p. 285,

Fprop Q 0 / 1/2091/2 *Tr\/_\/_ (11)

creates calculation difficulties since it requires taking matrix square root of an expression

with B, sum, and it is not explicitly quadratic. There is an option to use a quality criterion
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based on the conditional entropy of OUT|IN states [28]. In the general case, this requires
a joint density matrix p(OUT,IN) [29]. The tensor Sj.; (18) can be viewed as a joint
density matrix p(OUT, IN) averaged over M observations in the sample. However, in the
case where N; > 1, we were unable to express the conditional entropy in quadratic form with
respect to By, and we will leave this aspect of conditional entropy as a quality criterion for
future research. In the Ny = 1 case, the Kullback-Leibler divergence (Eq. 32) can be directly
applied.

There is a noticeable feature of Hermitian operators: if one vectorizes D x D Hermitian

operators g;; and o;;, then one can verify that

D-1
Troo = Z 0ij07; (12)

i.j=0
i.e. the L? of a vector obtained from all D? matrix elements of o gives the trace of ¢?. This

provides a closeness criterion, F'; which acts as a “correlation” between the density matrices

0i; and o;;, treated as if they were vectors.

Z QZ] z]

4,j=0 Troo

D-1 \/Trg2 Tro2
0|QZ]| Z | ZJ|

ij

F(o,0) =

(13)

Z?]:

It can be viewed as F'?7 (10) with an adjusted contribution for mixed states. The practical
issue with it is that o, in the denominator, depends on the quantum channel operators Bj;
to obtain a workable expression, one can replace the o-normalized denominator by the input

density matrix p

z gl] zy( )

,7=0

FY = (14)
Z |sz| Z |pkq|

4,j=0 k,q=0

Here, the entity denoted as o(p) is obtained by passing p through the quantum channel using
either the transformation in (4) or (3). Since ¢ does not appear in the denominator, Eq. (14)
is quadratic in the quantum channel mapping operators. This expression uses (12) and treats
density matrices as if they were vectors. It is linear in ¢ and quadratic in U; for unitary

mapping (D = n, N, = 1), we have Trp? = Tro?, and thus F* matches F°. An alternative is



to consider a surrogate closeness by normalizing it only on ¢ — to the degree of output state

purity

Troo
Tro?

FN(0,0) = (15)

but this one performs poorly, especially in the case when N, > 1. Note that if ¢ is a pure
state |¢) (9| and p is a mixed state then (10), (11), and (15) are the same. Whereas the
closeness criteria F (14) and FV ¢ (15) are quadratic in quantum channel operators, their
main drawback is the lack of clear physical meaning. This can lead to artifacts in the obtained
solution, particularly for noisy data in the case of a density matrix passing through a general
quantum channel. The criterion F¢7 (10) is quadratic in quantum channel operators but
represents the square of a probability, which overestimates the contribution of pure states|20].
As a result, it is poorly suited for density matrix mappings. The criteria F?" (11) and F*
(13) have a clear physical meaning, but they are not quadratic in quantum channel operators.
Of particular interest is the criterion FveV? (31), considered below, which is quadratic in
quantum channel operators and matches FP"P exactly in the case of unitary mapping of
density matrices.

For the theory presented in this paper to be applicable, the only required feature of the

mapping accuracy F'in (8) is that it must be a quadratic form on B, with a superoperator

Sjkij'h -
Ns—1
F=> (BS|B,) (16)
s=0

The tensor Sj.;/i depends on the choice of F' and observation weighs w®. They are problem
specific and do not change our considerations. Expanding the sums in (16) we obtain (for a

simple choice of F' (10))

Ns—1 D-1 n-—1

Z DIDIDS 08 b ik P (17)

s=0 4,j=0 k,k’=0

where the b, ;;, are s = 0... Ny — 1 matrices of dimension D x n corresponding to partially

Kraus operators By. One can introduce a tensor

jk‘j/k" Zw(l)gjjlpkk/ (18)



to obtain an expression similar to the one in |1 1] for x — f Hilbert spaces vector mapping.

With the density matrix |x) (x| — |f) (f| (18) takes a familiar form

Sjksjrkt = iw(l)f;l)xigl)f;})*xg/)* (19)
=1
Distinguishing features of the current work include:
e Using density matrix states mapping (7) as input.
e Go beyond unitary mapping (3) to consider quantum channel mapping (4).

We use them to take into account two kinds of probabilities: probabilistic mixture of states
and states superposition. For the latter, probability is the square of the sum of amplitudes,
while for the former, probability is the sum of squared amplitudes. Both effects are present in
real life data. There are a number of studies suggesting a limitation of unitary scalarization
[30, 31], the other reevaluate recent research [32]. It should be noted how researchers commonly
use unitarity — they take a vector, normalize its L? norm, and consider the squared Euclidean
projections obtained as if they were probabilities. Existing approaches do not distinguish
probabilistic mixture of states from their superposition. This work is trying to overcome this
deficiency by using input data in the form of density matrices (7) and mapping them with a
general quantum channel (4). Consider a few demonstrations.

The partially unitary mapping (3) (when Ny = 1) is a trace decreasing map quantum
channel for D < n. A simple Ny > 1 example: Let D = 1 and we want to construct a quantum
channel with operators B, calculating the trace of A’V with (4). The matrices bs i are of

1 x n dimension for all s. Any orthogonal basis |x,) in [¢)) solves the problem:

B = fo) (x| (20)

with Ny =n, s =0...n — 1. Any orthogonal basis |z,) creates a solution of the form (20)
that satisfies the canonical form constraints (25), this degeneracy may cause difficulties in
numerical methods. Another example. A quantum channel parametrized by two orthogonal

bases |zx), | f;), and a matrix M, creating Ny = Dn rank one operators

By = |f;) My, (x| (21)
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The index s = 0...Dn — 1 enumerates all (j, k) pairs. The actual Kraus rank is less than or

equal to Dn. The trace-preservation condition (55) imposes kK = 0...n — 1 constraints:
L= Myl (22)

The matrix M ;, defines a quantum channel. Equations (20) and (21) are two examples of
trace-preserving quantum channels, constructed as a sum of rank one operators |f;) (x|
Such channels are defined using two bases, |f;), |z%), along with the mapping matrix My,
between them. These channels are much easier to analyze (and work numerically) compared
to a sum of general operators B. At the same time, they possess sufficiently high expressive
power for trace-type mappings. However, a unitary mapping cannot be represented by (21).

For a general form of quantum channel see |17, 33] for a representation of a quantum
channel with Choi matrix of the channel[21]. Let us defer the study of this Choi-style
J(P) =>4 k) (K| ® ®(|k) (K'|) representation of a quantum channel ® to future research

and focus on the original problem.

Mathematically, the problem becomes: optimize (23) subject to (24) and (25) constraints.

Ns—1 D—-1 n-—1

.F: Z Z Z bs,jksjk;j/k/b;j/k/ T max (23)
5=0 j7j,:0 k?,k?lzo
Ng—1n—1

37’ - Z stvjkb:,j/k‘ j;j/IOD—l (24)
s=0 k=0

A selection of the gauge is required to avoid problem degeneracy, for example take the
canonical form.

D—1n

|
—

bs,jkby ji s#s,s=0...N,— 1 (25)

7=0 0

i

Other gauges such as Cholesky decomposition (on index s) can possibly be used instead.
The main feature of the numerical method we developed consists of using eigenvalue

problem as the algorithm’s building block. If we consider a subset of (24) constraints, then

the optimization problem can be readily solved. Consider the squared Frobenius norm of

bs ji to be a “simplified constraint™

Ng—1

U

—1n—1

|b ,Jk’ (26)
k=0

I\
o

s=0 jJ
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This is a partial constraint (it is the sum of all diagonal elements in (24)). For this partial
constraint the optimization problem (23) is equivalent to an eigenvalue problem — it can be
directly solved by considering a vector of dimension N,Dn obtained from the b, j;, operator
by saving all its components to a single vector, row by row. With s-independent Sj. ;s each
eigenvalue is degenerate Ny times; the Lagrange multipliers vy in (A2) may potentially
remove this degeneracy. This partially constrained problem is the main building block of
our numerical algorithm. Whereas most existing learning algorithms use either first order
gradient-style methods or second order Newtonian methods for optimization, an eigenvalue
problem is the building block of the algorithm in this paper.® This represents a transition
from mathematical analysis tools (e.g., gradient, derivative, etc.) to using algebraic tools
(eigenproblem). This transition enables the move from single solution methods to multiple
solutions (eigenvectors). This transition from analysis to algebra makes finding the global
maximum much more likely, not to mention providing a better understanding of the problem

itself.

IIT. A UNITARY MAPPING OF MIXED STATES

In quantum channel learning there are two sources of mixed states. First, the original
input density matrices (7) can be in a mixed state. Secondly, the quantum channel itself,
through the transformation (4), can create mixed states. In this section we consider the first
source. Let the data be of mixed states according to mapping (7), while the quantum channel
itself is assumed to be unitary (3) or possibly partially unitary with D < n. To apply our
theory and software we need to obtain a tensor Sj;» with which to solve the optimization

problem (23), now with N; = 1.

D—-1 n—1
f: Z Z uijjk:;j/k’u;’k’ 7} max (27)
7,73'=0 k,k'=0
n—1
k=0

3 We think that the reasons why first order gradient methods are preferred in neural networks over second
order Newtonian-type methods are: 1. The problem may be of very high dimension, and first order methods
do not need to store a large Hessian matrix. 2. The biggest problem in learning optimization is not local
maximums, but saddle points[34]. First order methods are less likely to get stuck in a saddle point. 3. For
some tasks, first-order gradient-type methods may offer better computational complexity, see Appendix D

below.
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If we take the tensor (18) as Sj,j& — then we underestimated fidelity, which leads to unusual
effects, see Table | row F¢7.
To obtain a proper estimation of the closeness of states for density matrix input, consider

the mapping of the square roots of density matrices.

V) = /oW weight w® (29)

and use it instead of (7), as if it were the actual density matrix mapping. For a unitary
mapping U the same quantum channel converts both the density matrix and its square root.
If /o= Z/l\/ﬁlﬁ then o = Z/{\/ﬁZ/{TZ/{\/_pZ/IT = UpU'; also see Exercise 9.14 from [26], p. 410:
for any positive operator A, VUAUT = UVAU'. Thus we can use

Siksjie = iw(” (\/@)J (W) (30)

i kk!
in the optimization problem if we apply the closeness (10) to the mapping of density matrix

square root (29). Let us denote it as FVeVP,

FVoVP = Tr\/go(,/p) (31)

Here the entity denoted as o(,/p) is obtained by passing ,/p through the quantum channel
using either the transformation in (4) or (3). In the case (3), where N, = 1, this FVev? is
equal to the proper fidelity F7"°P (11). The approach creates no difficulty in implementation,
as the square roots of density matrices are calculated upfront and then used as if they were
actual measurements. The Sj.; from (30) corresponds to the density matrix square root
mapping in (29). For a pure state p = |[¢) (1|, we have p = |/p, and (31) gives the same

result as (9).

A. A Conditional Entropy Based Similarity

In the case of density matrix unitary mapping, there is a possible alternative to the square

root mapping /p — /0 (29) that has been considered above. Now consider the mutual

4 Note that from the invariance property of unitaries, U f(A)U' = f(UAUT), for any positive operator

q

k! with

M
A and p > 0, we have (UAUT)p = UAPU'. Thus, a form of Sikik = D1 w® (Q(l));)j, (p(l))
p+ g =1 can be considered. However, an arbitrary p and ¢ does not correspond to the fidelity in Eq. (11),
which has p = ¢ = 1/2, resulting in Eq. (30). For an arbitrary N, any form with ¢ = 1 can be reduced to

a QCQP optimization problem. Equation (10) corresponds to p = ¢ = 1. One can consider a form with

q = 1 and some p as a quadratic form proxy for the general quantum channel fidelity.
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information between the density matrices ¢ and o: the Kullback-Leibler divergence[35-37].

Given two density matrices p and o, the conditional entropy is

S(ollo) = Tr(elng — ¢lno) (32)

An interpretation of the Kullback Leibler divergence of ¢ from o is the expected excess
surprise from using ¢ as a model instead of o when the actual distribution is p. It satisfies the
Gibbs inequality: S(o||o) > 0, S(o||o) = 0 iff o = o. For o obtained as a unitary mapping (3)
from p, the Ino = In (U pU T) can be calculated using the invariance property of the unitaries.

Taking into account that Tr(oln g) is a constant one may consider the mapping
In p® — oV weight w(® (33)

and use the tensor

Sk = Zw lnp())kk, (34)

as if it were the actual density matrix mapping. With this S, the functional F no longer
has the meaning of the number of observations, and special care should be taken when
regularizing p states with eigenvalues equal to zero due to logarithm calculations, the o
must also be zero in this state. This information divergence measure is expected to be a
good alternative to the square root mapping (30), but it requires more research, especially
regarding the possibility of generalizing it to a quadratic form for quantum channels with

Kraus rank N > 1 and its property of not satisfying the triangle inequality.

B. A Demonstration Of Density Matrix Square Root Mapping

Let us demonstrate the advantages of using the square root of the density matrix in
quantum channel learning. Here and below we need a number of random density matrix
input states p) (of a given rank N,, all real for simplicity) that we map with the quantum
channel of form (3) or (4) to o!). The states are created from random vectors vf,l,)c as follows:
N.—1

U @
pkk’ - (l) Z rkvrk:’ (35)

Norm

For every [ we generate N, random real vectors vﬁl,)c of dimension n. The density matrix is

obtained as ar =0... N, — 1 sum of the dyadic product of vector vﬁl,)c with itself, and then it
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is normalized to 1 = ZZ;& pglz. These ,0,(!,2, are used as input density matrices in our numerical

experiments.

A demonstration is performed as follows. We generate a quantum channel (4) of dimension

n = D = 20 with a given Kraus rank N;. Then for N, = 1...20, we generate M = 1000 input

density matrices ,0,(2, (35) of rank N, and for each of them, we obtain the output density

matrix gg.lj), by passing p,(cl,z, through the quantum channel. On this pg,z, — gyj),

evaluate the total fidelity F (8) for different definitions of ' (with the same B defining the

mapping we

quantum channel, o = Zivzso_ ! BypBl). The result is presented in Fig. 1; see com/polytech
nik/algorithms/DemoDMsqrtRhoMappingTest. java for an implementation. For the FP P
(11) the total fidelity (8) is equal to the maximal value F?"? = M since the same B, were
used both in construction and in evaluation of the quantum channel. However, a QCQP
optimization problem that we can solve, an algebraic problem (43), must be a quadratic
function on /. The FP"P is not such a function, which makes it problematic to use. A simple
F97 as density matrices trace (10) is a quadratic function, but it is not normalized for N, > 1
or Ny > 1: it produces the exact result only for pure state input (N, = 1) and unitary
(Ng = 1) mappings, see Fig. la. The mapping \/@ — \/@ allows us to introduce FvVev?
(31) considering /o0 and ,/p as if they were actually measured density operators (29). In
the unitary case Ny = 1 it produces the correct value F = M for any rank of the input
density matrix p, this is an important result of this work. In this Ny = 1 case for each N,
we also run the operator U reconstruction algorithm of Appendix A — it is correctly (with
zero error) recovered (up to a sign) for any N, and any measure of closeness used: F¢7 F",
FNe* or FVeve, regardless of the specifics of F'. This occurs only for exact mapping; when
a noise is present in the data — the low values of F'¢° make it problematic to reconstruct
the quantum channel from input density matrices. The FVev? does not have this limitation
as for Ny = 1 it is equal to proper fidelity FP™P (11). We see F'VeV? as a very promising
approach to the problem of reconstructing a unitary operator from a set of mixed states
density matrix mapping. Another one if F” (14), which treats density matrices as “vectors”,
but it does not have a clear physical meaning.

The situation with quantum channels of Kraus rank Ny > 1 is more problematic. The F¢7
strongly underestimates the fidelity, and the F'Vev? is no longer correct because when there
is more than one term in the sum of (4), no quantum channel simultaneously converts p and

V/p between Hilbert spaces. The main problem we encountered is constructing a fidelity that
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FIG. 1. For known density matrix mappings (F?P"°? = M = 1000) evaluate the total fidelity F
(8) (with different definitions of closeness F') as a function of the rank N, of the input density
matrix and the quantum channel’s Kraus rank Ns. Problem dimension is n = D = 20. (a) Unitary
mapping Ny = 1: The F¢° (10) strongly depends on the rank of the input density matrices. The
FVevP (corresponding to (29) mapping) and FV (14) produce the exact result F = M in the unitary
mapping case. (b) Multiple terms N, > 1: The F9° decreases even more strongly, while vV? and

F? are no longer exact.
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can be expressed as a quadratic function of By in the form of (16). Not every fidelity can
be expressed in this form. Using a proxy, such as F%7, FN 92, etc., creates difficulties — for
example it may become possible to obtain a fidelity value greater than the one calculated
with the exact mapping of the quantum channel. This is the main requirement for a “fidelity
proxy”: it should reach the maximal value at the exact mapping of the quantum channel, see

Section IV A below for counterexamples.

IV. A HIERARCHY OF UNITARY OPERATORS

As discussed below in Appendix A, a direct numerical attempt to obtain Kraus operators
(4) in canonical gauge (25) does not work due to the degeneracy caused by the increased
eigenproblem dimension from Dn to NyDn and the difficulty in formulating convergence
helper constraints. We previously attempted to use a completely different approach for finding
Kraus operators that involved a special parametrization of operators. However, it turned out
to be not very stable numerically and applicable only to problems of small dimensions, n < 3,
such as SO(3), see [38] for a similar consideration.

Let us approach the problem of quantum channel reconstruction from a “numerical
algorithm” perspective. What quantum channel problem we can efficiently solve for high
dimension, i.e. D < n > 507 Actually — only the problem of finding the optimal unitary
mapping (3) that maximizes (27) subject to partial unitarity constraints (28).

Our algorithm |1 1] has good stability and convergence. For an updated version see Appendix
A and set Ny =1 in all formulas. Now, instead of optimizing the Kraus problem (23) subject

to constraints (24) and (25), consider the unitary hierarchy. A quantum channel is built as®
No—1

AOUT _ Z |ws|2u[s]AINu[s]T (36)
s=0
N,—1

1= Z |w,)? (37)

where ¥ are partially unitary operators satisfying the constraints (28) and |w,|? are positive

real weights. Since the weights are positive, the channel is a convex combination of unitary

® This quantum channel has an interesting physical interpretation. If (36) represents a time evolution, then
one may think of it as a quantum system evolving with several Hamiltonians at once, U[*] = exp [fi%Hs],

rather than as a system evolving with the single Hamiltonian H = > H,.
S
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channels — a mixed unitary channel. Note that not every quantum channel can be represented
as a mixed-unitary channel|39]. The authors [10] proved that for every mixed-unitary channel,
the following rank inequality holds between the Kraus rank NX (4) and the mixed-unitary
rank NV (the number of terms in (36)).

NU < (NF)* = NE +1 (38)

It may look as the sum (36) exactly represents the Kraus quantum channel (4) with B, = w/!*!
(they are not necessary in the canonical form (6), see Appendix A 1 for a transformation), but
actual Kraus rank can be lower than the number of terms in the sum (36). However, if we
replace the sum of general Kraus operators B, by a sum of partially unitary operators U,
then we can apply our numerical algorithm to build the quantum channel as a hierarchy of
partially unitary operators. Considering this convex combination of unitary channels we can
solve the problem incrementally. This is the cost required to apply our numerical method|!1]
to quantum channel reconstruction.

The idea of finding ¢! is similar to density matrix reconstruction. Assume we have a
density matrix o of dimension N, with some eigenvectors ¢!*! and eigenvalues P* a convex

combination of pure states.

Ns—1

0= Z pls] ‘¢[S]> <¢[8}| (39)
s=0
|0 1T) = P |gl) (40)

To recover |¢[S}> and P! one may solve a sequence of N, constrained optimization problems.

_(¢lole) e
P="619 & )
0= <¢ ‘ ¢[S/]> s <s (42)

On each step a pair (P[S], ’¢[S]>) is obtained from the optimization problem (41) subject
to the homogeneous linear constraints (42). The probabilities P*l decrease with s and the
obtained pairs form a hierarchy of states from most probable to less probable.

In [10, 11, 20] we formulated a novel algebraic problem

SU = \NA (43)
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where superoperator S is a tensor Sj. i, “eigenvector” U is a partially unitary operator
(3) represented by a D X n matrix u;i, and “eigenvalue” A is a Hermitian D x D matrix of
Lagrange multipliers \;; (A26). See Appendix B below for its time-dependent form (B1).
To construct a hierarchy of (Lagrange multipliers, operator) pairs ()\M,M M) of decreasing
fidelity F¥! = TrAl*) we need an analogue of the already found states’ orthogonality condition.
Whereas in (42) for a regular eigenproblem with a scalar eigenvalue the result is the same
regardless of performing an inner product with the “numerator” Pl ’¢[5]> or “denominator”
}¢[5}> terms, in the algebraic problem (43) with A;; being Hermitian matrix this is no longer
the case. We have a number of options for orthogonality conditions for already found states

s’ < s, for example (44a) is an analogue of the “numerator” and (44b) of the “denominator”.

D—1 n—1

0= byl = <Z/l‘)\ |yt (44a)
i,j=0 k=0
D—1n-—1

0= Z Zujkugkl]* <L{ ‘ Ul ,]> (44b)
=0 k=0

However the most convenient constraints correspond to a hierarchy of orthogonal quantum
channels:
D-1 n—1
0= Z Z wSignoui = (U ‘ s ( U (45)
/=0 k=k'=
Our numerical algorithm allows any homogeneous linear constraint to be incorporated into
(A4). We believe that the appropriate orthogonality constraint on the previous state is the
homogeneous linear constraint (45). We also use the “denominator’-type constraint (44b) in
Appendix B below to construct a density tensor. The reason why we choose the (45) form —

assume an operator ) is built as

Ns—1

V="> wul (46)
s=0

Then, using the constraint (45), obtain

Ns—1

WV|S|V) = Z Jwg|* (U | S | Uy (47)

i.e. a single nonunitary operator ¥ can completely define a quantum channel (36) with N, > 1.

For a given V the expansion weights in (46) are obtained as
s|ut)

UF 52w

Wg =

(48)
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A hierarchy of (Lagrange multipliers, operator) pairs is constructed by performing (27)
partially unitary optimization (not Kraus!) N times. For each s include the constraints
(45) from all previous optimizations s’ = 0...s — 1 into the full set (A4). The result of this
procedure is a hierarchy of Ny pairs <)\£j-}, u%) with decreasing fidelity.

The tensor Sji. ;i can be expanded:

Ns—1

1 A\ /o gls
S ~ Zﬂ =7 [S1U) @H]s| (49)
D-1
Flsl Z AE} _ <u[s}]s}u[5]> (50)
1=0
D = (U¥ ) (51)
Folg,0 = (UM S ") (52)

This expansion is similar to the eigenvector expansion (39), but ket |-) and bra (-| are now
operators, and S is called a superoperator. Note that usual orthogonality does not hold
(Utllu ) £ 85y, (51) follows from the partial unitarity constraints (28), and (52) follows
from the hierarchy constraints (45). By continuously solving (s = 0, 1,2, ...) the optimization
problem (27) subject to the constraints (28) and (45) we can build the required hierarchy of
solutions ()\5], u%) to reconstruct the quantum channel from it, see com/polytechnik/kgo/
KGOHierarchy . java for an implementation. A possible issue with the constraint (45) is that
for the solution s in the hierarchy, Eq. (43) is not satisfied for some projections, the number
of which equals the number of previous states in the hierarchy; for the ground state s = 0, all
projections are satisfied. However, the main advantage of (45) is that the matrix (52) for an
approximated S from (49) with the full Ny = Dn basis is equal to the corresponding matrix
with the exact S. For the reconstruction of a quantum channel as a mixed unitary channel, a
few solutions with high F* may be sufficient in a number of practical ML problems. The
obtained hierarchy may have up to Dn solutions, which is the maximum possible number N
of terms in the Kraus sum (4).

An application of the constructed hierarchy typically occurs when a nonunitary operator
)V is available that provides a high value of fidelity. An example of such an operator can be
a solution to the optimization problem (27) subject to partial constraints (Eq. (26) with
Ng = 1), which does not satisfy the full set of constraints (28). The expansion (48) allows

constructing a mixed unitary channel that provides a similar value of fidelity. The problem
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of constructing a quantum channel is reduced to two steps: 1. Find a nonunitary operator
to estimate the maximum possible fidelity, and then 2. Find a mixed unitary channel that
gives approximately the same fidelity. This approach allows us to consider a sequence of
N, = 1 problems instead of a single problem with a high Kraus rank N,. The only factor
that limits this program is the formulation of the actual objective function as a quadratic
form on quantum channel operators. In most cases, this is possible only through some kind

of approximation, which significantly limits its applicability.

A. A Demonstration of Constructed Hierarchy of Operators

Let us demonstrate the construction of operators hierarchy. First, we would like to mention
that this problem is more difficult for numerical solution than the original (27). With the
“external” constraints (45) added, we were able to solve the problem with N not greater
than 5 to 10, depending on the values of D and n. The first difficulty arises from numerical
instability and the need for a new adjustment algorithm to satisfy both the (28) and (45)
constraints, however this problem is technical and can be resolved with a little effort. The
second difficulty is a significant one. The optimization problem we are able to solve is a
quadratic functional (16) optimization. However, mixed states fidelity (11) is not of this form,
thus it cannot be directly applied to a general quantum channel. In the unitary case where
N, = 1, there are several good options, the most noticeable being F'Vev? (31). In cases where
Ny > 1, there are no good options, as depicted in Fig.1b. For this reason we try a number
of “proxies” for total fidelity (8). Specifically F¢° (10), F* (14), FN¢* (15) and FV&V? (31).
These four expressions are quadratic in &/ what allows us to build a S to which the
optimization technique can be applied.

Consider a demonstration. We generate a quantum channel (4) of dimension D =n = 10
with Kraus rank Ny = 3. Then generate M = 1000 random states p,il,z, (35) of rank N, =1
(pure states). Passing them through the quantum channel obtain the gg.?, of rank 3. If
we calculate the total fidelity (8) with the state closeness FP™P (11) of this pg,z, — Qyj),
mapping on B; of the quantum channel, then the result will be FPrP (B <) = M = 1000
since these B, make an exact mapping of the density matrix for all [. However, FP™P is
not a quadratic function on By because of the square root taken from the sum (4) — our

optimization algorithm cannot be applied. Instead, for the four aforementioned fidelity proxies
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TABLE I. A demonstration of a unitary hierarchy for a quantum channel of dimension D =n = 10
with Kraus rank Ny = 3. A total of M = 1000 random density matrices pglz, (35), each of rank

(0

N, =1 (pure states), are generated and mapped to p J using the quantum channel with Kraus

J
rank Ny, = 3. The mapping gives FPP(B&at) = M = 1000 for proper closeness (11), but we
need a quadratic expression (16) for total fidelity. Four fidelity proxies are considered: F¢7 (10),
FY (14), FN¢* (15) and FV@/7 (31) to construct four different hierarchies. For Ny > 1, there
always exists a single unitary mapping that produces a proxy-fidelity greater than that of the
entire quantum channel, e.g. for FVeV? we have F(B¢*t) = 617.13 < FIO = 627.04, whereas
Frrop(Beracty — 1000 > FProP(Ul)) = 627.04. Also, note that among all four proxies, FPrP(U7) is
exactly equal to F only for the proxy-fidelity FV2V?, this follows from matching (31) to (11) in

the case Ny = 1.

F constr.| F(Berect) Flol Frrop (101 FUl Frrov (1) Fl2 Frrov (412
Feo 393.83 410.59 625.00 344.94 558.10 303.17 507.44
Fv 626.80 652.47 625.18 552.36 559.80 487.67 510.98
FNe? 1000.00 | 1039.44 625.33 886.38 561.45 786.07 514.41
Fveve 617.13 627.04 627.04 571.86 571.86 545.94 545.94

that produce a quadratic target functional (16), we calculate a superoperator Sji. ;s from
density matrix mapping, perform optimization, and construct N, = 3 unitary hierarchy. The
result is presented in Table I, see com/polytechnik/algorithms/DemoDMGeneralMappingT
est.java for an implementation and run it as java com/polytechnik/algorithms/DemoD
MGeneralMappingTest 2>&1 | grep Proxy=.

First, we would note that all proxies (except F'V 92) do not give M on exact quantum
channel mapping F(B*"); but this may be fixed by normalizing. The major difficulty is
the fact that for all four proxies the maximal total proxy-fidelity is reached not on the exact
mapping B, of quantum channel. See the column FI% — the total proxy-fidelity calculated
on a single unitary operator 4% exceeds the proxy-fidelity F(B**) of the entire quantum
channel B;. This is a general property of all quadratic on By fidelity forms (16) we have tested,
the four listed in Table I as well as a few others: There exists a single unitary operator, the
U in (52) hierarchy, that yields proxy-fidelity exceeding that of the entire quantum channel.

This is the primary issue encountered when applying our QCQP algorithm to reconstruct
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a quantum channel with a Kraus rank Ny, > 1. Whereas for Ny = 1 density matrix unitary
mapping we have a number of good options for quadratic on i fidelity, in the case of Ny > 1,
for all proxy-fidelities we have tested, there always exists a single unitary mapping that yields
a proxy-fidelity greater than that of the entire quantum channel.

A quantum channel is always constructed with a preset mapping. The constraints (5)
mean that a unit matrix from the Hilbert space IN should be mapped to a unit matrix
in the Hilbert space OUT. In [10, 11| a quantum channel converting the Gram matrix in
IN into the Gram matrix in OUT was considered, with a regularization it is equivalent to
the same (5). In Section III a quantum channel mapping /p — /0 was considered, in the
N, = 1 unitary case the same quantum channel maps both p and /p what allowed us to
apply unitary learning to density matrix mappings. The problem of constructing a good

quadratic proxy-fidelity in the case of N, > 1 is a subject for future research.

B. Trace Preserving Maps

A general quantum channel (4) is a mapping between two Hilbert spaces. In this paper, we
primarily use it to convert the density matrix. Such a conversion may not preserve the matrix
trace. For example, a partially unitary mapping with D < n and N, = 1 was considered in
[11]. Mappings that preserve the matrix trace have special importance in quantum channel
studies. A question arises: when does a general quantum channel preserve the matrix trace?
We are interested in formulating the optimization problem (23) with quadratic constraints,
e.g. (24). Consider a density matrix pgr. Applying a quantum channel with the operators
bs ;i to it and taking the trace yields the Tro.

Ns—1D—-1 n—1

Tro = Z Z Z bs i Pk U5 i (53)

s=0 j=0 k,k'=0
For the expression to ensure Trp = Trp for an arbitrary p, these conditions should be satisfied:

Ns—1D-1

Ok = D D be kbl (54)

s=0 j=0
Equation (54) is a familiar trace preservation condition

Ns—1

> BiB.=1 (55)

s=0
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There are n(n + 1)/2 independent constraints on the quantum channel (4) to preserve the
trace. For Ny = 1 it immediately gives n = D. For n = D and an arbitrary N;, (5) and (55)
are identical. In the convex combination of unitary channels gauge (36) with D = n it gives
(37). For trace calculating map (where D = 1) it gives Ny = n. For these trace-preserving
constraints their linear forms (A30), totaling (n —1)(n+2)/2, can be added to the constraints
(A4) of the numerical method from Appendix A.

For n = D, the constraints (54) are equivalent to (24). For D < n the latter has fewer
constraints than the former. When D < n, the value of N should be chosen to be large
enough so that the Gram matrix (A20) is not degenerate, see (20) as an example of a
trace-calculating quantum channel having D = 1 and Ny = n. For D < n the matrix B, has
dimensions D x n, which gives the matrix BIB, a rank of D. Thus, for D < n, in the case of

trace-preserving maps, the Kraus rank should be at least
N.,>n—D+1 (56)

which is the minimum Kraus rank. Otherwise, the Gram matrix (A20) becomes degenerate,

and the trace preservation condition (55) cannot be satisfied.

V. CONCLUSION

We construct “quantum mechanics over quantum mechanics” by generalizing eigenstates to
quantum channel mapping operators. While in traditional quantum mechanics the stationary
Schrédinger equation determines system eigenstates, in our approach the algebraic problem
(43) determines quantum channel mapping operators. The total fidelity must be a quadratic
function on operators (16) for the problem to be represented in the form (43).

The technique was applied to the unitary mapping of density matrices. Since, for unitary
mapping, the same quantum channel converts both the density matrix and its square root,
the most promising approach is to convert the density matrix mapping (7) to the density
matrix square root mapping (29), to which we can apply our QCQP optimization algorithm.
This allows us to employ unitary learning in the application to density matrix mapping,
representing an important advancement from the commonly studied unitary mapping of pure
states ¢ = U1y; it allows us to distinguish between a probabilistic mixture of states and their

superposition. The technique was tested on a number of randomly generated density matrices
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p® of different ranks unitary mapped to o); in all cases the unitary quantum channel (3)
was perfectly recovered.

The problem was then generalized to quantum channels (4) with Kraus rank N, >
1. Reconstructing a general quantum channel mapping appears to be significantly more
challenging. First, we were unable to represent the proper fidelity (11) as a quadratic form
of the mapping operators, necessitating the use of approximations discussed in Section II.
Developing a better quadratic fidelity representation (for mapping operators) is a subject for
future research and is closely tied to the physical interpretation of quantum channels. Second,
even when an approximate quadratic form for fidelity is obtained, the algorithm described in
Appendix A fails to converge for Ny > 1. We expect, however, that implementing advanced
constraint methods could lead to improvements. If, instead of reconstructing an arbitrary
quantum channel, we restrict the problem to constructing a mixed unitary channel (36) using
a hierarchy of unitary operators, then the problem becomes solvable, as detailed in Section
[V. The results, however, are less satisfactory than desired due to a “double approximation™
first, approximating fidelity with a quadratic form, and second, relying on a mixed unitary
quantum channel instead of a general one.

In this work, we have studied quantum channels that convert: a unit matrix from IN
to OUT (standard definition), a Gram matrix from /N to OUT, and a /p to /0. We
developed a method for finding the global maximum by solving a novel algebraic problem
(43), see Appendix B, which presents a generalization of this algebraic problem to the
nonstationary case and introduces a time-dependent Schrodinger-like equation for operator
U(t). We anticipate that applying memoryless quantum channel mappings to other problems
could provide a solid foundation for a new form of machine learning knowledge representation.

For initial insights into quantum channels with memory, see Appendix C below.
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In this work, we study quantum channels as a positive map between two Hilbert spaces.
In the late 80s to early 90s, Ivan Anatol’evich Komarchev brought to V.M.’s attention the
problem of positive maps between Hilbert spaces and their relation to the Radon-Nikodym
derivative. This became the origin of this entire theme. His unexpected death in 2022 was a
significant loss to the Department of Mathematics at St.Petershurg Polytechnic University,
his colleagues who collaborated with him, and everyone who knew Ivan Anatol’evich. This

work is dedicated to his memory.

Appendix A: Numerical Solution

The described numerical algorithm is a further development of the one presented in [11].

The advancements over the previous version include:

e The ability to simultaneously include quadratic constraints of different types, such as
(24) and (25), or alternatively, (54) and (25), requires the introduction of two kinds of
Lagrange multipliers: )\;; and v,y. These multipliers are obtained from the solution of

the linear system (A25).

e Different groups of quadratic constraints create different convergence-helper linear
constraints. A general method, which does not involve the use of a special basis as
in [11], is formulated in Appendix A 5. This method involves varying the total NN,
quadratic constraints to obtain N, — 1 homogeneous linear constraints and a single
“simplified” (partial) quadratic constraint (26), which facilitates the use of a standard

eigenvalue problem solver as an iterative algorithm building block.

e In addition to the convergence-helper constraints, we can now include “external” linear
constraints. These external constraints can be used to construct a hierarchy of solutions

for the novel algebraic problem (43).

e Now that we have several types of constraints, especially “external” and convergence-
helper constraints, the procedure for adjusting the solution to satisfy all constraints
becomes more complicated. This is because adjustments for different groups of con-
straints may conflict with each other. Therefore, a conflict resolution strategy is required,

such as the one discussed in Appendix A 2.
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e The algorithm described below converges only when N; = 1: maximize (27) subject
to the constraints (28). Currently, it does not work for a general quantum channel
where Ny > 1, as the problem becomes degenerate and the algorithm fails to converge.
However, the calculations below are presented for an arbitrary Ny because the technique
provides a clear approach for adding constraints of various types. The current version of
the algorithm converges only for unitary (and partially unitary) learning when N, = 1,

with the “external” constraints possibly used to build a hierarchy of unitary operators.

Consider the optimization problem: optimize (23) subject to (24) and the canonical gauge
(25) constraints. For a general Ny the solution to the optimization problem is a matrix by jy
of dimensions Ny X D X n, corresponding to Ny Kraus operators By (4) that satisfy the
orthogonality constraints (5) and the gauge constraints, i.e. (6). This is the most general
form of mapping a Hilbert space [¢) of dimension n into a Hilbert space |¢) of dimension D.
This is a variant of the QCQP problem and the technique we used in [11] can also be applied
here. The tensor Sjij = S%y. i 1s Hermitian, it does not depend on the Kraus index s; the
calculations below can be generalized to s-dependent S ji.s ji except for Kraus operators
transformation to a canonical form with Appendix A 1. For simplicity we consider Sj. ;i
and b, ;, to be real and do not write the complex conjugated * below, a generalization to

complex values is straightforward. Consider a Lagrangian

s=0 j5,j'=0k,k'=0
Ns—1 D-1 n—1
+ Ajist [533’ - Z bs,jkbs ]’k’]
s=0 j5,5'=0 k'=0
Ns—1 D—1n—-1
— Z Vss’bs,jkbs’,jk: T) max (Al)

There are D(D + 1)/2 constraints (24) and N(Ns — 1) constraints (25). Lagrange multipliers
Ajj and vge are Hermitian matrices with corresponding number of independent elements;

the vy matrix has all diagonal elements equal to zero. Introduce a matrix S,/ to consider
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the quadratic form maximization problem obtained with the partial constraint (26)

‘Ss,jk;s’,j’k’ = 6ss’Sjk;j’k’ - Ajj’éss’(skk’ - Vss’éjj’(;kk’ (A2)

Ns—1 D—-1 n-—1

Z Z Z bs,jk‘ss,jk;s/,j’k’bs/,j/k’

s,8'=0 7,7'=0 k,k'=0

| NeglDnol -, max (A3)
o2 o2 2 by
s=0 ;=0 k=0
Following [11], we calculate Lagrange multipliers \;; and vyy from the current iteration by jy,

see Appendix A 4 below — then S ji,s j/& is fixed and the problem (A3) can be considered
as an eigenvalue problem. Additional N, linear constraints on b, j; can be incorporated to
improve convergence or obtain a sequence of solutions, see Appendix A 5 for convergence

improving constraints and (45) for obtaining a solution sequence.

Ns—1D—-1n-1

0= > Cusjrbsr d=0...N;—1 (A4)

s=0 j=0 k=0

A common method of solving the eigenproblem (A3) with homogeneous linear constraints
(A4) is Lagrange multipliers method|!1]|. Since we have a large number of constraints it is
better to use direct elimination instead. From N;Dn independent components of b ;. select

some general variables V,, p=0... Ny —1

NV = NSDn - rank(C’d;&jk) (A5>
bajk = Y MajapVp (A6)
p=0

where the constraints in (A4) are eliminated. The method of selection could be Gaussian
elimination, QR decomposition, or a similar technique. A simple implementation with row
and column pivoting is used in com/polytechnik/utils/EliminateLinearConstrain
ts_HomegrownLUFactorization. java. The result is a matrix M, ;. that converts Ny
independent variables V), to b, ;i of NyDn components satisfying all the constraints (A4).
A new eigenproblem has the matrices S,y and @,y in the numerator and denominator

respectively.

Ns—1 D—-1 n-—1

Sp;p/ = : : : : : : Mshjk;pSSij;sl?jlk/Msl?j/k’;p, <A7a)
s,8'=0 7,7'=0 k,k'=0
Ng—1D—-1n—-1

Qpy = Z Z ZMs,jk;pMs,jk;p’ (ATb)

s=0 j=0 k=0
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https://en.wikipedia.org/wiki/QR_decomposition
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Then we can write the eigenproblem (A3) in the form,

Ny —1
Z V;?Sp;p’ V;?’

p,p'=0
N1 —7 max (A8)

Z %Qp;p’ V;)’

p,p'=0

\4
Z SP?Z’I‘/p[/Z] =t Z Qp;p’vp[/z] (A9)

which has rank(Cy, i) less dimension and no linear constraints. The matrix @),,, in the
denominator is no longer a unit matrix. This is not an issue since any modern linear algebra
package internally converts a generalized eigenproblem to a regular one, see e.g. DSYGST,

DSPGST, DPBSTF and similar subroutines. Combining all together the algorithm becomes:

1. Take initial \;;, vss and linear constraints Cy., jx to solve the optimization problem
(A8) with respect to V,,. The solution method involves solving an eigenvalue problem
of dimension Ny, the number of columns in M, j,, matrix. A new b, j;, is obtained
from V, using (A6). The result: i = 0... Ny — 1 eigenvalues ul! and corresponding
matrices bgk reconstructed from V. The value of Ny is typically N,Dn — (D—-1)(D+

2)/2 — N4(Ng — 1)/2. Additional constraints (further reducing Ny ) are added when

constructing the operators hierarchy.

2. A heuristic is required to select the b, ;;, among all Ny eigenstates. There is a discussion
about this in [11]. Our numerical experiments show that in most cases it is sufficient to
always take the state of the maximal ;! to reach the global maximum. In the current

implementation we always select this state.

3. Obtained b, j; satisfies only partial constraint (26). We need to adjust it to satisfy all the
required constraints of orthogonality and canonical form. Adjust b, j; with Appendix
A 2 to satisfy orthogonality (24), then apply the result to Appendix A 1 to convert the
Kraus operators to canonical form (25). For Ny = 1, transformation to the canonical
form is not required. With the resulting b, j; calculate Lagrange multipliers \;; and

vge for the next iteration as described in Appendix A 4.

4. For good convergence, in addition to Lagrange multipliers, we need to select a subspace

for the next iteration variation. Using full size basis leads to poor convergence [10]. Use


https://www.netlib.org/lapack/lug/node54.html
https://www.netlib.org/lapack/lug/node54.html
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Appendix A5 to obtain (from by ;i) the linear constraints coefficients Cy j used in
(A4). There is an important feature of this additional linear constraints approach. In
addition to the constraints from Appendix A 5, we can manually add some external
constraints, such as requiring zero projection (45) onto already found solutions. This

way a hierarchy of high F solutions can be obtained.

5. Put these new \;; and v,y into (A2) and, using the basis V,, obtained (A6) from Cy ji,
calculate the generalized eigenproblem numerator and denominator matrices (A7) to
be used in the next iteration. Repeat the iteration process until convergence to a
maximum (presumably global) of F with b, j; satisfying the constraints (24) and (25).
If convergence is achieved, the Lagrange multipliers stop changing from iteration to
iteration, and the ul of the selected state in step 2 is close to zero. On the first iteration

take zero initial values for the Lagrange multipliers and have no linear constraints.

For a general N, implementation of this algorithm see com/polytechnik/kgo/Iterational
SubspacelLinearConstraintsNaiveKraus. java. There is a special Ny = 1 implementation
of it com/polytechnik/kgo/KGOIterationalSubspacelinearConstraintsB. java; they
share a codebase and unit tests. Currently the algorithm converges only if Ny = 1; in this
case, except for implementation improvements and optimizations, it has properties very
similar to the com/polytechnik/kgo/KGOIterationalSubspaceLinearConstraints. java

implementation in [11].

1. Transforming Kraus Operators to Canonical Form

The selection of Kraus operators By in which to evaluate (23) is nonunique, there should
be a gauge that regulates redundant degrees of freedom. For example consider data of exact
unitary mapping |1;) (] — |é1) (¢i| with an operator U providing perfect coverage in (2). Let
we want to describe this data with (4) mapping of Kraus rank Ny = 2. Then any combination
By, = wd with 1 =3 |w,|? is a solution. The problem becomes degenerate. This creates
difficulty in both analyzing the results and achieving convergence in the iterative algorithm
— any degeneracy greatly degrades it. It is common to consider Kraus operators B in the
canonical form (6). The problem becomes: converting a given b, j, matrix to the canonical

form of Eq. (25).
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Kraus operators can be considered as some superoperator states, similar to density matrix
states, but ket |-) and bra (-| are now operators: ) _|B;) (B;/, not vectors. This algebra can be
uses in the expansion of tensors, such as Sk, (49) — then evaluating F is an inner product
of superoperators. In this work we are not going to discuss the construction of superoperators
algebra and its applications. The most important application is the construction of operators
hierarchy in Section IV, what allows us to reconstruct a quantum channel from observable
data. There are a number of other interesting features that arise on this path and we hope
to present a detailed discussion elsewhere. In this appendix we limit ourselves to one small
but important problem.

Assume we obtained a partially Kraus operator in the form of a matrix b, j; that evaluates
the fidelity to some F (23). This bs ji does not satisfy the (25) constraints. The problem is
to convert b, j, to a new gs,jk satisfying the (25) while maintaining the same value of the
functional F. The solution is not unique and requires a gauge, akin to basis orthogonalization.
Since the tensor Sji.;/i does not depend on the Kraus index s, a solution can be readily
found. We use the same technique previously employed in adjusting for partial unitarity[l 1],
as outlined in Appendix A 2. It’s even simpler to apply it here since diagonal elements do

not enter into the constraints defined in (25). Consider the Gram matrix in the Kraus space

U

—1n-1
bs,jkbs' jk (A10)
k=0

<.
I
o

and solve an eigenproblem with it
Glg™) = A\ | i=0...N,—1 (A1)

Since the S}, does not depend on s one can verify that

ZS,jk = Z gLf]bSI,Jk <A12)

satisfies the (25) constraints, whereas the value of F (23) stays the same. See com/polytechni
k/kgo/TransformToCanonicalFormKraus. java for an implementation. The implementation
is straightforward: calculate the Gram matrix (A10), solve the eigenproblem (A11), then
convert the original b, j, to the basis of the found eigenvectors (A12); F does not change

with this transformation.
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2. An Adjustment of Operators to Orthogonal

A b, i, found at some iteration, may not satisfy all the required constraints. In Appendix
A1 we considered canonical form constraints (25), now consider orthogonality constraints
(24). It is sufficient to consider a single uj; since the same transform is applied to all by jy.

The Gram matrix
n—1
ij/ = Z UjpUjk <A13)
k=0

(or Gy = Zivzsgl Z;(l) bs jkbs ik for Ny > 1) is a unit matrix when all the constraints (24)
are satisfied. When this is not the case — we want to change the u;;, in a way that the change
is as small as possible. Following |1 1| we apply the same Gj_j}/ 2 technique. Specifically, solve

the eigenproblem
Glg™y = A | i=0...D—1 (A14)

and calculate the inverse square root of the Gram matrix

G2 — N EL |y g Al
[0 =2 == 19" (s") (A15)
=0 \/ A&

&‘

By checking the result, one can verify that for any u;, producing nondegenerated Gram

matrix (A13) the matrix
D1
U = > G g (A16)
=0

satisfies all (28) constraints (or ESJ;C = Ei’:)l G;il/Qbmk and constraints (24) for Ny > 1,
in this transform we apply the same G;il/ ® %o every Kraus operator By — the adjustment
does not depend on s). Previously considered transformation to the canonical form (A12)
has an important difference from (A16). The transformation (A12) does not change any
observable, it just reshuffles B, among themselves in the (4) sum (gauge transform) in a way
that the obtained B; satisfy the canonical form constraints (6), specifically (25). But Eq.
(A16) actually changes the solution, it is not possible to satisfy (24) without changing the

solution itself. We will not repeat the lengthy discussion [1 1] about this G;il/ ? adjustment

technique, just note that it introduces a “minimal disturbance” to a solution, which is very
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advantageous for an iterative algorithm. This adjustment technique is implemented in com/p
olytechnik/kgo/AdjustToOrthogonalKraus. java.

There is an issue that arises when constructing operators hierarchy in Section IV —
there we do have external linear constraints (45) to be added to the iterative algorithm.
Whereas the convergence-helper constraints of Appendix A 5 are themselves calculated from
the adjusted u;;, (A16), external constraints are different in the sense that they are preset.
The application of Gj_j}/ ? to the current iteration uji, which satisfies external constraints
due to (A6) incorporating all the linear constraints, may create a u;;, that does not satisfy
external constraints. In most cases, this problem can be ignored since as iterations progress,
the solution converges to the required subspace. However, it would be beneficial to modify
the adjustment procedure to explicitly incorporate externally defined homogeneous linear
constraints.

Consider external constraints

=)
|
ol
L
s
L

0

I
o
e
Il

J
here C ;. represents, for example, constraints (45), where index d enumerates the constraints;
they do not include convergence-helper constraints from Appendix A 5, which are determined
later, after the constraint-adjusted wu;; is obtained. To simplify projections bellow, consider
Cg.jr and ugp as vectors, and convert Cg . to an orthogonal form. One can either use Gram-
Schmidt orthogonalization or, alternatively, apply the same G~/? technique we previously

used for a different problem. Now we convert (A17)

D—-1n—1
Gar =Y > CipClryy (A18a)
j=0 k=0
Cajk = Z G;dlf/z &3k (A18b)
d/
n—1 ~e

to an orthogonalized form 49 = Zf:_ol k=0 Caiik Ng/n.k; the only purpose of this orthog-
onalization is to have a simple projection formula (A19) below. Consider the following

iteration:

e Take the original u;; and convert it to the form that satisfies orthogonality constraints

(A16).
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e This u;;, satisfies (28) but may not satisfy external linear constraints (A17). Remove
the projections

D—-1n-1

Ujk = Uk — Z Csin Z Z Cagritiyi (A19)
d 5'=0 k'=0
Obtained ijk satisfies external constraints (A17) but may not satisfy the orthogonality

constraint (28).

e Repeat the process by performing a number of iterations. This iteration-adjustment
algorithm has poor convergence per se and requires about a hundred iterations to
obtain a w;j, that satisfies both the constraints (28) and (A17) exactly. However, since
this iteration-adjustment is only step 3 of the main iterative algorithm, we do not
necessarily need an exact solution. Numerical experiments show that 3 to 6 iterations
are sufficient for the main iterative algorithm to converge in the presence of external

linear constraints.

See com/polytechnik/kgo/AdjustToUnitaryWithEV_SubjectToLinearConstraints. j
ava for an implementation. As emphasized above, several iterations of these sequential
adjustments are sufficient to achieve good convergence of the main algorithm. However,

significant improvements are possible, and further study of this problem is necessary.

3. An Adjustment of a Quantum Channel to Preserve the Trace

A bs ji, found at some iteration, may not satisfy the constraints (54) of trace preservation.
We can apply the same G~1/2 technique from Appendix A 2 to adjust the quantum channel

operators b ;i to preserve the trace. Consider the Gram matrix

Ny—1D—1
Gkk’ = Z st,jkbs,jk’ (AQO)
s=0 j=0
and solve an eigenproblem with it
Glg™) = A& |g™) i=0...n—1 (A21)

Since we typically have D < n the Gram matrix (A20) may become degenerated. To avoid a

degeneracy the number of terms Ny in the quantum channel should be large enough, there is
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a minimum Kraus rank (56). For a nondegenerated G calculate its inverse square root:

n—1 +1 A A
I = > =~ g") (4" (A22)
i=0 )\[l]
a
And apply it to the current solution b
_ n—1
boj =Y Gt by jq (A23)
q=0

By checking the result one can verify that Es,jk satisfies all the trace preservation constraints
(54), see com/polytechnik/kgo/AdjustToTracePreservingKraus. java for an implemen-
tation. Note that the problem may become degenerate, which requires special attention. Also
note that (A23) is similar to (A16) and, contrary to (A12), actually changes the b, jz. A
possible conflict between different adjustments can potentially be resolved similarly to the

resolution of a conflict between linear constraints and the adjustment (A16).

4. Lagrange Multipliers Calculation

The variation of the Lagrangian £ (A1) must be zero in the iteration state by jx

D—-1n-1

1 0L
=95, Z > Siggwb e
’ 7'=0 k'=0
D-1 Ny—1
B Z /\ij’bsyj’q - Z Vss’bs’,iq <A24)
j’'=0 s'=0

There are a total of NyDn equations. They are all satisfied if by jj, is extremal in (A3). The
bs ;i used, however, has the orthogonality adjustment procedure of Appendix A 2 applied
to it and the Lagrangian variation is no longer zero. Lagrange multipliers are Hermitian
matrices \;; and vgy, they have D(D + 1)/2 and Ny(Ng — 1)/2 independent values thus all
the NyDn equations cannot be simultaneously satisfied. We need to select the \;; and vy to
ensure they best satisfy the zero variation condition for a given b; . Consider the L? norm

of (A24) and find the \;; and vy minimizing the sum of squares.

Ns—1D—-1n—-1 2

— min (A25)

>\ij7VSS,

oL
0bs.iq
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To simplify the minimization of (A25) it is convenient to map \;; into a vector of independent
components A,.. One can note that for j < i the vector index can be taken as r = i(i+1)/2+j
(if 7 > 4 swap them). Similarly for v, and v,y take the vector index as r = s(s — 1)/2+ s’ for
s' < s otherwise swap the indexes. Then differentiate (A25) over A, and v, to obtain a linear
system with respect to them. Back in [11] a similar linear system was analytically solved and
an explicit expression for \;; was obtained.

D—1 n-—1

)\ij = Herm Z Z uiksjk;j’k’uj/k:’ (A26)
0

§'=0 k,k'=
This is an analytic solution in the case Ny = 1 with w;, = by j satisfying the (28) constraints,
see com/polytechnik/kgo/LagrangeMultipliersPartialSubspace.java:calculateReg
ularLambda for an implementation of this special case. In the general case we have two types
of Lagrange multipliers: \;; and vy, which prevents us from obtaining an analytic solution.
But the problem is straightforward: take each term from (A24), square it, and sum over all
s, 1, q. Differentiate this sum of squares with respect to the vectors A, and v, to obtain a
linear system, then solve it. The calculations are straightforward but lengthy, see com/pol
ytechnik/kgo/LagrangeMultipliersNaiveKraus. java:getLagrangeMultipliers for an
implementation that, given bs ;i and Sj.;k, calculates the Lagrange multiplier matrices \;;
and vy .

This approach differs from the commonly used one in that we only utilize the Lagrangian
variation (A24) to calculate Lagrange multipliers. The by ;5 is then determined from the
eigenproblem solution with these Lagrange multipliers used in (A2). This allows us to apply
constraint satisfying adjustments to the b, before using it in the calculation of Lagrange
multipliers. We cannot simultaneously solve the optimization problem for Lagrange multipliers

Aij, Vs¢ and the solution b, ;. Instead, on every iteration, we adjust the b, j; to satisfy all

R
required constraints, solve the linear system to find the Lagrange multipliers, and then use

them in an eigenproblem to find the next by ;.

5. Convergence-Helper Linear Constraints

The problem we study involves quadratic constraints (24) and (25). These constraints
cannot be directly incorporated into the eigenproblem (A3). However, homogeneous linear

constraints can be easily incorporated. Let’s construct the linear constraints corresponding to
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the constrained local variation of the current iteration b, jz. The concept can be illustrated
by varying a quadratic constraint (x|y) = 0 to obtain a linear constraint on éx and Jy
at fixed x = uj, and y = uj,: 0 (x|y) = (0x]y) + (x| dy) = 0; similarly, two expressions
1 = (x|x) = (y|y) are replaced by (x|x) — (y|y) = 0. By varying it, obtain a linear
constraint on dx and dy: (dx|x) + (x| dx) — (0y |y) — (y | dy) = 0. In the case of unitary
mapping (D = n, Ny = 1), this corresponds to replacing the n(n +1)/2 quadratic constraints
of the unitary property (28) with n(n + 1)/2 — 1 homogeneous linear constraints (A4), that
simply reduce the search space dimension (A6), and a single quadratic constraint (26), referred
to as a simplified (partial) constraint. This problem can then be iteratively solved with

excellent convergence using an eigenvalue problem solver as a building block.

Consider (24) j # j' off-diagonal elements. There are D(D — 1)/2 total distinct ones.
Variating (24), we obtain

Cas it = bs jri (A27a)
Cd;s,j/k = bs,jk (A27b>

Two equations set different elements in Cy j; for the same d, they may be viewed as
two initialization commands for the matrix Cy; jx. In (A27), the constraint index d takes
D(D — 1)/2 distinct values corresponding to all j < j pairs.

Consider the inhomogeneous constraints (24) corresponding to the diagonal elements with
j =7’ There are D of them. Since the partial constraint (26) preserves the total norm, it is
sufficient for all diagonal elements to be equal. Equality of diagonal elements constitutes a

homogeneous constraint, yielding D — 1 constraints for a given by jy.

Cd;sg‘k = bs7jk (AQS&)
Casj—1k = —bsj1k (A28b)

Similarly to the previous case, two equations set different elements in Cy ;i for the same d.
In (A28) the constraint index d takes D — 1 distinct values corresponding to j =1...D — 1.
For an implementation of (A27) and (A28) see com/polytechnik/kgo/LinearConstraints

Kraus. java:getOrthogonalOffdiagODiagEq.

Consider the canonical form constraints on Kraus operators (25). There are no diagonal
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elements, resulting in a total of Ng(Ng; — 1)/2 distinct constraints. Similarly obtain

Cas it = b jik (A29a)
Cd;s’,jk = bs,jk (A29b>

Two equations set different elements in Cy; ;i for the same d, they may be viewed as two
initialization commands for the matrix Cy ji. In (A29) constraint index d takes Ny(Ns—1)/2
distinct values corresponding to all s < s pairs; for Ny = 1 the constraints vanish. For an
implementation of (A29) see com/polytechnik/kgo/LinearConstraintsKraus. java:get0
rthogonalKrausOffdiag0.

Quadratic constraints for trace preservation (54) can generate (n—1)(n+2)/2 homogeneous
linear constraints, similar to how (A27) and (A28) were derived from the orthogonality

constraint (24).

Cd;s,jk - bs,jk’ (A30a)
Cd;s,jk’ = bs,jk (A?)Ob)
and
Cas,jk = bs,jk (A30c)
Cis jk—1 = —bs jr—1 (A30d)

see com/polytechnik/kgo/LinearConstraintsKraus. java:getTracePreservingConstr
aints for an implementation.

These linear homogeneous convergence-helper constraints can be summarized as follows:

e (A27) — D(D —1)/2 in total, corresponding to (24), ensures that off-diagonal elements

are zero.

e (A28) — D — 1 in total, corresponding to (24), ensures that the diagonal elements are

equal.
e (A29) — Ny(N; — 1)/2 in total, corresponding to (25).

e (A30) — (n—1)(n + 2)/2 in total, corresponding to (54), optionally used instead of
(A27) and (A28).
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The combined set of linear constraints can be put to (A4) with Ny = (D —1)(D +2)/2 +
Ng(Ns —1)/2 to restrict® the variation subspace of by jx. All Cy i are calculated from by jg,
similar to the calculation of Lagrange multipliers in Appendix A 4. Our algorithm uses, as an
iteration state, not a pair: approximation, Lagrange multipliers (bs jx, {\ij, Vss'}), but a triple:
approximation, Lagrange multipliers, homogeneous linear constraints: (bs jx, {\ij, Vss' }» Cass jk):
it is the linear constraints themselves that ensure algorithm convergence — current work

and previous |1 1] results show their critical importance.

Appendix B: A Time-Dependent Schrédinger-like Equation

A formulated novel algebraic problem (43) is a generalization of the eigenvalue problem
(time-independent Schrodinger equation). A question arises regarding the generalization of

(43) to a time-dependent form. Consider the equation

o
ih— - = SU (B1)

where superoperator S is a Hermitian tensor S+ and U is a unitary operator u;;, where

D = n. This equation is different from the dynamic equation for the density matrix

L Op

where the Liouville operator Lp = Hp — pH. This equation has the Hermitian density matrix
p as its solution. The distinction arises from the fact that the operators £ and S have
completely different structures, and the solution I/ is now a unitary operator, not a Hermitian
matrix p. We can, however, employ a transition from the wavefunction Schrédinger equation
to density matrix Liouville — von Neumann equation (B2) to construct an equation for the
density supermatrix Y, which represents the density tensor. The density matrix is a convex
combination of pure states (Eq. 39); this results in a transition from a vector |¢) of dimension
n to a Hermitian matrix p of dimension n x n. Similarly, consider a convex combination of

unitary channels
Dn—1

T= 3 Pyt ) (B3)

6 From the n(n + 1)/2 trace preservation constraints (54), we obtained (n — 1)(n + 2)/2 linear constraints
(A30). These can be used instead of (A27) and (A28). For n = D both sets are equivalent. When, for some
reason, they are used together, it is possible to have redundant constraints (e.g., in the D = n unitary case

where Ny = 1). In such cases Gaussian elimination retains only the rank Cg;s,jk of them.


https://en.wikipedia.org/wiki/Density_matrix#The_von_Neumann_equation_for_time_evolution
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This results in a transition from a D X n unitary matrix U (where D = n) to a Dn x Dn
density tensor T, which has the same structure as the Hermitian tensor Sj . A general
quantum channel is described by a density tensor Y. Then, similarly to Eq. (B2), we can

assume that T satisfies its own Liouville equation

0T

Equation (B4) is analogous to Eq. (B2), but describes dynamics where a unitary operator U
replaces the vector wavefunction |¢)), and the density tensor T replaces the density matrix p.
The specific form of the operator £ requires further research; the first form to consider is,

evidently,
LY =85T-T1TS (B5)

The commutator is possible because S and T have the same tensor structure. This form,

however, differs from regular density matrix dynamics. For a pure superstate Y = |U) (U],

where U is the solution of (43), LY from (B5) is not zero: (LY )irjq = >oo—g A

028 N, —
Zf,);é uiku, A} This issue does not arise in regular density matrix dynamics, where for a
Hamiltonian eigenvector |¢), the density matrix p = |¢) (1| satisfies 0 = Hp — pH.

If the tensor Y. 4 is known only in matrix form, the expansion (B3) can be obtained by
applying the hierarchy construction from Section IV to T jj.;.». Note that various orthogonality
constraints can be applied to the operators ¢ in (B3). For example, the constraint (44b)

can be used instead of (45), which was previously employed in Section IV. The operators U [s]

in (B3) then satisfy the “denominator”-type orthogonality condition (44h)

D6,y = <u[SJ

u[5’1> (B6)

We will defer the study of the equation for the density tensor T to future research and focus
here on a simple example of the ground state time evolution of Eq. (B1). This equation is a
generalization of the Schrédinger equation from wavefunction vector space to the space of
unitary operators. The Schrédinger equation itself can be derived from Brownian motion,
Fisher information, the Hamilton-Jacobi equation, and various other approaches to direct
problems (see references [21-34] in [12]). Our equation (B1) could likely be derived from
various inverse problems.

Consider a ground state stationary solution of (B1) corresponding to 2%, i.e. obtained by

maximizing the fidelity F without using the constraints from (45). This solution, represented
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ﬁ!, satisfies (43) with some )\E(J)J. The matrix )\Eg] is Hermitian but not necessarily

by the matrix u
diagonal. Let us convert the problem to the basis in which )\Z[(J)-] is diagonal. Consider the basis

of \;; eigenvectors

D-1
> aa = AP (B7)
=0

Then, if we formulate the original problem (43) in basis

D-1
Upk = Z ﬁj[p}ujk (BS)
=0

the obtained solution is v[o]

k> and the corresponding Ay, is diagonal with the diagonal elements

equal to the eigenvalues AP in (B7). We considered a similar basis transformation in [10] (see
Appendix A.2 therein, “On Iteration Step Without Using the SVD”), where Sjj.; and
are converted between bases for the purpose of improving the convergence of an algorithm.
However, later |1 1] we found an algorithm that ensures convergence in any basis. Here, this
transformation is performed solely to obtain the Lagrange multipliers \;; (A26) in diagonal
form, which is necessary to find a stationary state solution of the time-dependent equation
(B1). Thus, without loss of generality, the \;; can be considered diagonal; otherwise, the
original problem basis should be changed to (B8).

Let us also rewrite (B1) by replacing S with A, g, and referring to this S as the single

Hamiltonian approximation.
Sikgrk &2 Ajj Ok (B9)

In this approximation, a general S, which encompasses many different Hamiltonians, is
replaced by a form containing only a single Hamiltonian A, typically corresponding to the
ground state. The maximal fidelity F = (U | A |U) = Tr then holds for an arbitrary unitary
operator U, not just for the ground state solution of the equation (43). By focusing solely on

the ground state quantum channel the dynamic equation (B1) becomes

L ou

This equation is akin to a Schrédinger equation with the Hamiltonian A, where all possible
solutions are encompassed in Y. The equation describes the simultaneous time evolution of

all possible solutions. The full superoperator S, contains many Hamiltonians. For each
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solution of (43), the Lagrange multiplier matrix A can be considered as a Hamiltonian of

O of (43) and \,; being

some quantum system. For uy; being the ground state solution u,,

diagonal )\[p]épj the time-dependent solution of it is
up(t) = exp (—%wt) upi(t = 0) (B11)

This can be viewed as w,, vectors evolving each with its own phase exp (—it/\[p} / h). If we
consider the operator u,, as D “wavefunctions” u,, of dimension n, then each of them evolves
with its own “energy” AP/, This represents the time evolution of the ground state solution
of (43). The difference from traditional quantum mechanics is that the ground state w,y
now contains multiple vectors, each evolving with its own exponent A}, The density tensor

corresponding to the ground state is

(1) UD i () = (B12)

exp (—% <)\[p} - )\[p/}> t) Upk(t = 0) . (t = 0)

Unlike the density matrix of a traditional quantum system’s ground state, which does
not depend on time, this density tensor has only the diagonal elements, p = p/, that are
independent of time. This explains why (B5) is nonzero for a pure superstate T = |U) (U],
where U is the solution to (43).

A heat transfer-like equation can be obtained by removing the imaginary unit ¢ from
(B1), resulting in »0U /Ot = SU. In this case, the solution (B11) results in an exponentially
growing or decaying u,y(t).

The time evolution of a superposition of two solutions is more complicated compared to
the Schrédinger equation. For the Schrodinger equation, a superposition of two eigenstates
a)® + bpl!) of a Hamiltonian time-evolves as ay!% exp (—it Ey/h) 4 byl exp (=it Ey /R). At
the same time, if we consider a superposition of two solutions auﬁ] + buglk] of (43), the result
may not be unitary. The violation of unitarity resulting from such a superposition has
deep physical significance. Such a superposition does not describe a physical state and,
therefore, should not be considered. A proper generalization is the introduction of the density
supermatrix T (B3), which describes a mixed type of state.

Another feature that may differ between wavefunctions and quantum channels is the
state post-measurement destruction rules. In traditional quantum mechanics, the state

|¥) is destroyed (at least partially) after the measurement act (10| R|%). In contrast, the


https://en.wikipedia.org/wiki/Heat_equation#Statement_of_the_equation
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measurement (U | R|U) involves a quantum channel U as the state. The post-measurement
destruction rules for a quantum channel 4 remain an open question. It is possible that
these rules differ between wavefunctions and quantum channels. A very important question
is what the measurable unit is in quantum channel dynamics: whether it is a scalar or a
Hermitian matrix? Since the corresponding algebraic problem (43) has eigenmatrices as its
spectrum, rather than the usual eigenvalues (scalars), we are inclined to believe that the
measurement unit is a Hermitian matrix. As the ground state energy of a quantum system can
be obtained as a result of a single measurement act, a quantum channel single measurement
could potentially provide the Hamiltonian A% corresponding to the solution of (43) with the

maximal fidelity.

For these reasons, we will leave a detailed consideration of the time-dependent equations
(B1) and (B4) for future research and limit ourselves to the time evolution (B11) of the ground
state, which corresponds to each u,, vector evolving with its own “energy” AP, The total
fidelity is equal to the sum of all A and the ground state is the state with the maximum
total fidelity. The ground state solution corresponds to a unitary operator U(t) that itself
depends on time (B11).

Appendix C: Parametrizing states with memory using a feedback loop

In this and previous works, we considered a memoryless quantum channel described by a
set of Kraus operators By or, in the simplest case where Ny = 1, by a single unitary operator
U. A question arises about how memory can be introduced into the model. Modeling a system
with even a single bit of internal state is a daunting task, see Appendix H of [20], where we
discuss the problem of modeling a synchronous positive-edge-triggered D flip-flop (D trigger)
with ML. Any memory can be represented by a feedback loop, as seen in, for example, a
D-trigger or a recurrent neural network. The question is how to introduce memory into the
quantum channel (3) described by an operator U? For pure states, the channel transforms
an input state |¢) into the output state |/|¢)). Let’s assume there is a feedback loop that

requires some (but not all) components of the output state to be equal (within a phase) to
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the same components of the input state.

| )y = 1Uld) |
T{k} " *‘.y{k}
[i]‘[i]
A Tig
Yy = AT uggey (C1)
k=0

Here the {k} denotes these selected “feedbacked” components. If {k} is an empty set, we
obtain the problem we considered in [l 1]. If {k} includes all n components — then (C1)
becomes a regular eigenproblem with A being exp(i¢) (or £1 for an orthogonal uj;). In
this case the problem does not have any input and the internal state can be represented
as a superposition of n eigenstates of eigenproblem (C1). Now consider {k} to be a subset
of 0...n — 1 indices with a total of n,, elements. Then the problem (C1) represents an
eigenvalue-like problem of dimension n,,, i = 0...n,, — 1, where an “eigenvector” |w[i]> (there
are n,, total) has n — n,, components set externally and n,, components being an internal
state. This “partial eigenvalue” (C1) problem is a simple way to represent a quantum channel
with an internal state (memory). A given state |¢)) has n — n,, free components (input) and
n,, components of the internal state. A change in the input components can potentially cause
changes in the internal state. The study of unitary quantum channels with internal states is
a subject for our future research.

A different application of these “feedbacked” states of a unitary operator relates to
the problem of integer factorization. An integer can be encoded into a state |¢), and the
multiplication of the integer modulo N by a number a can be represented as a unitary
transformation Y. In Shor’s algorithm [13], a major step in the prime factorization of a

number N involves finding the period r of
a” = 1lmod N (C2)

If multiplication by a is encoded as a unitary transformation U acting on the state [¢), then
the problem (C2) can be framed as finding the r such that |U/"|1¢y) equals the initial state
|1bo) up to a phase factor. This is similar to the concept of the feedback loop shown in (C1).
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For example, if we were able to build an actual quantum system with the Hamiltonian
h
H=i-InlU (C3)
T
and initial state [1)(=") = |¢)g) then, since the system’s time evolution
.t
U =exp l—zﬁH} (C4)
[0©) = [U]=) (C5)

the calculation of r can be reduced to simply observing the quantum system (C3) with
U =U(t =7) at time moments ¢ = 71 and waiting until ‘w(t:”)> matches [¢)y) up to a phase.
The index [ of this time moment gives the period r. For this quantum system, the “Boltzmann

time” of spontaneous return to the exact initial configuration provides the sought period r.

Appendix D: An estimate of computational complexity

The described class of algorithms solves QCQP problems that arise in the maximization of
quadratic fidelity, subject to quadratic constraints on mapping operators (e.g., unitarity). This
problem is equivalent to an algebraic problem; for example, in the case of unitary learning,
it corresponds to the algebraic problem (43) originally introduced in [20]. This represents
the simplest problem of this type. In the general case, this is a new algebraic problem of
dimension Ng;Dn. It can be solved numerically using an iterative algorithm that, on each
iteration, replaces N, quadratic constraints with N. — 1 homogeneous linear constraints
and a single quadratic constraint (26), referred to as a simplified (partial) constraint, see
Appendix A 5 above. Since a QCQP problem with a single quadratic constraint is equivalent
to an eigenvalue problem, a regular eigenvalue problem solver is applied to a problem of
dimension Ny = N,Dn — N+ 1, this is step 1 of the algorithm. As discussed in Appendix B
of [11], this is the most computationally intensive step. Its computational complexity in the
unitary learning case (D = n, Ny, = 1) involves solving an eigenproblem with a matrix of
dimension Ny = n? —n(n+1)/2+ 1. This complexity can be estimated as O(n*) when using
a specialized solver optimized to find only the maximal eigenvalue and O(n%) when using a
general-purpose solver. Our current implementation [19] uses a general-purpose eigenvalue

solver.
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Let us compare the computational complexity of this “algebraic” algorithm with that of the
“mathematical analysis” ones: second-order Newton’s method and first-order gradient method.
A unitary matrix of dimension n can be completely parametrized with N = n(n + 1)/2
parameters. There are n fewer parameters if we do not need unmeasurable phases. The
number of parameters is always greater than or equal to n(n — 1)/2 (e.g., Euler angles), see
(B11), which gives a time-dependent ground state unitary operator U(t) such that, at every
time moment ¢, the matrix U gives the maximal value of fidelity F (27). The complexity of
the classical Newton’s method for nonlinear systems of N equations is O(N;N?), as a linear
system needs to be solved at each iteration. Some tricks, such as updating the Jacobian
only once every m iterations, can reduce the complexity to O(N;N? + N;; N3/m). Since
the number of iterations, N, for Newton’s method is often independent of N, the practical
complexity of the Newton’s method algorithm can be estimated to lie between O(n?) and
O(n®),” depending on the Jacobian updating strategy. While the computational complexity
of the proposed algebraic algorithm is comparable to that of the second-order Newton’s
method, using the generalized eigenvalue problem as the algorithm’s building block offers the
advantage of obtaining multiple solution candidates (eigenvectors). Numerical experiments| 1]
demonstrate that this significantly increases the chances of finding the global maximum.

The computational complexity of the gradient method in the general case is O(NyMN).
If the M-sum can be factored out from the objective functional (e.g., into a form like (27)),
the complexity reduces to O(N;N?) = O(Nyn'). However, in the gradient method, the
number of iterations N;; is not guaranteed to be small, nor is the algorithm guaranteed to
converge, especially for a global optimization problem that is nonconvex, with local extrema
and multiple saddle points.

The developed algorithm exhibits computational complexity on par with second-order
Newton’s method and higher than that of the first-order gradient method. Its main feature
is the algebraic approach, which enables the construction of a globally converging algorithm.
While we lack a formal proof of its convergence, among millions of test runs, only a few failed
to converge to the global maximum. In this work, we aimed to address a practical problem
that can be validated using a classical computer. Consider a scenario where we have input data

(e.g., in the form of files on disk), and we seek to recover the corresponding quantum mapping,.

7 If all M observations are not combined into a single entity, such as Sjjk;j k', then the complexity may range

between O(Mn*) and O(MnS), which significantly worsens the result.
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This problem frequently arises in Machine Learning for large dimensions, as discussed in
[2] and over 1,000 subsequent papers citing it. In the notations of the submitted paper,
typical dimensions of the ML problem are Ny = 1 and D = n ~ 10% or greater. The solution
involves a form of unitary parametrization|5], such as representing the unitary as a series of
elementary rotations (e.g., Euler angles) and employing a gradient-based optimization method.
The resulting solution is obtained through this process, but there is no guarantee that it
corresponds to the global maximum. Our primary focus was on developing an algorithm
capable of providing the global maximum solution. For this reason we considered an exact
unitary mapping and aimed to recover it from a sample, this is why we did not include noise
or other common features in our study. This is a highly challenging nonconvex problem, as
the number of parameters grows quadratically with n [11]. To the best of our knowledge,
practical solutions are feasible only for small n (fewer than a dozen) or under specific setups
[14, 18, 38]. In our numerical experiments for unitary learning, the problem’s dimensionality
appears to be constrained solely by computational complexity. At each iteration step, an
eigenvalue problem of dimension Ny = n? — n(n +1)/2 + 1 must be solved, with only the
eigenstate corresponding to the largest eigenvalue being required. Given the extensive global
effort devoted to developing efficient numerical solvers for eigenproblems, we anticipate that
the dimensionality of the problem can be significantly increased. Currently, however, we lack
access to hardware capable of solving eigenproblems for matrices larger than dimension 1000.
Our original goal was to push the problem’s dimensionality to a point where exact recovery
of orthogonal (real unitary) matrices would become infeasible. However, computational limits
were encountered first. In our experiments, we tested the exact recovery of thousands of
randomly generated orthogonal matrices with dimensions under 50 (corresponding to an
eigenproblem size of 1226). The ability to find the global maximum remains the algorithm’s

most significant feature.

The computational complexity of constructing the tensor S (19) was insignificant
for the pure state unitary mapping (1) discussed in |1 1]. However, for the unitary mapping
(3) of mixed states (7) considered in the present work, obtaining the fidelity in quadratic
form requires transforming the mapping to a density matrix square root mapping (29).
This transformation may significantly increase the computational complexity of calculating
Sik:e (30). Using an eigenvalue problem to calculate the square root of a matrix would

require solving M eigenproblems with the matrices p and p, each of dimension n, resulting
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in a complexity of the order O(Mn3). This cannot be reduced as in the QCQP case above,
where only a single eigenvector was needed. For the density matrix square root, we need all
eigenvectors, and the calculation of (30) probably cannot be done any better than O(Mn?).
The factor before that can, however, be reduced. When the number of observations M is
large, instead of using the regular method of calculating the matrix square root by solving an
eigenproblem (as in (A15) and (A22) above), one can apply alternative methods to compute
the square root of a positively definite Hermitian matrix without solving an eigenproblem
[15, 46]. These approaches, like the eigenvalue problem, have a dominant complexity of
O(n?) for the square root computation. However, in practice, it can significantly improve
computational efficiency when creating the mapping (29) from the original data (7). Despite
the complexity of calculating Sj, ;4 for a large M, this creates no difficulty in applications
since the calculations are similar to those used, for example, in covariance matrix computation.
Each component of the tensor is a sum over all M observations, and this task can be trivially

parallelized.

The general Kraus case, Ny > 1, is significantly more difficult, since the fidelity (16), as a
quadratic form, can only be obtained as an approximation. However, once the approximation
is obtained, in the general case, it requires solving an eigenproblem of dimension Ny =
NyDn — N.+ 1 at each iteration (step 1 of the algorithm), with only a single eigenvector
corresponding to the maximal eigenvalue being needed. For a general quantum channel (4), we
were not able to construct a converging algorithm, not to mention the increased computational
complexity (eigenvalue problem dimension is increased in Kraus rank times). However, if we
limit ourselves to mixed-unitary channels (36), then this type of quantum channel can be
reconstructed as a hierarchy of unitary operators. Computationally, the problem in Section
[V is much simpler than a general quantum channel reconstruction. Instead of dealing with a
single complicated general quantum channel problem, the problem of unitary mapping needs
to be solved several times. Numerically, we were able to obtain a hierarchy of no more than 7
operators, which is probably due to the suboptimal algorithm for constraint conflict resolution
used in Appendix A 2. The result is a mixed unitary channel (36). However, contrary to the

N, =1 case, for Ny > 1, this is only an approximation, since we were not able to represent
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the proper fidelity (11) as the quadratic form of Eq. (16) in Kraus operators B; when N, > 1.
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