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The problem of an optimal mapping between Hilbert spaces IN and OUT, based
on a series of density matrix mapping measurements ρ(l) → ϱ(l), l = 1 . . .M ,
is formulated as an optimization problem maximizing the total fidelity F =∑M

l=1 ω
(l)F

(
ϱ(l),

∑
sBsρ

(l)B†
s

)
subject to probability preservation constraints on

Kraus operators Bs. For F (ϱ, σ) in the form that total fidelity can be represented
as a quadratic form with superoperator F =

∑
s ⟨Bs|S|Bs⟩ (either exactly or as an

approximation) an iterative algorithm is developed. The work introduces two impor-
tant generalizations of unitary learning: 1. IN /OUT states are represented as density
matrices. 2. The mapping itself is formulated as a mixed unitary quantum channel
AOUT =

∑
s |ws|2UsA

INU†
s (no general quantum channel yet). This marks a crucial

advancement from the commonly studied unitary mapping of pure states ϕl = Uψl

to a quantum channel, what allows us to distinguish probabilistic mixture of states
and their superposition. An application of the approach is demonstrated on unitary
learning of density matrix mapping ϱ(l) = Uρ(l)U†, in this case a quadratic on U
fidelity can be constructed by considering

√
ρ(l) →

√
ϱ(l) mapping, and on a quantum

channel, where quadratic on Bs fidelity is an approximation — a quantum channel
is then obtained as a hierarchy of unitary mappings, a mixed unitary channel. The
approach can be applied to studying quantum inverse problems, variational quantum
algorithms, quantum tomography, and more. A software product implementing the
algorithm is available from the authors.
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Dedicated to the memory of Ivan Anatol’evich Komarchev

I. INTRODUCTION

The form of knowledge representation stands out as a crucial and distinctive feature in

any approach to Machine Learning (ML). The utilization of unitary operators for knowledge

representation has garnered increasing attention recently[1–3]. In nature most of dynamic

equations are equivalent to a sequence of infinitesimal unitary transformations: Newton,

Maxwell, Schrödinger equations. This inherent connection with unitary transformations

makes it particularly appealing to represent knowledge in this form. Most of the existing

works consider algorithms that take wavefunction as input and construct a unitary operator

providing a high value of mapping fidelity[2–4]; they are mostly different in parametrization

of unitary operator [5] and optimization details. Such a pure state to pure state mapping

is a limited form of quantum evolution. There are a few works[6–9] that consider unitary

learning with density matrix input. Real systems probability should be described by a mixed

state (density matrix) what allows to distinguish probabilistic mixture of states and their

superposition. There are two sources of mixed states: 1. The input data itself can be in

mixed state. 2. IN → OUT mapping of a general quantum channel can transform a pure

state input into a mixed state output. Unitary mapping is a simple example of a quantum

channel converting a pure state into a pure state.

In our previous works[10, 11] the quantum mechanics inverse problem of optimal unitary

mapping of pure states was converted to a QCQP (Quadratically Constrained Quadratic

Program) problem, a novel algebraic problem (43) was formulated, and an efficient iterative

global optimization algorithm was developed. This algorithm can be applied to quantum

inverse problems, variational quantum algorithms [12–14] with a cost function in the form

C(θ) = TrOU(θ)ρ0U †(θ), quantum tomography[15–18], various classical problems, and many

others. We do not have a formal proof of the developed algorithm’s convergence, but among

the millions of test runs, only a few did not converge to the global maximum. This could

possibly be caused by numerical instability. In the current work, we generalize our algorithm

to mixed states and further extend it to quantum channels. This generalization is possible

as long as the total fidelity can be represented as a quadratic form on quantum channel

mapping operators.

https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
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In the case of unitary mapping (D = n, Ns = 1) of mixed states there are several good

choices for fidelity, for example a quantum channel mapping the square root of density matrix
√
ρ → √

ϱ with a unitary operator (3), it provides the exact fidelity as a quadratic form.

Together with the available iterative algorithm, this problem may be considered mostly

solved.

In the case of a general quantum channel (4) constructing fidelity as the quadratic form

of Eq. (16) on quantum channel mapping operators can be challenging. We have developed

several approximations that can be used with the iterative algorithm and have constructed a

hierarchy of mapping operators (52) as a mixed unitary channel. A demonstration of several

approximations is presented in Section IVA. The problem of finding a good quadratic (on

mapping operators) fidelity for Kraus rank Ns > 1 quantum channels requires more research

and is related to a physical meaning of quantum channel mapping. Even when fidelity is

expressed as the quadratic form of Eq. (16), we currently only have a numerical algorithm to

approximate the data using a mixed unitary channel. A general reconstruction of quantum

channels is not yet available.

The paper is organized as follows. After formulating the problem, the unitary mapping

of mixed states is considered in Section III. Section IV focuses on the construction of a

hierarchy of unitary operators. In the conclusion, we discuss the results obtained for the

problem of quantum channel reconstruction. Appendix A provides a detailed description of

the numerical solution that uses algebraic techniques. Appendix B presents a generalization of

the novel algebraic problem (43) to the nonstationary case and introduces a time-dependent

Schrödinger-like equation for unitary operator dynamics (B1). Appendix C explores poten-

tial generalizations to states with memory, while Appendix D estimates the algorithm’s

computational complexity.

This paper is accompanied by a software which is available from Ref. [19]; all references

to code in the paper correspond to this software.

II. FORMULATION OF THE PROBLEM

In [11], we considered data of vector-to-vector pure state mapping, l = 1 . . .M ,

ψl(x) → ϕl(f) weight ω(l) (1)

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
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The weights ω(l) are typically all equal to 1.1 However, they can be set to different values if

the observations are made with different accuracy, this is particularly convenient for classical

systems. The usefulness of ω(l) weights also arises in models that comprise a number of

identical mappings; in this case one may consider only distinct mappings and set ω(l) equal

to the number of times the observation was encountered in the sample. The problem of

maximizing total fidelity

F =
M∑
l=1

ω(l)
∣∣∣ ⟨ϕl | U |ψl⟩

∣∣∣2 −→
U

max (2)

was considered, and a numerical algorithm finding the global maximum of F was developed.

Found solution U , a partially unitary matrix of dim(OUT)× dim(IN) (D × n)

AOUT = UAINU † (3)

converts any operator between two Hilbert spaces, for example it converts a pure state

AIN = |ψ⟩ ⟨ψ| into a pure state AOUT = |U|ψ⟩
〈
ψ|U †

∣∣. For D = n it is a trace preserving map,

and for D < n it is a trace decreasing map quantum channel. The input data (1) represent

pure state to pure state mapping. This type of mapping is not the most general, it cannot

describe systems with effects like quantum decoherence. For example a simple Markov chain

system converts a pure state |ψ⟩ ⟨ψ| into a density matrix state, see Appendix I of Ref. [20].

In this work a more general mapping between Hilbert spaces IN of |ψ⟩ (dimension n) and

OUT of |ϕ⟩ (dimension D) is considered. Kraus’ theorem determines the most general form

of mapping between Hilbert spaces[21–23]:

AOUT =
Ns−1∑
s=0

BsA
INB†

s (4)

the number of terms in the sum Ns is called the Kraus rank, see Choi’s theorem [24] and

Belavkin’s Radon-Nikodym theorem for completely positive maps [25]. The Kraus operators

Bs satisfy the constraints that unit AIN is converted to unit AOUT. There are other options to

construct a quantum channel, in [10, 11] we considered a quantum channel that transforms

the Gram matrix in space |ψ⟩ into the Gram matrix in space |ϕ⟩; with proper regularization

1 Some authors use ω(l) = 1/M to normalize the fidelity to the range [0 : 1]. However, this approach is

inconvenient because F is no longer an extensive quantity in the sense that, for two sets of observations,

the total fidelity is no longer the sum of the two — losing its additive property. For this reason, normalizing

to the number of observations is preferred over normalizing to [0 : 1].

https://en.wikipedia.org/wiki/Quantum_channel
https://en.wikipedia.org/wiki/Quantum_decoherence
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Quantum_operation#Kraus_operators
https://en.wikipedia.org/wiki/Intensive_and_extensive_properties
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it can be reduced to the same form.
Ns−1∑
s=0

BsB
†
s = 1 (5)

We further generalize Kraus operators Bs by considering them to be rectangular D × n

matrices instead of being limited to Hilbert space mapping into itself. The term “partially

Kraus” is used in the same sense as “partially unitary” — we consider rectangular matrices

D ≤ n mapping Hilbert spaces of different dimensions.2 For D < n a partially unitary

quantum channel (3) does not preserve the density matrix trace. For a large enough Ns, as

in the condition (56), the form of Eq. (4) allows us to construct a trace preserving quantum

channel, for example to implement an operation of partial trace.

Kraus operators selection is not unique. In addition to the familiar exp(iφ) phase factor

(±1 for real space), there is a gauge that regulates redundant degrees of freedom. The most

well-known is the canonical form:

TrBsB
†
t = 0 for s ̸= t (6)

However, other gauges can be used. See Appendix A 1 for an algorithm transforming Kraus

operators to canonical form.

Back in [10, 20] we considered, instead of (1), the data of density matrix to density matrix

mapping (7) — just replace Sjk;j′k′ from (19) by (18) or (30). Whereas input/output data in

density matrix form distinguishes probabilistic mixture of states and their superposition, the

transform (3) cannot map such data exactly, it has insufficient expressive power. Only a general

quantum channel (4) mapping has sufficient expressive power to construct learning models

from general data, for example with a decoherence effect, or a much more seldom but very

interesting effects of pure state formation from mixed state input — spontaneous coherence,

exhibited in entropy decrease, synchronizing, coherent responses of (ψA + ψB)
2 ≫ ψ2

A + ψ2
B

type, etc.

2 Here, instead of the usual constraint
∑Ns−1

s=0 B†
sBs = 1 (55) we use the constraint (5) to fully utilize our

numerical algorithm in the case of Ns = 1. Constraint (5) imposes D(D + 1)/2 independent conditions,

whereas constraint (55) imposes n(n+1)/2 independent conditions. When D = n both definitions coincide.

However, for Ns = 1 and D < n, the constraint (55) fails to satisfy the minimal Kraus rank condition

(56), but the constraints (5) are applicable in the numerical study of trace-decreasing maps when Ns = 1

and D < n. Additionally, the Lagrange multiplier calculation method described in Appendix A4, along

with the convergence-helper constraints in Appendix A5, facilitates the incorporation of quadratic form

constraints of any type.

https://en.wikipedia.org/wiki/Partial_trace
https://en.wikipedia.org/wiki/Gauge_theory
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Consider the density matrix mapping of l = 1 . . .M observations

ρ(l) → ϱ(l) weight ω(l) (7)

The ρ(l) is a measured Hermitian density matrix n× n in the |ψ⟩ space, while the ϱ(l) is a

measured Hermitian density matrix D ×D in the |ϕ⟩ space. Both ρ and ϱ density operators

are Hermitian matrices with positive eigenvalues and having unit trace (the sum of diagonal

elements). Previously considered data (1) corresponded to ρ(l) = |ψl⟩ ⟨ψl| and ϱ(l) = |ϕl⟩ ⟨ϕl|.

The optimization problem becomes

F =
M∑
l=1

ω(l)F
(
ϱ(l), σ(l)

)
−→
B

max (8)

where σ = AOUT and ρ = AIN — the σ is the ρ passed through the quantum channel.

It should be noted that while for wavefunction mapping (1), in the seldom case of a

classic system with known wavefunctions phases, a regression type technique is sometimes

applicable, for density matrix mapping (7), which is always quadratic on U (3), no regression

can possibly be applied.

We need to define the total fidelity F of the (4) transform, which is a sum of contributions

from all M observations. For each observation of the IN to OUT mapping, an accuracy factor

F ranging [0 : 1] should be defined. For the theory presented in this paper to be applicable,

this factor must be quadratic with respect to the operator U (an instance of Bs). For pure

state to pure state mapping (1) it is a squared projection, the fidelity

F =
∣∣∣ ⟨ϕ | U |ψ⟩

∣∣∣2 (9)

For mixed state mapping (7) a similar expression

F ϱσ(ϱ, σ) = Tr ϱσ (10)

is bounded between 0 and Trϱ2 ≤ 1, it has the meaning of a measured probability of probability

that reaches the maximal value 1 only in pure states. A standard definition of fidelity between

mixed states ϱ, σ, [26] p. 409, [27] p. 285,

F prop(ϱ, σ) = Tr
√
ϱ1/2σϱ1/2 = Tr

√
ϱ
√
σ (11)

creates calculation difficulties since it requires taking matrix square root of an expression

with Bs sum, and it is not explicitly quadratic. There is an option to use a quality criterion

https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Fidelity_of_quantum_states
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based on the conditional entropy of OUT |IN states [28]. In the general case, this requires

a joint density matrix ρ(OUT, IN) [29]. The tensor Sjk;j′k′ (18) can be viewed as a joint

density matrix ρ(OUT, IN) averaged over M observations in the sample. However, in the

case where Ns > 1, we were unable to express the conditional entropy in quadratic form with

respect to Bs, and we will leave this aspect of conditional entropy as a quality criterion for

future research. In the Ns = 1 case, the Kullback-Leibler divergence (Eq. 32) can be directly

applied.

There is a noticeable feature of Hermitian operators: if one vectorizes D ×D Hermitian

operators ϱij and σij, then one can verify that

Trϱσ =
D−1∑
i,j=0

ϱijσ
∗
ij (12)

i.e. the L2 of a vector obtained from all D2 matrix elements of ϱ gives the trace of ϱ2. This

provides a closeness criterion, F c, which acts as a “correlation” between the density matrices

ϱij and σij, treated as if they were vectors.

F c(ϱ, σ) =

D−1∑
i,j=0

ϱijσ
∗
ij√

D−1∑
i,j=0

|ϱij|2
D−1∑
i,j=0

|σij|2
=

Trϱσ√
Trϱ2Trσ2

(13)

It can be viewed as F ϱσ (10) with an adjusted contribution for mixed states. The practical

issue with it is that σ, in the denominator, depends on the quantum channel operators Bs;

to obtain a workable expression, one can replace the σ-normalized denominator by the input

density matrix ρ

F v =

D−1∑
i,j=0

ϱijσ
∗
ij(ρ)√

D−1∑
i,j=0

|ϱij|2
√

n−1∑
k,q=0

|ρkq|2
(14)

Here, the entity denoted as σ(ρ) is obtained by passing ρ through the quantum channel using

either the transformation in (4) or (3). Since σ does not appear in the denominator, Eq. (14)

is quadratic in the quantum channel mapping operators. This expression uses (12) and treats

density matrices as if they were vectors. It is linear in σ and quadratic in U ; for unitary

mapping (D = n, Ns = 1), we have Trρ2 = Trσ2, and thus F v matches F c. An alternative is
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to consider a surrogate closeness by normalizing it only on ϱ — to the degree of output state

purity

FNϱ2(ϱ, σ) =
Trϱσ

Trϱ2
(15)

but this one performs poorly, especially in the case when Ns > 1. Note that if ϱ is a pure

state |ϕ⟩ ⟨ϕ| and ρ is a mixed state then (10), (11), and (15) are the same. Whereas the

closeness criteria F v (14) and FNϱ2 (15) are quadratic in quantum channel operators, their

main drawback is the lack of clear physical meaning. This can lead to artifacts in the obtained

solution, particularly for noisy data in the case of a density matrix passing through a general

quantum channel. The criterion F ϱσ (10) is quadratic in quantum channel operators but

represents the square of a probability, which overestimates the contribution of pure states[20].

As a result, it is poorly suited for density matrix mappings. The criteria F prop (11) and F c

(13) have a clear physical meaning, but they are not quadratic in quantum channel operators.

Of particular interest is the criterion F
√
ϱ
√
ρ (31), considered below, which is quadratic in

quantum channel operators and matches F prop exactly in the case of unitary mapping of

density matrices.

For the theory presented in this paper to be applicable, the only required feature of the

mapping accuracy F in (8) is that it must be a quadratic form on Bs with a superoperator

Sjk;j′k′ .

F =
Ns−1∑
s=0

〈
Bs

∣∣S∣∣Bs

〉
(16)

The tensor Sjk;j′k′ depends on the choice of F and observation weighs ω(l). They are problem

specific and do not change our considerations. Expanding the sums in (16) we obtain (for a

simple choice of F (10))

F =
M∑
l=1

ω(l)

Ns−1∑
s=0

D−1∑
i,j=0

n−1∑
k,k′=0

ϱ
(l)
ij bs,ikρ

(l)
kk′b

∗
s,jk′ (17)

where the bs,ik are s = 0 . . . Ns − 1 matrices of dimension D × n corresponding to partially

Kraus operators Bs. One can introduce a tensor

Sjk;j′k′ =
M∑
l=1

ω(l)ϱ
(l)
jj′ρ

(l)
kk′ (18)
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to obtain an expression similar to the one in [11] for x → f Hilbert spaces vector mapping.

With the density matrix |x⟩ ⟨x| → |f⟩ ⟨f | (18) takes a familiar form

Sjk;j′k′ =
M∑
l=1

ω(l)f
(l)
j x

(l)
k f

(l) ∗
j′ x

(l) ∗
k′ (19)

Distinguishing features of the current work include:

• Using density matrix states mapping (7) as input.

• Go beyond unitary mapping (3) to consider quantum channel mapping (4).

We use them to take into account two kinds of probabilities: probabilistic mixture of states

and states superposition. For the latter, probability is the square of the sum of amplitudes,

while for the former, probability is the sum of squared amplitudes. Both effects are present in

real life data. There are a number of studies suggesting a limitation of unitary scalarization

[30, 31], the other reevaluate recent research [32]. It should be noted how researchers commonly

use unitarity — they take a vector, normalize its L2 norm, and consider the squared Euclidean

projections obtained as if they were probabilities. Existing approaches do not distinguish

probabilistic mixture of states from their superposition. This work is trying to overcome this

deficiency by using input data in the form of density matrices (7) and mapping them with a

general quantum channel (4). Consider a few demonstrations.

The partially unitary mapping (3) (when Ns = 1) is a trace decreasing map quantum

channel for D < n. A simple Ns > 1 example: Let D = 1 and we want to construct a quantum

channel with operators Bs calculating the trace of AIN with (4). The matrices bs,jk are of

1× n dimension for all s. Any orthogonal basis |xs⟩ in |ψ⟩ solves the problem:

Bs = |f0⟩ ⟨xs| (20)

with Ns = n, s = 0 . . . n− 1. Any orthogonal basis |xs⟩ creates a solution of the form (20)

that satisfies the canonical form constraints (25), this degeneracy may cause difficulties in

numerical methods. Another example. A quantum channel parametrized by two orthogonal

bases |xk⟩, |fj⟩, and a matrix Mjk creating Ns = Dn rank one operators

Bs = |fj⟩Mjk ⟨xk| (21)

https://en.wikipedia.org/wiki/Quantum_channel
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The index s = 0 . . . Dn− 1 enumerates all (j, k) pairs. The actual Kraus rank is less than or

equal to Dn. The trace-preservation condition (55) imposes k = 0 . . . n− 1 constraints:

1 =
D−1∑
j=0

|Mjk|2 (22)

The matrix Mjk defines a quantum channel. Equations (20) and (21) are two examples of

trace-preserving quantum channels, constructed as a sum of rank one operators |fj⟩ ⟨xk|.

Such channels are defined using two bases, |fj⟩, |xk⟩, along with the mapping matrix Mjk

between them. These channels are much easier to analyze (and work numerically) compared

to a sum of general operators Bs. At the same time, they possess sufficiently high expressive

power for trace-type mappings. However, a unitary mapping cannot be represented by (21).

For a general form of quantum channel see [17, 33] for a representation of a quantum

channel with Choi matrix of the channel[24]. Let us defer the study of this Choi-style

J(Φ) =
∑

kk′ |k⟩ ⟨k′| ⊗ Φ(|k⟩ ⟨k′|) representation of a quantum channel Φ to future research

and focus on the original problem.

Mathematically, the problem becomes: optimize (23) subject to (24) and (25) constraints.

F =
Ns−1∑
s=0

D−1∑
j,j′=0

n−1∑
k,k′=0

bs,jkSjk;j′k′b
∗
s,j′k′ −→

b
max (23)

δjj′ =
Ns−1∑
s=0

n−1∑
k=0

bs,jkb
∗
s,j′k j, j′ = 0 . . . D − 1 (24)

A selection of the gauge is required to avoid problem degeneracy, for example take the

canonical form.

0 =
D−1∑
j=0

n−1∑
k=0

bs,jkb
∗
s′,jk s ̸= s′, s = 0 . . . Ns − 1 (25)

Other gauges such as Cholesky decomposition (on index s) can possibly be used instead.

The main feature of the numerical method we developed consists of using eigenvalue

problem as the algorithm’s building block. If we consider a subset of (24) constraints, then

the optimization problem can be readily solved. Consider the squared Frobenius norm of

bs,jk to be a “simplified constraint”:

Ns−1∑
s=0

D−1∑
j=0

n−1∑
k=0

|bs,jk|2 = D (26)

https://www.youtube.com/watch?v=cMl-xIDSmXI
https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
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This is a partial constraint (it is the sum of all diagonal elements in (24)). For this partial

constraint the optimization problem (23) is equivalent to an eigenvalue problem — it can be

directly solved by considering a vector of dimension NsDn obtained from the bs,jk operator

by saving all its components to a single vector, row by row. With s-independent Sjk;j′k′ each

eigenvalue is degenerate Ns times; the Lagrange multipliers νss′ in (A2) may potentially

remove this degeneracy. This partially constrained problem is the main building block of

our numerical algorithm. Whereas most existing learning algorithms use either first order

gradient-style methods or second order Newtonian methods for optimization, an eigenvalue

problem is the building block of the algorithm in this paper.3 This represents a transition

from mathematical analysis tools (e.g., gradient, derivative, etc.) to using algebraic tools

(eigenproblem). This transition enables the move from single solution methods to multiple

solutions (eigenvectors). This transition from analysis to algebra makes finding the global

maximum much more likely, not to mention providing a better understanding of the problem

itself.

III. A UNITARY MAPPING OF MIXED STATES

In quantum channel learning there are two sources of mixed states. First, the original

input density matrices (7) can be in a mixed state. Secondly, the quantum channel itself,

through the transformation (4), can create mixed states. In this section we consider the first

source. Let the data be of mixed states according to mapping (7), while the quantum channel

itself is assumed to be unitary (3) or possibly partially unitary with D ≤ n. To apply our

theory and software we need to obtain a tensor Sjk;j′k′ with which to solve the optimization

problem (23), now with Ns = 1.

F =
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′u
∗
j′k′ −→

u
max (27)

δjj′ =
n−1∑
k=0

ujku
∗
j′k j, j′ = 0 . . . D − 1 (28)

3 We think that the reasons why first order gradient methods are preferred in neural networks over second

order Newtonian-type methods are: 1. The problem may be of very high dimension, and first order methods

do not need to store a large Hessian matrix. 2. The biggest problem in learning optimization is not local

maximums, but saddle points[34]. First order methods are less likely to get stuck in a saddle point. 3. For

some tasks, first-order gradient-type methods may offer better computational complexity, see Appendix D

below.

https://en.wikipedia.org/wiki/Vectorization_(mathematics)


12

If we take the tensor (18) as Sjk;j′k′ — then we underestimated fidelity, which leads to unusual

effects, see Table I row F ϱσ.

To obtain a proper estimation of the closeness of states for density matrix input, consider

the mapping of the square roots of density matrices.√
ρ(l) →

√
ϱ(l) weight ω(l) (29)

and use it instead of (7), as if it were the actual density matrix mapping. For a unitary

mapping U the same quantum channel converts both the density matrix and its square root.

If √ϱ = U√ρU † then ϱ = U√ρU †U√ρU † = UρU †; also see Exercise 9.14 from [26], p. 410:

for any positive operator A,
√
UAU † = U

√
AU †. Thus we can use4

Sjk;j′k′ =
M∑
l=1

ω(l)
(√

ϱ(l)
)
jj′

(√
ρ(l)

)
kk′

(30)

in the optimization problem if we apply the closeness (10) to the mapping of density matrix

square root (29). Let us denote it as F
√
ϱ
√
ρ.

F
√
ϱ
√
ρ = Tr

√
ϱσ(

√
ρ) (31)

Here the entity denoted as σ(√ρ) is obtained by passing √
ρ through the quantum channel

using either the transformation in (4) or (3). In the case (3), where Ns = 1, this F
√
ϱ
√
ρ is

equal to the proper fidelity F prop (11). The approach creates no difficulty in implementation,

as the square roots of density matrices are calculated upfront and then used as if they were

actual measurements. The Sjk;j′k′ from (30) corresponds to the density matrix square root

mapping in (29). For a pure state ρ = |ψ⟩ ⟨ψ|, we have ρ =
√
ρ, and (31) gives the same

result as (9).

A. A Conditional Entropy Based Similarity

In the case of density matrix unitary mapping, there is a possible alternative to the square

root mapping √
ρ → √

ϱ (29) that has been considered above. Now consider the mutual
4 Note that from the invariance property of unitaries, Uf(A)U† = f(UAU†), for any positive operator

A and p ≥ 0, we have
(
UAU†)p = UApU†. Thus, a form of Sjk;j′k′ =

∑M
l=1 ω

(l)
(
ϱ(l)

)p
jj′

(
ρ(l)

)q
kk′ with

p+ q = 1 can be considered. However, an arbitrary p and q does not correspond to the fidelity in Eq. (11),

which has p = q = 1/2, resulting in Eq. (30). For an arbitrary Ns, any form with q = 1 can be reduced to

a QCQP optimization problem. Equation (10) corresponds to p = q = 1. One can consider a form with

q = 1 and some p as a quadratic form proxy for the general quantum channel fidelity.
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information between the density matrices ϱ and σ: the Kullback-Leibler divergence[35–37].

Given two density matrices ϱ and σ, the conditional entropy is

S(ϱ||σ) = Tr(ϱ ln ϱ− ϱ lnσ) (32)

An interpretation of the Kullback Leibler divergence of ϱ from σ is the expected excess

surprise from using σ as a model instead of ϱ when the actual distribution is ϱ. It satisfies the

Gibbs inequality: S(ϱ||σ) ≥ 0, S(ϱ||σ) = 0 iff ϱ = σ. For σ obtained as a unitary mapping (3)

from ρ, the lnσ = ln
(
UρU †) can be calculated using the invariance property of the unitaries.

Taking into account that Tr(ϱ ln ϱ) is a constant one may consider the mapping

ln ρ(l) → ϱ(l) weight ω(l) (33)

and use the tensor

Sjk;j′k′ =
M∑
l=1

ω(l)
(
ϱ(l)

)
jj′

(
ln ρ(l)

)
kk′

(34)

as if it were the actual density matrix mapping. With this Sjk;j′k′ , the functional F no longer

has the meaning of the number of observations, and special care should be taken when

regularizing ρ states with eigenvalues equal to zero due to logarithm calculations, the ϱ

must also be zero in this state. This information divergence measure is expected to be a

good alternative to the square root mapping (30), but it requires more research, especially

regarding the possibility of generalizing it to a quadratic form for quantum channels with

Kraus rank Ns > 1 and its property of not satisfying the triangle inequality.

B. A Demonstration Of Density Matrix Square Root Mapping

Let us demonstrate the advantages of using the square root of the density matrix in

quantum channel learning. Here and below we need a number of random density matrix

input states ρ(l) (of a given rank Nr, all real for simplicity) that we map with the quantum

channel of form (3) or (4) to ϱ(l). The states are created from random vectors v(l)r,k as follows:

ρ
(l)
kk′ =

1

Norm(l)

Nr−1∑
r=0

v
(l)
r,kv

(l)
r,k′ (35)

For every l we generate Nr random real vectors v(l)r,k of dimension n. The density matrix is

obtained as a r = 0 . . . Nr − 1 sum of the dyadic product of vector v(l)r,k with itself, and then it

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Dyadics#Dyadic,_outer,_and_tensor_products
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is normalized to 1 =
∑n−1

k=0 ρ
(l)
kk. These ρ(l)kk′ are used as input density matrices in our numerical

experiments.

A demonstration is performed as follows. We generate a quantum channel (4) of dimension

n = D = 20 with a given Kraus rank Ns. Then for Nr = 1 . . . 20, we generate M = 1000 input

density matrices ρ(l)kk′ (35) of rank Nr and for each of them, we obtain the output density

matrix ϱ(l)jj′ by passing ρ(l)kk′ through the quantum channel. On this ρ(l)kk′ → ϱ
(l)
jj′ mapping we

evaluate the total fidelity F (8) for different definitions of F (with the same Bs defining the

quantum channel, σ =
∑Ns−1

s=0 BsρB
†
s). The result is presented in Fig. 1; see com/polytech

nik/algorithms/DemoDMsqrtRhoMappingTest.java for an implementation. For the F prop

(11) the total fidelity (8) is equal to the maximal value Fprop =M since the same Bs were

used both in construction and in evaluation of the quantum channel. However, a QCQP

optimization problem that we can solve, an algebraic problem (43), must be a quadratic

function on U . The F prop is not such a function, which makes it problematic to use. A simple

F ϱσ as density matrices trace (10) is a quadratic function, but it is not normalized for Nr > 1

or Ns > 1: it produces the exact result only for pure state input (Nr = 1) and unitary

(Ns = 1) mappings, see Fig. 1a. The mapping
√
ρ
(l)
kk′ →

√
ϱ
(l)
jj′ allows us to introduce F

√
ϱ
√
ρ

(31) considering √
ϱ and √

ρ as if they were actually measured density operators (29). In

the unitary case Ns = 1 it produces the correct value F = M for any rank of the input

density matrix ρ, this is an important result of this work. In this Ns = 1 case for each Nr

we also run the operator U reconstruction algorithm of Appendix A — it is correctly (with

zero error) recovered (up to a sign) for any Nr and any measure of closeness used: F ϱσ, F v,

FNϱ2 , or F
√
ϱ
√
ρ, regardless of the specifics of F . This occurs only for exact mapping; when

a noise is present in the data — the low values of F ϱσ make it problematic to reconstruct

the quantum channel from input density matrices. The F
√
ϱ
√
ρ does not have this limitation

as for Ns = 1 it is equal to proper fidelity F prop (11). We see F
√
ϱ
√
ρ as a very promising

approach to the problem of reconstructing a unitary operator from a set of mixed states

density matrix mapping. Another one if F v (14), which treats density matrices as “vectors”,

but it does not have a clear physical meaning.

The situation with quantum channels of Kraus rank Ns > 1 is more problematic. The F ϱσ

strongly underestimates the fidelity, and the F
√
ϱ
√
ρ is no longer correct because when there

is more than one term in the sum of (4), no quantum channel simultaneously converts ρ and
√
ρ between Hilbert spaces. The main problem we encountered is constructing a fidelity that
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FIG. 1. For known density matrix mappings (Fprop = M = 1000) evaluate the total fidelity F
(8) (with different definitions of closeness F ) as a function of the rank Nr of the input density
matrix and the quantum channel’s Kraus rank Ns. Problem dimension is n = D = 20. (a) Unitary
mapping Ns = 1: The Fϱσ (10) strongly depends on the rank of the input density matrices. The
F

√
ϱ
√
ρ (corresponding to (29) mapping) and Fv (14) produce the exact result F =M in the unitary

mapping case. (b) Multiple terms Ns > 1: The Fϱσ decreases even more strongly, while F
√
ϱ
√
ρ and

Fv are no longer exact.
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can be expressed as a quadratic function of Bs in the form of (16). Not every fidelity can

be expressed in this form. Using a proxy, such as F ϱσ, FNϱ2 , etc., creates difficulties – for

example it may become possible to obtain a fidelity value greater than the one calculated

with the exact mapping of the quantum channel. This is the main requirement for a “fidelity

proxy”: it should reach the maximal value at the exact mapping of the quantum channel, see

Section IV A below for counterexamples.

IV. A HIERARCHY OF UNITARY OPERATORS

As discussed below in Appendix A, a direct numerical attempt to obtain Kraus operators

(4) in canonical gauge (25) does not work due to the degeneracy caused by the increased

eigenproblem dimension from Dn to NsDn and the difficulty in formulating convergence

helper constraints. We previously attempted to use a completely different approach for finding

Kraus operators that involved a special parametrization of operators. However, it turned out

to be not very stable numerically and applicable only to problems of small dimensions, n ≲ 3,

such as SO(3), see [38] for a similar consideration.

Let us approach the problem of quantum channel reconstruction from a “numerical

algorithm” perspective. What quantum channel problem we can efficiently solve for high

dimension, i.e. D ≤ n > 50? Actually — only the problem of finding the optimal unitary

mapping (3) that maximizes (27) subject to partial unitarity constraints (28).

Our algorithm [11] has good stability and convergence. For an updated version see Appendix

A and set Ns = 1 in all formulas. Now, instead of optimizing the Kraus problem (23) subject

to constraints (24) and (25), consider the unitary hierarchy. A quantum channel is built as5

AOUT =
Ns−1∑
s=0

|ws|2U [s]AINU [s] † (36)

1 =
Ns−1∑
s=0

|ws|2 (37)

where U [s] are partially unitary operators satisfying the constraints (28) and |ws|2 are positive

real weights. Since the weights are positive, the channel is a convex combination of unitary
5 This quantum channel has an interesting physical interpretation. If (36) represents a time evolution, then

one may think of it as a quantum system evolving with several Hamiltonians at once, U [s] = exp
[
−i tℏHs

]
,

rather than as a system evolving with the single Hamiltonian H =
∑
s
Hs.

https://en.wikipedia.org/wiki/3D_rotation_group
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channels — a mixed unitary channel. Note that not every quantum channel can be represented

as a mixed-unitary channel[39]. The authors [40] proved that for every mixed-unitary channel,

the following rank inequality holds between the Kraus rank NK
s (4) and the mixed-unitary

rank NU
s (the number of terms in (36)).

NU
s ≤

(
NK

s

)2 −NK
s + 1 (38)

It may look as the sum (36) exactly represents the Kraus quantum channel (4) withBs = wsU [s]

(they are not necessary in the canonical form (6), see Appendix A 1 for a transformation), but

actual Kraus rank can be lower than the number of terms in the sum (36). However, if we

replace the sum of general Kraus operators Bs by a sum of partially unitary operators U [s],

then we can apply our numerical algorithm to build the quantum channel as a hierarchy of

partially unitary operators. Considering this convex combination of unitary channels we can

solve the problem incrementally. This is the cost required to apply our numerical method[11]

to quantum channel reconstruction.

The idea of finding U [s] is similar to density matrix reconstruction. Assume we have a

density matrix ϱ of dimension Ns with some eigenvectors ϕ[s] and eigenvalues P [s], a convex

combination of pure states.

ϱ =
Ns−1∑
s=0

P [s]
∣∣ϕ[s]

〉 〈
ϕ[s]

∣∣ (39)

∣∣ϱ∣∣ϕ[s]
〉
= P [s]

∣∣ϕ[s]
〉

(40)

To recover
∣∣ϕ[s]

〉
and P [s] one may solve a sequence of Ns constrained optimization problems.

P =
⟨ϕ | ϱ |ϕ⟩
⟨ϕ |ϕ⟩

−→
ϕ

max (41)

0 =
〈
ϕ
∣∣∣ϕ[s′]

〉
s′ < s (42)

On each step a pair
(
P [s],

∣∣ϕ[s]
〉)

is obtained from the optimization problem (41) subject

to the homogeneous linear constraints (42). The probabilities P [s] decrease with s and the

obtained pairs form a hierarchy of states from most probable to less probable.

In [10, 11, 20] we formulated a novel algebraic problem

SU = λU (43)

https://learning.quantum.ibm.com/course/general-formulation-of-quantum-information/quantum-channels#convex-combinations-of-channels
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where superoperator S is a tensor Sjk;j′k′ , “eigenvector” U is a partially unitary operator

(3) represented by a D × n matrix ujk, and “eigenvalue” λ is a Hermitian D ×D matrix of

Lagrange multipliers λij (A26). See Appendix B below for its time-dependent form (B1).

To construct a hierarchy of (Lagrange multipliers, operator) pairs
(
λ[s],U [s]

)
of decreasing

fidelity F [s] = Trλ[s] we need an analogue of the already found states’ orthogonality condition.

Whereas in (42) for a regular eigenproblem with a scalar eigenvalue the result is the same

regardless of performing an inner product with the “numerator” P [s]
∣∣ϕ[s]

〉
or “denominator”∣∣ϕ[s]

〉
terms, in the algebraic problem (43) with λij being Hermitian matrix this is no longer

the case. We have a number of options for orthogonality conditions for already found states

s′ < s, for example (44a) is an analogue of the “numerator” and (44b) of the “denominator”.

0 =
D−1∑
i,j=0

n−1∑
k=0

uikλ
[s′]
ij u

[s′] ∗
jk =

〈
U
∣∣∣λ[s′] ∣∣∣U [s′]

〉
(44a)

0 =
D−1∑
j=0

n−1∑
k=0

ujku
[s′] ∗
jk =

〈
U
∣∣∣U [s′]

〉
(44b)

However the most convenient constraints correspond to a hierarchy of orthogonal quantum

channels:

0 =
D−1∑
j,j′=0

n−1∑
k=k′=0

ujkSjk;j′k′u
[s′] ∗
j′k′ =

〈
U
∣∣∣S ∣∣∣U [s′]

〉
(45)

Our numerical algorithm allows any homogeneous linear constraint to be incorporated into

(A4). We believe that the appropriate orthogonality constraint on the previous state is the

homogeneous linear constraint (45). We also use the “denominator”-type constraint (44b) in

Appendix B below to construct a density tensor. The reason why we choose the (45) form —

assume an operator V is built as

V =
Ns−1∑
s=0

wsU [s] (46)

Then, using the constraint (45), obtain

⟨V |S | V⟩ =
Ns−1∑
s=0

|ws|2
〈
U [s]

∣∣S ∣∣U [s]
〉

(47)

i.e. a single nonunitary operator V can completely define a quantum channel (36) with Ns > 1.

For a given V the expansion weights in (46) are obtained as

ws =

〈
V
∣∣S ∣∣U [s]

〉
⟨U [s] |S | U [s]⟩

(48)
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A hierarchy of (Lagrange multipliers, operator) pairs is constructed by performing (27)

partially unitary optimization (not Kraus!) Ns times. For each s include the constraints

(45) from all previous optimizations s′ = 0 . . . s− 1 into the full set (A4). The result of this

procedure is a hierarchy of Ns pairs
(
λ
[s]
ij , u

[s]
jk

)
with decreasing fidelity.

The tensor Sjk;j′k′ can be expanded:

S ≈
Ns−1∑
s=0

1

F [s]

∣∣S∣∣U [s]
〉 〈

U [s]
∣∣S∣∣ (49)

F [s] =
D−1∑
i=0

λ
[s]
ii =

〈
U [s]

∣∣S∣∣U [s]
〉

(50)

D =
〈
U [s]

∣∣U [s]
〉

(51)

F [s]δss′ =
〈
U [s]

∣∣S∣∣U [s′]
〉

(52)

This expansion is similar to the eigenvector expansion (39), but ket |·⟩ and bra ⟨·| are now

operators, and S is called a superoperator. Note that usual orthogonality does not hold〈
U [s]

∣∣U [s′]
〉
̸= δss′ , (51) follows from the partial unitarity constraints (28), and (52) follows

from the hierarchy constraints (45). By continuously solving (s = 0, 1, 2, . . . ) the optimization

problem (27) subject to the constraints (28) and (45) we can build the required hierarchy of

solutions
(
λ
[s]
ij , u

[s]
jk

)
to reconstruct the quantum channel from it, see com/polytechnik/kgo/

KGOHierarchy.java for an implementation. A possible issue with the constraint (45) is that

for the solution s in the hierarchy, Eq. (43) is not satisfied for some projections, the number

of which equals the number of previous states in the hierarchy; for the ground state s = 0, all

projections are satisfied. However, the main advantage of (45) is that the matrix (52) for an

approximated S from (49) with the full Ns = Dn basis is equal to the corresponding matrix

with the exact S. For the reconstruction of a quantum channel as a mixed unitary channel, a

few solutions with high F [s] may be sufficient in a number of practical ML problems. The

obtained hierarchy may have up to Dn solutions, which is the maximum possible number Ns

of terms in the Kraus sum (4).

An application of the constructed hierarchy typically occurs when a nonunitary operator

V is available that provides a high value of fidelity. An example of such an operator can be

a solution to the optimization problem (27) subject to partial constraints (Eq. (26) with

Ns = 1), which does not satisfy the full set of constraints (28). The expansion (48) allows

constructing a mixed unitary channel that provides a similar value of fidelity. The problem

https://en.wikipedia.org/wiki/Superoperator
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of constructing a quantum channel is reduced to two steps: 1. Find a nonunitary operator

to estimate the maximum possible fidelity, and then 2. Find a mixed unitary channel that

gives approximately the same fidelity. This approach allows us to consider a sequence of

Ns = 1 problems instead of a single problem with a high Kraus rank Ns. The only factor

that limits this program is the formulation of the actual objective function as a quadratic

form on quantum channel operators. In most cases, this is possible only through some kind

of approximation, which significantly limits its applicability.

A. A Demonstration of Constructed Hierarchy of Operators

Let us demonstrate the construction of operators hierarchy. First, we would like to mention

that this problem is more difficult for numerical solution than the original (27). With the

“external” constraints (45) added, we were able to solve the problem with Ns not greater

than 5 to 10, depending on the values of D and n. The first difficulty arises from numerical

instability and the need for a new adjustment algorithm to satisfy both the (28) and (45)

constraints, however this problem is technical and can be resolved with a little effort. The

second difficulty is a significant one. The optimization problem we are able to solve is a

quadratic functional (16) optimization. However, mixed states fidelity (11) is not of this form,

thus it cannot be directly applied to a general quantum channel. In the unitary case where

Ns = 1, there are several good options, the most noticeable being F
√
ϱ
√
ρ (31). In cases where

Ns > 1, there are no good options, as depicted in Fig.1b. For this reason we try a number

of “proxies” for total fidelity (8). Specifically F ϱσ (10), F v (14), FNϱ2 (15) and F
√
ϱ
√
ρ (31).

These four expressions are quadratic in U what allows us to build a Sjk;j′k′ to which the

optimization technique can be applied.

Consider a demonstration. We generate a quantum channel (4) of dimension D = n = 10

with Kraus rank Ns = 3. Then generate M = 1000 random states ρ(l)kk′ (35) of rank Nr = 1

(pure states). Passing them through the quantum channel obtain the ϱ
(l)
jj′ of rank 3. If

we calculate the total fidelity (8) with the state closeness F prop (11) of this ρ(l)kk′ → ϱ
(l)
jj′

mapping on Bs of the quantum channel, then the result will be Fprop(Bexact
s ) =M = 1000

since these Bs make an exact mapping of the density matrix for all l. However, F prop is

not a quadratic function on Bs because of the square root taken from the sum (4) — our

optimization algorithm cannot be applied. Instead, for the four aforementioned fidelity proxies
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TABLE I. A demonstration of a unitary hierarchy for a quantum channel of dimension D = n = 10

with Kraus rank Ns = 3. A total of M = 1000 random density matrices ρ(l)kk′ (35), each of rank

Nr = 1 (pure states), are generated and mapped to ϱ(l)jj′ using the quantum channel with Kraus

rank Ns = 3. The mapping gives Fprop(Bexact
s ) = M = 1000 for proper closeness (11), but we

need a quadratic expression (16) for total fidelity. Four fidelity proxies are considered: F ϱσ (10),

F v (14), FNϱ2 (15) and F
√
ϱ
√
ρ (31) to construct four different hierarchies. For Ns > 1, there

always exists a single unitary mapping that produces a proxy-fidelity greater than that of the

entire quantum channel, e.g. for F
√
ϱ
√
ρ we have F(Bexact

s ) = 617.13 < F [0] = 627.04, whereas

Fprop(Bexact
s ) = 1000 > Fprop(U [0]) = 627.04. Also, note that among all four proxies, Fprop(U [i]) is

exactly equal to F [i] only for the proxy-fidelity F
√
ϱ
√
ρ, this follows from matching (31) to (11) in

the case Ns = 1.

F constr. F(Bexact
s ) F [0] Fprop(U [0]) F [1] Fprop(U [1]) F [2] Fprop(U [2])

F ϱσ 393.83 410.59 625.00 344.94 558.10 303.17 507.44

F v 626.80 652.47 625.18 552.36 559.80 487.67 510.98

FNϱ2 1000.00 1039.44 625.33 886.38 561.45 786.07 514.41

F
√
ϱ
√
ρ 617.13 627.04 627.04 571.86 571.86 545.94 545.94

that produce a quadratic target functional (16), we calculate a superoperator Sjk;j′k′ from

density matrix mapping, perform optimization, and construct Ns = 3 unitary hierarchy. The

result is presented in Table I, see com/polytechnik/algorithms/DemoDMGeneralMappingT

est.java for an implementation and run it as java com/polytechnik/algorithms/DemoD

MGeneralMappingTest 2>&1 | grep Proxy=.

First, we would note that all proxies (except FNϱ2) do not give M on exact quantum

channel mapping F(Bexact
s ); but this may be fixed by normalizing. The major difficulty is

the fact that for all four proxies the maximal total proxy-fidelity is reached not on the exact

mapping Bs of quantum channel. See the column F [0] — the total proxy-fidelity calculated

on a single unitary operator U [0] exceeds the proxy-fidelity F(Bexact
s ) of the entire quantum

channel Bs. This is a general property of all quadratic on Bs fidelity forms (16) we have tested,

the four listed in Table I as well as a few others: There exists a single unitary operator, the

U [0] in (52) hierarchy, that yields proxy-fidelity exceeding that of the entire quantum channel.

This is the primary issue encountered when applying our QCQP algorithm to reconstruct
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a quantum channel with a Kraus rank Ns > 1. Whereas for Ns = 1 density matrix unitary

mapping we have a number of good options for quadratic on U fidelity, in the case of Ns > 1,

for all proxy-fidelities we have tested, there always exists a single unitary mapping that yields

a proxy-fidelity greater than that of the entire quantum channel.

A quantum channel is always constructed with a preset mapping. The constraints (5)

mean that a unit matrix from the Hilbert space IN should be mapped to a unit matrix

in the Hilbert space OUT. In [10, 11] a quantum channel converting the Gram matrix in

IN into the Gram matrix in OUT was considered, with a regularization it is equivalent to

the same (5). In Section III a quantum channel mapping √
ρ→ √

ϱ was considered, in the

Ns = 1 unitary case the same quantum channel maps both ρ and √
ρ what allowed us to

apply unitary learning to density matrix mappings. The problem of constructing a good

quadratic proxy-fidelity in the case of Ns > 1 is a subject for future research.

B. Trace Preserving Maps

A general quantum channel (4) is a mapping between two Hilbert spaces. In this paper, we

primarily use it to convert the density matrix. Such a conversion may not preserve the matrix

trace. For example, a partially unitary mapping with D < n and Ns = 1 was considered in

[11]. Mappings that preserve the matrix trace have special importance in quantum channel

studies. A question arises: when does a general quantum channel preserve the matrix trace?

We are interested in formulating the optimization problem (23) with quadratic constraints,

e.g. (24). Consider a density matrix ρkk′ . Applying a quantum channel with the operators

bs,jk to it and taking the trace yields the Trϱ.

Trϱ =
Ns−1∑
s=0

D−1∑
j=0

n−1∑
k,k′=0

bs,jkρkk′b
∗
s,jk′ (53)

For the expression to ensure Trϱ = Trρ for an arbitrary ρ, these conditions should be satisfied:

δkk′ =
Ns−1∑
s=0

D−1∑
j=0

bs,jkb
∗
s,jk′ (54)

Equation (54) is a familiar trace preservation condition

Ns−1∑
s=0

B†
sBs = 1 (55)

https://learning.quantum.ibm.com/course/general-formulation-of-quantum-information/quantum-channels#channels-transform-density-matrices-into-density-matrices
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There are n(n+ 1)/2 independent constraints on the quantum channel (4) to preserve the

trace. For Ns = 1 it immediately gives n = D. For n = D and an arbitrary Ns, (5) and (55)

are identical. In the convex combination of unitary channels gauge (36) with D = n it gives

(37). For trace calculating map (where D = 1) it gives Ns = n. For these trace-preserving

constraints their linear forms (A30), totaling (n−1)(n+2)/2, can be added to the constraints

(A4) of the numerical method from Appendix A.

For n = D, the constraints (54) are equivalent to (24). For D < n the latter has fewer

constraints than the former. When D < n, the value of Ns should be chosen to be large

enough so that the Gram matrix (A20) is not degenerate, see (20) as an example of a

trace-calculating quantum channel having D = 1 and Ns = n. For D < n the matrix Bs has

dimensions D× n, which gives the matrix B†
sBs a rank of D. Thus, for D < n, in the case of

trace-preserving maps, the Kraus rank should be at least

Ns ≥ n−D + 1 (56)

which is the minimum Kraus rank. Otherwise, the Gram matrix (A20) becomes degenerate,

and the trace preservation condition (55) cannot be satisfied.

V. CONCLUSION

We construct “quantum mechanics over quantum mechanics” by generalizing eigenstates to

quantum channel mapping operators. While in traditional quantum mechanics the stationary

Schrödinger equation determines system eigenstates, in our approach the algebraic problem

(43) determines quantum channel mapping operators. The total fidelity must be a quadratic

function on operators (16) for the problem to be represented in the form (43).

The technique was applied to the unitary mapping of density matrices. Since, for unitary

mapping, the same quantum channel converts both the density matrix and its square root,

the most promising approach is to convert the density matrix mapping (7) to the density

matrix square root mapping (29), to which we can apply our QCQP optimization algorithm.

This allows us to employ unitary learning in the application to density matrix mapping,

representing an important advancement from the commonly studied unitary mapping of pure

states ϕl = Uψl; it allows us to distinguish between a probabilistic mixture of states and their

superposition. The technique was tested on a number of randomly generated density matrices



24

ρ(l) of different ranks unitary mapped to ϱ(l); in all cases the unitary quantum channel (3)

was perfectly recovered.

The problem was then generalized to quantum channels (4) with Kraus rank Ns >

1. Reconstructing a general quantum channel mapping appears to be significantly more

challenging. First, we were unable to represent the proper fidelity (11) as a quadratic form

of the mapping operators, necessitating the use of approximations discussed in Section II.

Developing a better quadratic fidelity representation (for mapping operators) is a subject for

future research and is closely tied to the physical interpretation of quantum channels. Second,

even when an approximate quadratic form for fidelity is obtained, the algorithm described in

Appendix A fails to converge for Ns > 1. We expect, however, that implementing advanced

constraint methods could lead to improvements. If, instead of reconstructing an arbitrary

quantum channel, we restrict the problem to constructing a mixed unitary channel (36) using

a hierarchy of unitary operators, then the problem becomes solvable, as detailed in Section

IV. The results, however, are less satisfactory than desired due to a “double approximation”:

first, approximating fidelity with a quadratic form, and second, relying on a mixed unitary

quantum channel instead of a general one.

In this work, we have studied quantum channels that convert: a unit matrix from IN

to OUT (standard definition), a Gram matrix from IN to OUT, and a √
ρ to √

ϱ. We

developed a method for finding the global maximum by solving a novel algebraic problem

(43), see Appendix B, which presents a generalization of this algebraic problem to the

nonstationary case and introduces a time-dependent Schrödinger-like equation for operator

U(t). We anticipate that applying memoryless quantum channel mappings to other problems

could provide a solid foundation for a new form of machine learning knowledge representation.

For initial insights into quantum channels with memory, see Appendix C below.
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In this work, we study quantum channels as a positive map between two Hilbert spaces.

In the late 80s to early 90s, Ivan Anatol’evich Komarchev brought to V.M.’s attention the

problem of positive maps between Hilbert spaces and their relation to the Radon-Nikodym

derivative. This became the origin of this entire theme. His unexpected death in 2022 was a

significant loss to the Department of Mathematics at St.Petersburg Polytechnic University,

his colleagues who collaborated with him, and everyone who knew Ivan Anatol’evich. This

work is dedicated to his memory.

Appendix A: Numerical Solution

The described numerical algorithm is a further development of the one presented in [11].

The advancements over the previous version include:

• The ability to simultaneously include quadratic constraints of different types, such as

(24) and (25), or alternatively, (54) and (25), requires the introduction of two kinds of

Lagrange multipliers: λij and νss′ . These multipliers are obtained from the solution of

the linear system (A25).

• Different groups of quadratic constraints create different convergence-helper linear

constraints. A general method, which does not involve the use of a special basis as

in [11], is formulated in Appendix A5. This method involves varying the total Nc

quadratic constraints to obtain Nc − 1 homogeneous linear constraints and a single

“simplified” (partial) quadratic constraint (26), which facilitates the use of a standard

eigenvalue problem solver as an iterative algorithm building block.

• In addition to the convergence-helper constraints, we can now include “external” linear

constraints. These external constraints can be used to construct a hierarchy of solutions

for the novel algebraic problem (43).

• Now that we have several types of constraints, especially “external” and convergence-

helper constraints, the procedure for adjusting the solution to satisfy all constraints

becomes more complicated. This is because adjustments for different groups of con-

straints may conflict with each other. Therefore, a conflict resolution strategy is required,

such as the one discussed in Appendix A 2.

https://english.spbstu.ru/
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• The algorithm described below converges only when Ns = 1: maximize (27) subject

to the constraints (28). Currently, it does not work for a general quantum channel

where Ns > 1, as the problem becomes degenerate and the algorithm fails to converge.

However, the calculations below are presented for an arbitrary Ns because the technique

provides a clear approach for adding constraints of various types. The current version of

the algorithm converges only for unitary (and partially unitary) learning when Ns = 1,

with the “external” constraints possibly used to build a hierarchy of unitary operators.

Consider the optimization problem: optimize (23) subject to (24) and the canonical gauge

(25) constraints. For a general Ns the solution to the optimization problem is a matrix bs,jk

of dimensions Ns × D × n, corresponding to Ns Kraus operators Bs (4) that satisfy the

orthogonality constraints (5) and the gauge constraints, i.e. (6). This is the most general

form of mapping a Hilbert space |ψ⟩ of dimension n into a Hilbert space |ϕ⟩ of dimension D.

This is a variant of the QCQP problem and the technique we used in [11] can also be applied

here. The tensor Sjk;j′k′ = S∗
j′k′;jk is Hermitian, it does not depend on the Kraus index s; the

calculations below can be generalized to s-dependent Ss,jk;s′,j′k′ except for Kraus operators

transformation to a canonical form with Appendix A1. For simplicity we consider Sjk;j′k′

and bs,jk to be real and do not write the complex conjugated ∗ below, a generalization to

complex values is straightforward. Consider a Lagrangian

L =
Ns−1∑
s=0

D−1∑
j,j′=0

n−1∑
k,k′=0

bs,jkSjk;j′k′bs,j′k′

+
Ns−1∑
s=0

D−1∑
j,j′=0

λjj′

[
δjj′ −

n−1∑
k′=0

bs,jk′bs,j′k′

]

−
Ns−1∑
s ̸=s′=0

D−1∑
j=0

n−1∑
k=0

νss′bs,jkbs′,jk −→
b

max (A1)

There are D(D+1)/2 constraints (24) and Ns(Ns − 1) constraints (25). Lagrange multipliers

λjj′ and νss′ are Hermitian matrices with corresponding number of independent elements;

the νss′ matrix has all diagonal elements equal to zero. Introduce a matrix Sjk;j′k′ to consider

https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
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the quadratic form maximization problem obtained with the partial constraint (26)

Ss,jk;s′,j′k′ = δss′Sjk;j′k′ − λjj′δss′δkk′ − νss′δjj′δkk′ (A2)
Ns−1∑
s,s′=0

D−1∑
j,j′=0

n−1∑
k,k′=0

bs,jkSs,jk;s′,j′k′bs′,j′k′

1
D

Ns−1∑
s=0

D−1∑
j=0

n−1∑
k=0

b2s,jk

−→
b

max (A3)

Following [11], we calculate Lagrange multipliers λjj′ and νss′ from the current iteration bs,jk,

see Appendix A 4 below — then Ss,jk;s′,j′k′ is fixed and the problem (A3) can be considered

as an eigenvalue problem. Additional Nd linear constraints on bs,jk can be incorporated to

improve convergence or obtain a sequence of solutions, see Appendix A5 for convergence

improving constraints and (45) for obtaining a solution sequence.

0 =
Ns−1∑
s=0

D−1∑
j=0

n−1∑
k=0

Cd;s,jkbs,jk d = 0 . . . Nd − 1 (A4)

A common method of solving the eigenproblem (A3) with homogeneous linear constraints

(A4) is Lagrange multipliers method[41]. Since we have a large number of constraints it is

better to use direct elimination instead. From NsDn independent components of bs,jk select

some general variables Vp, p = 0 . . . NV − 1

NV = NsDn− rank(Cd;s,jk) (A5)

bs,jk =

NV −1∑
p=0

Ms,jk;pVp (A6)

where the constraints in (A4) are eliminated. The method of selection could be Gaussian

elimination, QR decomposition, or a similar technique. A simple implementation with row

and column pivoting is used in com/polytechnik/utils/EliminateLinearConstrain

ts_HomegrownLUFactorization.java. The result is a matrix Ms,jk;p that converts NV

independent variables Vp to bs,jk of NsDn components satisfying all the constraints (A4).

A new eigenproblem has the matrices Sp;p′ and Qp;p′ in the numerator and denominator

respectively.

Sp;p′ =
Ns−1∑
s,s′=0

D−1∑
j,j′=0

n−1∑
k,k′=0

Ms,jk;pSs,jk;s′,j′k′Ms′,j′k′;p′ (A7a)

Qp;p′ =
Ns−1∑
s=0

D−1∑
j=0

n−1∑
k=0

Ms,jk;pMs,jk;p′ (A7b)

https://en.wikipedia.org/wiki/System_of_linear_equations#Homogeneous_systems
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/QR_decomposition
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Then we can write the eigenproblem (A3) in the form,

NV −1∑
p,p′=0

VpSp;p′Vp′

NV −1∑
p,p′=0

VpQp;p′Vp′

−→
V

max (A8)

NV −1∑
p′=0

Sp;p′V
[i]
p′ = µ[i]

NV −1∑
p′=0

Qp;p′V
[i]
p′ (A9)

which has rank(Cd;s,jk) less dimension and no linear constraints. The matrix Qp;p′ in the

denominator is no longer a unit matrix. This is not an issue since any modern linear algebra

package internally converts a generalized eigenproblem to a regular one, see e.g. DSYGST,

DSPGST, DPBSTF and similar subroutines. Combining all together the algorithm becomes:

1. Take initial λij, νss′ and linear constraints Cd;s,jk to solve the optimization problem

(A8) with respect to Vp. The solution method involves solving an eigenvalue problem

of dimension NV , the number of columns in Ms,jk;p matrix. A new bs,jk is obtained

from Vp using (A6). The result: i = 0 . . . NV − 1 eigenvalues µ[i] and corresponding

matrices b[i]s,jk reconstructed from V
[i]
p . The value of NV is typically NsDn− (D−1)(D+

2)/2 − Ns(Ns − 1)/2. Additional constraints (further reducing NV ) are added when

constructing the operators hierarchy.

2. A heuristic is required to select the bs,jk among all NV eigenstates. There is a discussion

about this in [11]. Our numerical experiments show that in most cases it is sufficient to

always take the state of the maximal µ[i] to reach the global maximum. In the current

implementation we always select this state.

3. Obtained bs,jk satisfies only partial constraint (26). We need to adjust it to satisfy all the

required constraints of orthogonality and canonical form. Adjust bs,jk with Appendix

A 2 to satisfy orthogonality (24), then apply the result to Appendix A 1 to convert the

Kraus operators to canonical form (25). For Ns = 1, transformation to the canonical

form is not required. With the resulting bs,jk calculate Lagrange multipliers λij and

νss′ for the next iteration as described in Appendix A 4.

4. For good convergence, in addition to Lagrange multipliers, we need to select a subspace

for the next iteration variation. Using full size basis leads to poor convergence [10]. Use

https://www.netlib.org/lapack/lug/node54.html
https://www.netlib.org/lapack/lug/node54.html
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Appendix A5 to obtain (from bs,jk) the linear constraints coefficients Cd;s,jk used in

(A4). There is an important feature of this additional linear constraints approach. In

addition to the constraints from Appendix A5, we can manually add some external

constraints, such as requiring zero projection (45) onto already found solutions. This

way a hierarchy of high F solutions can be obtained.

5. Put these new λij and νss′ into (A2) and, using the basis Vp obtained (A6) from Cd;s,jk,

calculate the generalized eigenproblem numerator and denominator matrices (A7) to

be used in the next iteration. Repeat the iteration process until convergence to a

maximum (presumably global) of F with bs,jk satisfying the constraints (24) and (25).

If convergence is achieved, the Lagrange multipliers stop changing from iteration to

iteration, and the µ[i] of the selected state in step 2 is close to zero. On the first iteration

take zero initial values for the Lagrange multipliers and have no linear constraints.

For a general Ns implementation of this algorithm see com/polytechnik/kgo/Iterational

SubspaceLinearConstraintsNaiveKraus.java. There is a special Ns = 1 implementation

of it com/polytechnik/kgo/KGOIterationalSubspaceLinearConstraintsB.java; they

share a codebase and unit tests. Currently the algorithm converges only if Ns = 1; in this

case, except for implementation improvements and optimizations, it has properties very

similar to the com/polytechnik/kgo/KGOIterationalSubspaceLinearConstraints.java

implementation in [11].

1. Transforming Kraus Operators to Canonical Form

The selection of Kraus operators Bs in which to evaluate (23) is nonunique, there should

be a gauge that regulates redundant degrees of freedom. For example consider data of exact

unitary mapping |ψl⟩ ⟨ψl| → |ϕl⟩ ⟨ϕl| with an operator U providing perfect coverage in (2). Let

we want to describe this data with (4) mapping of Kraus rank Ns = 2. Then any combination

Bs = wsU with 1 =
∑

s |ws|2 is a solution. The problem becomes degenerate. This creates

difficulty in both analyzing the results and achieving convergence in the iterative algorithm

– any degeneracy greatly degrades it. It is common to consider Kraus operators Bs in the

canonical form (6). The problem becomes: converting a given bs,jk matrix to the canonical

form of Eq. (25).
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Kraus operators can be considered as some superoperator states, similar to density matrix

states, but ket |·⟩ and bra ⟨·| are now operators:
∑

s |Bs⟩ ⟨Bs|, not vectors. This algebra can be

uses in the expansion of tensors, such as Sjk;j′k′ (49) — then evaluating F is an inner product

of superoperators. In this work we are not going to discuss the construction of superoperators

algebra and its applications. The most important application is the construction of operators

hierarchy in Section IV, what allows us to reconstruct a quantum channel from observable

data. There are a number of other interesting features that arise on this path and we hope

to present a detailed discussion elsewhere. In this appendix we limit ourselves to one small

but important problem.

Assume we obtained a partially Kraus operator in the form of a matrix bs,jk that evaluates

the fidelity to some F (23). This bs,jk does not satisfy the (25) constraints. The problem is

to convert bs,jk to a new b̃s,jk satisfying the (25) while maintaining the same value of the

functional F . The solution is not unique and requires a gauge, akin to basis orthogonalization.

Since the tensor Sjk;j′k′ does not depend on the Kraus index s, a solution can be readily

found. We use the same technique previously employed in adjusting for partial unitarity[11],

as outlined in Appendix A2. It’s even simpler to apply it here since diagonal elements do

not enter into the constraints defined in (25). Consider the Gram matrix in the Kraus space

Gss′ =
D−1∑
j=0

n−1∑
k=0

bs,jkbs′,jk (A10)

and solve an eigenproblem with it

∣∣G∣∣g[i]〉 = λ
[i]
G

∣∣g[i]〉 i = 0 . . . Ns − 1 (A11)

Since the Sjk;j′k′ does not depend on s one can verify that

b̃s,jk =
Ns−1∑
s′=0

g
[s]
s′ bs′,jk (A12)

satisfies the (25) constraints, whereas the value of F (23) stays the same. See com/polytechni

k/kgo/TransformToCanonicalFormKraus.java for an implementation. The implementation

is straightforward: calculate the Gram matrix (A10), solve the eigenproblem (A11), then

convert the original bs,jk to the basis of the found eigenvectors (A12); F does not change

with this transformation.
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2. An Adjustment of Operators to Orthogonal

A bs,jk, found at some iteration, may not satisfy all the required constraints. In Appendix

A1 we considered canonical form constraints (25), now consider orthogonality constraints

(24). It is sufficient to consider a single ujk since the same transform is applied to all bs,jk.

The Gram matrix

Gjj′ =
n−1∑
k=0

ujkuj′k (A13)

(or Gjj′ =
∑Ns−1

s=0

∑n−1
k=0 bs,jkbs,j′k for Ns > 1) is a unit matrix when all the constraints (24)

are satisfied. When this is not the case — we want to change the ujk in a way that the change

is as small as possible. Following [11] we apply the same G−1/2
jj′ technique. Specifically, solve

the eigenproblem

∣∣G∣∣g[i]〉 = λ
[i]
G

∣∣g[i]〉 i = 0 . . . D − 1 (A14)

and calculate the inverse square root of the Gram matrix

∥∥G−1/2
∥∥ =

D−1∑
i=0

±1√
λ
[i]
G

∣∣g[i]〉 〈g[i]∣∣ (A15)

By checking the result, one can verify that for any ujk producing nondegenerated Gram

matrix (A13) the matrix

ũjk =
D−1∑
i=0

G
−1/2
ji uik (A16)

satisfies all (28) constraints (or b̃s,jk =
∑D−1

i=0 G
−1/2
ji bs,ik and constraints (24) for Ns > 1;

in this transform we apply the same G−1/2
ji to every Kraus operator Bs — the adjustment

does not depend on s). Previously considered transformation to the canonical form (A12)

has an important difference from (A16). The transformation (A12) does not change any

observable, it just reshuffles Bs among themselves in the (4) sum (gauge transform) in a way

that the obtained Bs satisfy the canonical form constraints (6), specifically (25). But Eq.

(A16) actually changes the solution, it is not possible to satisfy (24) without changing the

solution itself. We will not repeat the lengthy discussion [11] about this G−1/2
ji adjustment

technique, just note that it introduces a “minimal disturbance” to a solution, which is very
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advantageous for an iterative algorithm. This adjustment technique is implemented in com/p

olytechnik/kgo/AdjustToOrthogonalKraus.java.

There is an issue that arises when constructing operators hierarchy in Section IV —

there we do have external linear constraints (45) to be added to the iterative algorithm.

Whereas the convergence-helper constraints of Appendix A 5 are themselves calculated from

the adjusted ũjk (A16), external constraints are different in the sense that they are preset.

The application of G−1/2
jj′ to the current iteration ujk, which satisfies external constraints

due to (A6) incorporating all the linear constraints, may create a ũjk that does not satisfy

external constraints. In most cases, this problem can be ignored since as iterations progress,

the solution converges to the required subspace. However, it would be beneficial to modify

the adjustment procedure to explicitly incorporate externally defined homogeneous linear

constraints.

Consider external constraints

0 =
D−1∑
j=0

n−1∑
k=0

Ce
d;jkujk (A17)

here Ce
d;jk represents, for example, constraints (45), where index d enumerates the constraints;

they do not include convergence-helper constraints from Appendix A 5, which are determined

later, after the constraint-adjusted ujk is obtained. To simplify projections bellow, consider

Ce
d;jk and ujk as vectors, and convert Ce

d;jk to an orthogonal form. One can either use Gram-

Schmidt orthogonalization or, alternatively, apply the same G−1/2 technique we previously

used for a different problem. Now we convert (A17)

Gdd′ =
D−1∑
j=0

n−1∑
k=0

Ce
d;jkC

e
d′;jk (A18a)

C̃e
d;jk =

∑
d′

G
−1/2
dd′ Ce

d′;jk (A18b)

to an orthogonalized form δdd′ =
∑D−1

j=0

∑n−1
k=0 C̃

e
d;ikC̃

e
d′;ik; the only purpose of this orthog-

onalization is to have a simple projection formula (A19) below. Consider the following

iteration:

• Take the original ujk and convert it to the form that satisfies orthogonality constraints

(A16).
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• This ũjk satisfies (28) but may not satisfy external linear constraints (A17). Remove

the projections

˜̃ujk = ũjk −
∑
d

C̃e
d;jk

D−1∑
j′=0

n−1∑
k′=0

C̃e
d;j′k′ũj′k′ (A19)

Obtained ˜̃ujk satisfies external constraints (A17) but may not satisfy the orthogonality

constraint (28).

• Repeat the process by performing a number of iterations. This iteration-adjustment

algorithm has poor convergence per se and requires about a hundred iterations to

obtain a ujk that satisfies both the constraints (28) and (A17) exactly. However, since

this iteration-adjustment is only step 3 of the main iterative algorithm, we do not

necessarily need an exact solution. Numerical experiments show that 3 to 6 iterations

are sufficient for the main iterative algorithm to converge in the presence of external

linear constraints.

See com/polytechnik/kgo/AdjustToUnitaryWithEV_SubjectToLinearConstraints.j

ava for an implementation. As emphasized above, several iterations of these sequential

adjustments are sufficient to achieve good convergence of the main algorithm. However,

significant improvements are possible, and further study of this problem is necessary.

3. An Adjustment of a Quantum Channel to Preserve the Trace

A bs,jk, found at some iteration, may not satisfy the constraints (54) of trace preservation.

We can apply the same G−1/2 technique from Appendix A 2 to adjust the quantum channel

operators bs,jk to preserve the trace. Consider the Gram matrix

Gkk′ =
Ns−1∑
s=0

D−1∑
j=0

bs,jkbs,jk′ (A20)

and solve an eigenproblem with it

∣∣G∣∣g[i]〉 = λ
[i]
G

∣∣g[i]〉 i = 0 . . . n− 1 (A21)

Since we typically have D ≤ n the Gram matrix (A20) may become degenerated. To avoid a

degeneracy the number of terms Ns in the quantum channel should be large enough, there is
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a minimum Kraus rank (56). For a nondegenerated G calculate its inverse square root:

∥∥G−1/2
∥∥ =

n−1∑
i=0

±1√
λ
[i]
G

∣∣g[i]〉 〈g[i]∣∣ (A22)

And apply it to the current solution bs,jk

b̃s,jk =
n−1∑
q=0

G
−1/2
kq bs,jq (A23)

By checking the result one can verify that b̃s,jk satisfies all the trace preservation constraints

(54), see com/polytechnik/kgo/AdjustToTracePreservingKraus.java for an implemen-

tation. Note that the problem may become degenerate, which requires special attention. Also

note that (A23) is similar to (A16) and, contrary to (A12), actually changes the bs,jk. A

possible conflict between different adjustments can potentially be resolved similarly to the

resolution of a conflict between linear constraints and the adjustment (A16).

4. Lagrange Multipliers Calculation

The variation of the Lagrangian L (A1) must be zero in the iteration state bs,jk

0 =
1

2

δL
δbs,iq

=
D−1∑
j′=0

n−1∑
k′=0

Siq;j′k′bs,j′k′

−
D−1∑
j′=0

λij′bs,j′q −
Ns−1∑
s′=0

νss′bs′,iq (A24)

There are a total of NsDn equations. They are all satisfied if bs,jk is extremal in (A3). The

bs,jk used, however, has the orthogonality adjustment procedure of Appendix A2 applied

to it and the Lagrangian variation is no longer zero. Lagrange multipliers are Hermitian

matrices λij and νss′ , they have D(D + 1)/2 and Ns(Ns − 1)/2 independent values thus all

the NsDn equations cannot be simultaneously satisfied. We need to select the λij and νss′ to

ensure they best satisfy the zero variation condition for a given bs,jk. Consider the L2 norm

of (A24) and find the λij and νss′ minimizing the sum of squares.

Ns−1∑
s=0

D−1∑
i=0

n−1∑
q=0

∣∣∣∣ δLδbs,iq
∣∣∣∣2 −−−−→λij ,νss′

min (A25)
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To simplify the minimization of (A25) it is convenient to map λij into a vector of independent

components λr. One can note that for j ≤ i the vector index can be taken as r = i(i+1)/2+j

(if j > i swap them). Similarly for νr and νss′ take the vector index as r = s(s− 1)/2 + s′ for

s′ < s otherwise swap the indexes. Then differentiate (A25) over λr and νr to obtain a linear

system with respect to them. Back in [11] a similar linear system was analytically solved and

an explicit expression for λij was obtained.

λij = Herm
D−1∑
j′=0

n−1∑
k,k′=0

uikSjk;j′k′uj′k′ (A26)

This is an analytic solution in the case Ns = 1 with ujk = b0,jk satisfying the (28) constraints,

see com/polytechnik/kgo/LagrangeMultipliersPartialSubspace.java:calculateReg

ularLambda for an implementation of this special case. In the general case we have two types

of Lagrange multipliers: λij and νss′ , which prevents us from obtaining an analytic solution.

But the problem is straightforward: take each term from (A24), square it, and sum over all

s, i, q. Differentiate this sum of squares with respect to the vectors λr and νr to obtain a

linear system, then solve it. The calculations are straightforward but lengthy, see com/pol

ytechnik/kgo/LagrangeMultipliersNaiveKraus.java:getLagrangeMultipliers for an

implementation that, given bs,jk and Sjk;j′k′ , calculates the Lagrange multiplier matrices λij

and νss′ .

This approach differs from the commonly used one in that we only utilize the Lagrangian

variation (A24) to calculate Lagrange multipliers. The bs,jk is then determined from the

eigenproblem solution with these Lagrange multipliers used in (A2). This allows us to apply

constraint satisfying adjustments to the bs,jk before using it in the calculation of Lagrange

multipliers. We cannot simultaneously solve the optimization problem for Lagrange multipliers

λij, νss′ and the solution bs,jk. Instead, on every iteration, we adjust the bs,jk to satisfy all

required constraints, solve the linear system to find the Lagrange multipliers, and then use

them in an eigenproblem to find the next bs,jk.

5. Convergence-Helper Linear Constraints

The problem we study involves quadratic constraints (24) and (25). These constraints

cannot be directly incorporated into the eigenproblem (A3). However, homogeneous linear

constraints can be easily incorporated. Let’s construct the linear constraints corresponding to
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the constrained local variation of the current iteration bs,jk. The concept can be illustrated

by varying a quadratic constraint ⟨x |y⟩ = 0 to obtain a linear constraint on δx and δy

at fixed x = uj∗ and y = uj′∗: δ ⟨x |y⟩ = ⟨δx |y⟩ + ⟨x | δy⟩ = 0; similarly, two expressions

1 = ⟨x |x⟩ = ⟨y |y⟩ are replaced by ⟨x |x⟩ − ⟨y |y⟩ = 0. By varying it, obtain a linear

constraint on δx and δy: ⟨δx |x⟩+ ⟨x | δx⟩ − ⟨δy |y⟩ − ⟨y | δy⟩ = 0. In the case of unitary

mapping (D = n, Ns = 1), this corresponds to replacing the n(n+1)/2 quadratic constraints

of the unitary property (28) with n(n+ 1)/2− 1 homogeneous linear constraints (A4), that

simply reduce the search space dimension (A6), and a single quadratic constraint (26), referred

to as a simplified (partial) constraint. This problem can then be iteratively solved with

excellent convergence using an eigenvalue problem solver as a building block.

Consider (24) j ≠ j′ off-diagonal elements. There are D(D − 1)/2 total distinct ones.

Variating (24), we obtain

Cd;s,jk = bs,j′k (A27a)

Cd;s,j′k = bs,jk (A27b)

Two equations set different elements in Cd;s,jk for the same d, they may be viewed as

two initialization commands for the matrix Cd;s,jk. In (A27), the constraint index d takes

D(D − 1)/2 distinct values corresponding to all j′ < j pairs.

Consider the inhomogeneous constraints (24) corresponding to the diagonal elements with

j = j′. There are D of them. Since the partial constraint (26) preserves the total norm, it is

sufficient for all diagonal elements to be equal. Equality of diagonal elements constitutes a

homogeneous constraint, yielding D − 1 constraints for a given bs,jk.

Cd;s,jk = bs,jk (A28a)

Cd;s,j−1 k = −bs,j−1 k (A28b)

Similarly to the previous case, two equations set different elements in Cd;s,jk for the same d.

In (A28) the constraint index d takes D − 1 distinct values corresponding to j = 1 . . . D − 1.

For an implementation of (A27) and (A28) see com/polytechnik/kgo/LinearConstraints

Kraus.java:getOrthogonalOffdiag0DiagEq.

Consider the canonical form constraints on Kraus operators (25). There are no diagonal
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elements, resulting in a total of Ns(Ns − 1)/2 distinct constraints. Similarly obtain

Cd;s,jk = bs′,jk (A29a)

Cd;s′,jk = bs,jk (A29b)

Two equations set different elements in Cd;s,jk for the same d, they may be viewed as two

initialization commands for the matrix Cd;s,jk. In (A29) constraint index d takes Ns(Ns−1)/2

distinct values corresponding to all s′ < s pairs; for Ns = 1 the constraints vanish. For an

implementation of (A29) see com/polytechnik/kgo/LinearConstraintsKraus.java:getO

rthogonalKrausOffdiag0.

Quadratic constraints for trace preservation (54) can generate (n−1)(n+2)/2 homogeneous

linear constraints, similar to how (A27) and (A28) were derived from the orthogonality

constraint (24).

Cd;s,jk = bs,jk′ (A30a)

Cd;s,jk′ = bs,jk (A30b)

and

Cd;s,jk = bs,jk (A30c)

Cd;s,jk−1 = −bs,jk−1 (A30d)

see com/polytechnik/kgo/LinearConstraintsKraus.java:getTracePreservingConstr

aints for an implementation.

These linear homogeneous convergence-helper constraints can be summarized as follows:

• (A27) — D(D− 1)/2 in total, corresponding to (24), ensures that off-diagonal elements

are zero.

• (A28) — D − 1 in total, corresponding to (24), ensures that the diagonal elements are

equal.

• (A29) — Ns(Ns − 1)/2 in total, corresponding to (25).

• (A30) — (n− 1)(n+ 2)/2 in total, corresponding to (54), optionally used instead of

(A27) and (A28).
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The combined set of linear constraints can be put to (A4) with Nd = (D − 1)(D + 2)/2 +

Ns(Ns − 1)/2 to restrict6 the variation subspace of bs,jk. All Cd;s,jk are calculated from bs,jk,

similar to the calculation of Lagrange multipliers in Appendix A 4. Our algorithm uses, as an

iteration state, not a pair: approximation, Lagrange multipliers (bs,jk, {λij, νss′}), but a triple:

approximation, Lagrange multipliers, homogeneous linear constraints: (bs,jk, {λij, νss′}, Cd;s,jk);

it is the linear constraints themselves that ensure algorithm convergence — current work

and previous [11] results show their critical importance.

Appendix B: A Time-Dependent Schrödinger-like Equation

A formulated novel algebraic problem (43) is a generalization of the eigenvalue problem

(time-independent Schrödinger equation). A question arises regarding the generalization of

(43) to a time-dependent form. Consider the equation

iℏ
∂U
∂t

= SU (B1)

where superoperator S is a Hermitian tensor Sjk;j′k′ and U is a unitary operator ujk where

D = n. This equation is different from the dynamic equation for the density matrix

iℏ
∂ρ

∂t
= Lρ (B2)

where the Liouville operator Lρ = Hρ− ρH. This equation has the Hermitian density matrix

ρ as its solution. The distinction arises from the fact that the operators L and S have

completely different structures, and the solution U is now a unitary operator, not a Hermitian

matrix ρ. We can, however, employ a transition from the wavefunction Schrödinger equation

to density matrix Liouville – von Neumann equation (B2) to construct an equation for the

density supermatrix Υ, which represents the density tensor. The density matrix is a convex

combination of pure states (Eq. 39); this results in a transition from a vector |ψ⟩ of dimension

n to a Hermitian matrix ρ of dimension n× n. Similarly, consider a convex combination of

unitary channels

Υ =
Dn−1∑
s=0

P [s]
∣∣U [s]

〉 〈
U [s]

∣∣ (B3)

6 From the n(n+ 1)/2 trace preservation constraints (54), we obtained (n− 1)(n+ 2)/2 linear constraints

(A30). These can be used instead of (A27) and (A28). For n = D both sets are equivalent. When, for some

reason, they are used together, it is possible to have redundant constraints (e.g., in the D = n unitary case

where Ns = 1). In such cases Gaussian elimination retains only the rankCd;s,jk of them.

https://en.wikipedia.org/wiki/Density_matrix#The_von_Neumann_equation_for_time_evolution
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This results in a transition from a D × n unitary matrix U (where D = n) to a Dn×Dn

density tensor Υ, which has the same structure as the Hermitian tensor Sjk;j′k′ . A general

quantum channel is described by a density tensor Υ. Then, similarly to Eq. (B2), we can

assume that Υ satisfies its own Liouville equation

iℏ
∂Υ

∂t
= LΥ (B4)

Equation (B4) is analogous to Eq. (B2), but describes dynamics where a unitary operator U

replaces the vector wavefunction |ψ⟩, and the density tensor Υ replaces the density matrix ρ.

The specific form of the operator L requires further research; the first form to consider is,

evidently,

LΥ = SΥ−ΥS (B5)

The commutator is possible because S and Υ have the same tensor structure. This form,

however, differs from regular density matrix dynamics. For a pure superstate Υ = |U⟩ ⟨U|,

where U is the solution of (43), LΥ from (B5) is not zero: (LΥ)ik;jq =
∑D−1

j′=0 λij′uj′ku
∗
jq −∑D−1

j′=0 uiku
∗
j′qλ

∗
jj′ . This issue does not arise in regular density matrix dynamics, where for a

Hamiltonian eigenvector |ψ⟩, the density matrix ρ = |ψ⟩ ⟨ψ| satisfies 0 = Hρ− ρH.

If the tensor Υjk;j′k′ is known only in matrix form, the expansion (B3) can be obtained by

applying the hierarchy construction from Section IV to Υjk;j′k′ . Note that various orthogonality

constraints can be applied to the operators U [s] in (B3). For example, the constraint (44b)

can be used instead of (45), which was previously employed in Section IV. The operators U [s]

in (B3) then satisfy the “denominator”-type orthogonality condition (44b)

Dδss′ =
〈
U [s]

∣∣∣U [s′]
〉

(B6)

We will defer the study of the equation for the density tensor Υ to future research and focus

here on a simple example of the ground state time evolution of Eq. (B1). This equation is a

generalization of the Schrödinger equation from wavefunction vector space to the space of

unitary operators. The Schrödinger equation itself can be derived from Brownian motion,

Fisher information, the Hamilton-Jacobi equation, and various other approaches to direct

problems (see references [21-34] in [42]). Our equation (B1) could likely be derived from

various inverse problems.

Consider a ground state stationary solution of (B1) corresponding to U [0], i.e. obtained by

maximizing the fidelity F without using the constraints from (45). This solution, represented
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by the matrix u[0]jk , satisfies (43) with some λ[0]ij . The matrix λ[0]ij is Hermitian but not necessarily

diagonal. Let us convert the problem to the basis in which λ[0]ij is diagonal. Consider the basis

of λij eigenvectors

D−1∑
j=0

λijβ
[p]
j = λ[p]β

[p]
i (B7)

Then, if we formulate the original problem (43) in basis

vpk =
D−1∑
j=0

β
[p]
j ujk (B8)

the obtained solution is v[0]pk , and the corresponding λpp′ is diagonal with the diagonal elements

equal to the eigenvalues λ[p] in (B7). We considered a similar basis transformation in [10] (see

Appendix A.2 therein, “On Iteration Step Without Using the SVD”), where Sjk;j′k′ and ujk

are converted between bases for the purpose of improving the convergence of an algorithm.

However, later [11] we found an algorithm that ensures convergence in any basis. Here, this

transformation is performed solely to obtain the Lagrange multipliers λij (A26) in diagonal

form, which is necessary to find a stationary state solution of the time-dependent equation

(B1). Thus, without loss of generality, the λij can be considered diagonal; otherwise, the

original problem basis should be changed to (B8).

Let us also rewrite (B1) by replacing S with λjj′δkk′ , and referring to this S as the single

Hamiltonian approximation.

Sjk;j′k′ ≈ λjj′δkk′ (B9)

In this approximation, a general S, which encompasses many different Hamiltonians, is

replaced by a form containing only a single Hamiltonian λ, typically corresponding to the

ground state. The maximal fidelity F = ⟨U |λ | U⟩ = Trλ then holds for an arbitrary unitary

operator U , not just for the ground state solution of the equation (43). By focusing solely on

the ground state quantum channel the dynamic equation (B1) becomes

iℏ
∂U
∂t

= λU (B10)

This equation is akin to a Schrödinger equation with the Hamiltonian λ, where all possible

solutions are encompassed in U . The equation describes the simultaneous time evolution of

all possible solutions. The full superoperator Sjk;j′k′ contains many Hamiltonians. For each
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solution of (43), the Lagrange multiplier matrix λ can be considered as a Hamiltonian of

some quantum system. For upk being the ground state solution u
[0]
pk of (43) and λpj being

diagonal λ[p]δpj, the time-dependent solution of it is

upk(t) = exp

(
− i

ℏ
λ[p]t

)
upk(t = 0) (B11)

This can be viewed as up∗ vectors evolving each with its own phase exp
(
−itλ[p]/ℏ

)
. If we

consider the operator upk as D “wavefunctions” up∗ of dimension n, then each of them evolves

with its own “energy” λ[p]. This represents the time evolution of the ground state solution

of (43). The difference from traditional quantum mechanics is that the ground state upk

now contains multiple vectors, each evolving with its own exponent λ[p]. The density tensor

corresponding to the ground state is

(|U⟩ ⟨U|)pk;p′k′ (t) = (B12)

exp

(
− i

ℏ

(
λ[p] − λ[p

′]
)
t

)
upk(t = 0)u∗p′k′(t = 0)

Unlike the density matrix of a traditional quantum system’s ground state, which does

not depend on time, this density tensor has only the diagonal elements, p = p′, that are

independent of time. This explains why (B5) is nonzero for a pure superstate Υ = |U⟩ ⟨U|,

where U is the solution to (43).

A heat transfer-like equation can be obtained by removing the imaginary unit i from

(B1), resulting in κ∂U/∂t = SU . In this case, the solution (B11) results in an exponentially

growing or decaying upk(t).

The time evolution of a superposition of two solutions is more complicated compared to

the Schrödinger equation. For the Schrödinger equation, a superposition of two eigenstates

aψ[0] + bψ[1] of a Hamiltonian time-evolves as aψ[0] exp (−itE0/ℏ) + bψ[1] exp (−itE1/ℏ). At

the same time, if we consider a superposition of two solutions au[0]jk + bu
[1]
jk of (43), the result

may not be unitary. The violation of unitarity resulting from such a superposition has

deep physical significance. Such a superposition does not describe a physical state and,

therefore, should not be considered. A proper generalization is the introduction of the density

supermatrix Υ (B3), which describes a mixed type of state.

Another feature that may differ between wavefunctions and quantum channels is the

state post-measurement destruction rules. In traditional quantum mechanics, the state

|ψ⟩ is destroyed (at least partially) after the measurement act ⟨ψ |R |ψ⟩. In contrast, the

https://en.wikipedia.org/wiki/Heat_equation#Statement_of_the_equation
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measurement ⟨U |R | U⟩ involves a quantum channel U as the state. The post-measurement

destruction rules for a quantum channel U remain an open question. It is possible that

these rules differ between wavefunctions and quantum channels. A very important question

is what the measurable unit is in quantum channel dynamics: whether it is a scalar or a

Hermitian matrix? Since the corresponding algebraic problem (43) has eigenmatrices as its

spectrum, rather than the usual eigenvalues (scalars), we are inclined to believe that the

measurement unit is a Hermitian matrix. As the ground state energy of a quantum system can

be obtained as a result of a single measurement act, a quantum channel single measurement

could potentially provide the Hamiltonian λ[0] corresponding to the solution of (43) with the

maximal fidelity.

For these reasons, we will leave a detailed consideration of the time-dependent equations

(B1) and (B4) for future research and limit ourselves to the time evolution (B11) of the ground

state, which corresponds to each up∗ vector evolving with its own “energy” λ[p]. The total

fidelity is equal to the sum of all λ[p], and the ground state is the state with the maximum

total fidelity. The ground state solution corresponds to a unitary operator U(t) that itself

depends on time (B11).

Appendix C: Parametrizing states with memory using a feedback loop

In this and previous works, we considered a memoryless quantum channel described by a

set of Kraus operators Bs or, in the simplest case where Ns = 1, by a single unitary operator

U . A question arises about how memory can be introduced into the model. Modeling a system

with even a single bit of internal state is a daunting task, see Appendix H of [20], where we

discuss the problem of modeling a synchronous positive-edge-triggered D flip-flop (D trigger)

with ML. Any memory can be represented by a feedback loop, as seen in, for example, a

D-trigger or a recurrent neural network. The question is how to introduce memory into the

quantum channel (3) described by an operator U? For pure states, the channel transforms

an input state |ψ⟩ into the output state |U|ψ⟩. Let’s assume there is a feedback loop that

requires some (but not all) components of the output state to be equal (within a phase) to

https://en.wikipedia.org/wiki/Quantum_channel#Memoryless_quantum_channel
https://en.wikipedia.org/wiki/Flip-flop_(electronics)#Classical_positive-edge-triggered_D_flip-flop
https://en.wikipedia.org/wiki/Recurrent_neural_network
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the same components of the input state.

|ψ⟩ → |U|ψ⟩

x0

x1

...
x{k}

y0

y1

...
y{k}

λ[i]x
[i]
{k}

ψ
[i]
{k} = λ[i]

n−1∑
k=0

u{k}kψ
[i]
k (C1)

Here the {k} denotes these selected “feedbacked” components. If {k} is an empty set, we

obtain the problem we considered in [11]. If {k} includes all n components — then (C1)

becomes a regular eigenproblem with λ being exp(iζ) (or ±1 for an orthogonal ujk). In

this case the problem does not have any input and the internal state can be represented

as a superposition of n eigenstates of eigenproblem (C1). Now consider {k} to be a subset

of 0 . . . n − 1 indices with a total of nm elements. Then the problem (C1) represents an

eigenvalue-like problem of dimension nm, i = 0 . . . nm− 1, where an “eigenvector”
∣∣ψ[i]

〉
(there

are nm total) has n− nm components set externally and nm components being an internal

state. This “partial eigenvalue” (C1) problem is a simple way to represent a quantum channel

with an internal state (memory). A given state |ψ⟩ has n− nm free components (input) and

nm components of the internal state. A change in the input components can potentially cause

changes in the internal state. The study of unitary quantum channels with internal states is

a subject for our future research.

A different application of these “feedbacked” states of a unitary operator relates to

the problem of integer factorization. An integer can be encoded into a state |ψ⟩, and the

multiplication of the integer modulo N by a number a can be represented as a unitary

transformation U . In Shor’s algorithm [43], a major step in the prime factorization of a

number N involves finding the period r of

ar ≡ 1modN (C2)

If multiplication by a is encoded as a unitary transformation U acting on the state |ψ⟩, then

the problem (C2) can be framed as finding the r such that |U r|ψ0⟩ equals the initial state

|ψ0⟩ up to a phase factor. This is similar to the concept of the feedback loop shown in (C1).
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For example, if we were able to build an actual quantum system with the Hamiltonian

H = i
ℏ
τ
lnU (C3)

and initial state
∣∣ψ(t=0)

〉
= |ψ0⟩ then, since the system’s time evolution

U = exp

[
−i t

ℏ
H

]
(C4)∣∣ψ(t)

〉
=

∣∣U ∣∣ψ(t=0)
〉

(C5)

the calculation of r can be reduced to simply observing the quantum system (C3) with

U = U(t = τ) at time moments t = τ l and waiting until
∣∣ψ(t=τl)

〉
matches |ψ0⟩ up to a phase.

The index l of this time moment gives the period r. For this quantum system, the “Boltzmann

time” of spontaneous return to the exact initial configuration provides the sought period r.

Appendix D: An estimate of computational complexity

The described class of algorithms solves QCQP problems that arise in the maximization of

quadratic fidelity, subject to quadratic constraints on mapping operators (e.g., unitarity). This

problem is equivalent to an algebraic problem; for example, in the case of unitary learning,

it corresponds to the algebraic problem (43) originally introduced in [20]. This represents

the simplest problem of this type. In the general case, this is a new algebraic problem of

dimension NsDn. It can be solved numerically using an iterative algorithm that, on each

iteration, replaces Nc quadratic constraints with Nc − 1 homogeneous linear constraints

and a single quadratic constraint (26), referred to as a simplified (partial) constraint, see

Appendix A 5 above. Since a QCQP problem with a single quadratic constraint is equivalent

to an eigenvalue problem, a regular eigenvalue problem solver is applied to a problem of

dimension NV = NsDn−Nc + 1, this is step 1 of the algorithm. As discussed in Appendix B

of [11], this is the most computationally intensive step. Its computational complexity in the

unitary learning case (D = n, Ns = 1) involves solving an eigenproblem with a matrix of

dimension NV = n2 −n(n+1)/2+ 1. This complexity can be estimated as O(n4) when using

a specialized solver optimized to find only the maximal eigenvalue and O(n6) when using a

general-purpose solver. Our current implementation [19] uses a general-purpose eigenvalue

solver.
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Let us compare the computational complexity of this “algebraic” algorithm with that of the

“mathematical analysis” ones: second-order Newton’s method and first-order gradient method.

A unitary matrix of dimension n can be completely parametrized with N = n(n + 1)/2

parameters. There are n fewer parameters if we do not need unmeasurable phases. The

number of parameters is always greater than or equal to n(n− 1)/2 (e.g., Euler angles), see

(B11), which gives a time-dependent ground state unitary operator U(t) such that, at every

time moment t, the matrix U gives the maximal value of fidelity F (27). The complexity of

the classical Newton’s method for nonlinear systems of N equations is O(NitN
3), as a linear

system needs to be solved at each iteration. Some tricks, such as updating the Jacobian

only once every m iterations, can reduce the complexity to O(NitN
2 + NitN

3/m). Since

the number of iterations, Nit, for Newton’s method is often independent of N , the practical

complexity of the Newton’s method algorithm can be estimated to lie between O(n4) and

O(n6),7 depending on the Jacobian updating strategy. While the computational complexity

of the proposed algebraic algorithm is comparable to that of the second-order Newton’s

method, using the generalized eigenvalue problem as the algorithm’s building block offers the

advantage of obtaining multiple solution candidates (eigenvectors). Numerical experiments[11]

demonstrate that this significantly increases the chances of finding the global maximum.

The computational complexity of the gradient method in the general case is O(NitMN).

If the M -sum can be factored out from the objective functional (e.g., into a form like (27)),

the complexity reduces to O(NitN
2) = O(Nitn

4). However, in the gradient method, the

number of iterations Nit is not guaranteed to be small, nor is the algorithm guaranteed to

converge, especially for a global optimization problem that is nonconvex, with local extrema

and multiple saddle points.

The developed algorithm exhibits computational complexity on par with second-order

Newton’s method and higher than that of the first-order gradient method. Its main feature

is the algebraic approach, which enables the construction of a globally converging algorithm.

While we lack a formal proof of its convergence, among millions of test runs, only a few failed

to converge to the global maximum. In this work, we aimed to address a practical problem

that can be validated using a classical computer. Consider a scenario where we have input data

(e.g., in the form of files on disk), and we seek to recover the corresponding quantum mapping.
7 If all M observations are not combined into a single entity, such as Sjk;j′k′ , then the complexity may range

between O(Mn4) and O(Mn6), which significantly worsens the result.
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This problem frequently arises in Machine Learning for large dimensions, as discussed in

[2] and over 1,000 subsequent papers citing it. In the notations of the submitted paper,

typical dimensions of the ML problem are Ns = 1 and D = n ∼ 103 or greater. The solution

involves a form of unitary parametrization[5], such as representing the unitary as a series of

elementary rotations (e.g., Euler angles) and employing a gradient-based optimization method.

The resulting solution is obtained through this process, but there is no guarantee that it

corresponds to the global maximum. Our primary focus was on developing an algorithm

capable of providing the global maximum solution. For this reason we considered an exact

unitary mapping and aimed to recover it from a sample, this is why we did not include noise

or other common features in our study. This is a highly challenging nonconvex problem, as

the number of parameters grows quadratically with n [44]. To the best of our knowledge,

practical solutions are feasible only for small n (fewer than a dozen) or under specific setups

[14, 18, 38]. In our numerical experiments for unitary learning, the problem’s dimensionality

appears to be constrained solely by computational complexity. At each iteration step, an

eigenvalue problem of dimension NV = n2 − n(n+ 1)/2 + 1 must be solved, with only the

eigenstate corresponding to the largest eigenvalue being required. Given the extensive global

effort devoted to developing efficient numerical solvers for eigenproblems, we anticipate that

the dimensionality of the problem can be significantly increased. Currently, however, we lack

access to hardware capable of solving eigenproblems for matrices larger than dimension 1000.

Our original goal was to push the problem’s dimensionality to a point where exact recovery

of orthogonal (real unitary) matrices would become infeasible. However, computational limits

were encountered first. In our experiments, we tested the exact recovery of thousands of

randomly generated orthogonal matrices with dimensions under 50 (corresponding to an

eigenproblem size of 1226). The ability to find the global maximum remains the algorithm’s

most significant feature.

The computational complexity of constructing the tensor Sjk;j′k′ (19) was insignificant

for the pure state unitary mapping (1) discussed in [11]. However, for the unitary mapping

(3) of mixed states (7) considered in the present work, obtaining the fidelity in quadratic

form requires transforming the mapping to a density matrix square root mapping (29).

This transformation may significantly increase the computational complexity of calculating

Sjk;j′k′ (30). Using an eigenvalue problem to calculate the square root of a matrix would

require solving M eigenproblems with the matrices ρ and ϱ, each of dimension n, resulting
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in a complexity of the order O(Mn3). This cannot be reduced as in the QCQP case above,

where only a single eigenvector was needed. For the density matrix square root, we need all

eigenvectors, and the calculation of (30) probably cannot be done any better than O(Mn3).

The factor before that can, however, be reduced. When the number of observations M is

large, instead of using the regular method of calculating the matrix square root by solving an

eigenproblem (as in (A15) and (A22) above), one can apply alternative methods to compute

the square root of a positively definite Hermitian matrix without solving an eigenproblem

[45, 46]. These approaches, like the eigenvalue problem, have a dominant complexity of

O(n3) for the square root computation. However, in practice, it can significantly improve

computational efficiency when creating the mapping (29) from the original data (7). Despite

the complexity of calculating Sjk;j′k′ for a large M , this creates no difficulty in applications

since the calculations are similar to those used, for example, in covariance matrix computation.

Each component of the tensor is a sum over all M observations, and this task can be trivially

parallelized.

The general Kraus case, Ns > 1, is significantly more difficult, since the fidelity (16), as a

quadratic form, can only be obtained as an approximation. However, once the approximation

is obtained, in the general case, it requires solving an eigenproblem of dimension NV =

NsDn −Nc + 1 at each iteration (step 1 of the algorithm), with only a single eigenvector

corresponding to the maximal eigenvalue being needed. For a general quantum channel (4), we

were not able to construct a converging algorithm, not to mention the increased computational

complexity (eigenvalue problem dimension is increased in Kraus rank times). However, if we

limit ourselves to mixed-unitary channels (36), then this type of quantum channel can be

reconstructed as a hierarchy of unitary operators. Computationally, the problem in Section

IV is much simpler than a general quantum channel reconstruction. Instead of dealing with a

single complicated general quantum channel problem, the problem of unitary mapping needs

to be solved several times. Numerically, we were able to obtain a hierarchy of no more than 7

operators, which is probably due to the suboptimal algorithm for constraint conflict resolution

used in Appendix A 2. The result is a mixed unitary channel (36). However, contrary to the

Ns = 1 case, for Ns > 1, this is only an approximation, since we were not able to represent
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the proper fidelity (11) as the quadratic form of Eq. (16) in Kraus operators Bs when Ns > 1.
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