Class LinearConstraintsKraus
java.lang.Object
com.polytechnik.kgo.LinearConstraintsKraus
A class to calculated linear constraints for Kraus operators.
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescription(package private) static double[][]
getAllCombinedConstraintsAsTest
(int nS, int nC, int nX, double[] b) Combined constraints.(package private) static double[][]
getCanonicalKrausOffdiag0
(int nS, int nC, int nX, double[] b) Kraus canonical form constraints.static double[][]
getOrthogonalOffdiag0DiagEq
(int nS, int nC, int nX, double[] b) Zero offdiagonal and all equal diagonal elements of the matrix \( \mathrm{Herm}\left(\sum\limits_{k=0}^{nX-1}u_{jk}v_{ik}\right) \), there are(nC-1)*(nC+2)/2
linearized constraints in total.static double[][]
getTracePreservingConstraints
(int nS, int nC, int nX, double[] b) Spur-preserving constraints, zero offdiagonal and all equal diagonal elements of the matrix \( \delta_{kk^{\prime}}= \sum\limits_{s=0}^{nS-1} \sum\limits_{j=0}^{nC-1} b_{s,jk}b^*_{s,jk^{\prime}} \), there are(nX-1)*(nX+2)/2
linearized constraints in total.static double[][]
getTracePreservingConstraintsM
(int nC, int nX, double[] M) Spur-preserving constraints for a matrix \( \mathcal{M}_{jk} \) describing a quantum channel (this is not \(u_{jk}\)!), \( 1= \sum\limits_{j=0}^{nC-1} \mathcal{M}_{jk}\mathcal{M}^*_{jk} \), there are(nX-1)
linearized constraints in total.static void
A unit test.(package private) static void
runMultiTest
(String name, int nTest, Random r, double eps) (package private) static void
One solution test.
-
Constructor Details
-
LinearConstraintsKraus
public LinearConstraintsKraus()
-
-
Method Details
-
getOrthogonalOffdiag0DiagEq
public static double[][] getOrthogonalOffdiag0DiagEq(int nS, int nC, int nX, double[] b) Zero offdiagonal and all equal diagonal elements of the matrix \( \mathrm{Herm}\left(\sum\limits_{k=0}^{nX-1}u_{jk}v_{ik}\right) \), there are(nC-1)*(nC+2)/2
linearized constraints in total. -
getTracePreservingConstraints
public static double[][] getTracePreservingConstraints(int nS, int nC, int nX, double[] b) Spur-preserving constraints, zero offdiagonal and all equal diagonal elements of the matrix \( \delta_{kk^{\prime}}= \sum\limits_{s=0}^{nS-1} \sum\limits_{j=0}^{nC-1} b_{s,jk}b^*_{s,jk^{\prime}} \), there are(nX-1)*(nX+2)/2
linearized constraints in total. -
getTracePreservingConstraintsM
public static double[][] getTracePreservingConstraintsM(int nC, int nX, double[] M) Spur-preserving constraints for a matrix \( \mathcal{M}_{jk} \) describing a quantum channel (this is not \(u_{jk}\)!), \( 1= \sum\limits_{j=0}^{nC-1} \mathcal{M}_{jk}\mathcal{M}^*_{jk} \), there are(nX-1)
linearized constraints in total. -
getCanonicalKrausOffdiag0
static double[][] getCanonicalKrausOffdiag0(int nS, int nC, int nX, double[] b) Kraus canonical form constraints. there arenS*(nS-1)/2
linearized constraints in total. -
getAllCombinedConstraintsAsTest
static double[][] getAllCombinedConstraintsAsTest(int nS, int nC, int nX, double[] b) Combined constraints. -
testBasic
One solution test. -
runMultiTest
-
main
A unit test.
-