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Problems of interpolation, classification, and clustering are considered. In the tenets

of Radon–Nikodym approach
〈
f(x)ψ2

〉
/
〈
ψ2
〉
, where the ψ(x) is a linear function

on input attributes, all the answers are obtained from a generalized eigenproblem∣∣f |ψ[i]
〉
= λ[i]

∣∣ψ[i]
〉
. The solution to the interpolation problem is a regular Radon–

Nikodym derivative. The solution to the classification problem requires prior and

posterior probabilities that are obtained using the Lebesgue quadrature[1] technique.

Whereas in a Bayesian approach new observations change only outcome probabilities, in

the Radon–Nikodym approach not only outcome probabilities but also the probability

space
∣∣ψ[i]

〉
change with new observations. This is a remarkable feature of the approach:

both the probabilities and the probability space are constructed from the data. The

Lebesgue quadrature technique can be also applied to the optimal clustering problem.

The problem is solved by constructing a Gaussian quadrature on the Lebesgue

measure. A distinguishing feature of the Radon–Nikodym approach is the knowledge

of the invariant group: all the answers are invariant relatively any non–degenerated

linear transform of input vector x components. A software product implementing the

algorithms of interpolation, classification, and optimal clustering is available from the

authors.

∗ malyshki@ton.ioffe.ru

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
mailto:malyshki@ton.ioffe.ru
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I. INTRODUCTION

In our previous work[1] the concept of Lebesgue Integral Quadrature was introduced

and subsequently applied to the problem of joint probability estimation[2]. In this paper a

different application of the Lebesgue Integral Quadrature is developed. Consider a problem

where attributes vector x of n components is mapped to a single outcome f (class label in

ML) for l = [1 . . .M ] observations:

(x0, x1, . . . , xk, . . . , xn−1)
(l) → f (l) weight ω(l) (1)

The data of this format is commonly available in practice. There is a number of problems of

interest, e.g.:

• For a continuous attribute f build optimal λ[m]
f ; m = 0 . . . D− 1 discretization levels, a

discretization of continuous features problem.

• For a discrete f : construct a f–predictor for a given x input vector, statistical classifi-

cation problem, that arise in ML, statistics, etc. For a continuous f : predict it’s value

for a given x.

• For a given x estimate the support of the measure in (1) problem, in the simplistic

formulation it is: find the number of observations that are “close enough” to a given

x. Find the Coverage(x). The Christoffel function is often used as a proxy for the

coverage[3–5], however a genuine Coverage(x) is a very important characteristics in

ML.

• Cluster the (1) dataset according to f separability (allocate D ≤ n linear combinations

ψ
[m]
G (x) =

∑n−1
k=0 α

[m]
k xk, m = 0 . . . D − 1, that optimally separate the f in terms of

⟨fψ2⟩ / ⟨ψ2⟩). For a given x construct the probability distribution of f to fall into the

found D clusters.

Currently used techniques typically construct a norm, loss function, penalty function, metric,

distance function, etc. on f , then perform an optimization minimizing the f–error according

to the norm chosen, a typical example is the backpropagation. The simplest approach of this

type is linear regression, L2 norm minimization:〈
[f(x)− fLS(x)]

2〉→ min (2)

https://en.wikipedia.org/wiki/Discretization_of_continuous_features
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Metric_(mathematics)
https://en.wikipedia.org/wiki/Backpropagation
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fLS(x) =
n−1∑
k=0

βkxk (3)

As we have shown in [6, 7] the major drawback of an approach of this type is a difficulty to

select a “good” norm, this is especially the case for non–Gaussian data with spikes[8, 9].

II. RADON–NIKODYM SPECTRAL APPROACH

The Lebesgue integral quadrature[1] is an extension of Radon–Nikodym concept of con-

structing a classifier of ⟨fψ2⟩ / ⟨ψ2⟩ form, where the ψ(x) is a linear function on input

attributes, to build the support weight as a quadratic function on xk. It allows to approach

many ML problems in a completely new, norm–free way, this greatly increases practical

applicability. The main idea is to convert (1), a sample of M observations, to a set of n

eigenvalue/eigenvector pairs, subject to generalized eigenvalue problem:∣∣∣f ∣∣∣ψ[i]
〉
= λ[i]

∣∣ψ[i]
〉

(4)
n−1∑
k=0

⟨xj | f |xk⟩α[i]
k = λ[i]

n−1∑
k=0

⟨xj |xk⟩α[i]
k (5)

ψ[i](x) =
n−1∑
k=0

α
[i]
k xk (6)

Here and below the ⟨·⟩ is M observations sample averaging, for observations with equal

weights ω(l) = 1. This is a plain sum:

⟨1⟩ =
M∑
l=1

ω(l) (7a)

Fjk = ⟨xj | f |xk⟩ =
M∑
l=1

x
(l)
j f

(l)x
(l)
k ω

(l) (7b)

Gjk = ⟨xj |xk⟩ =
M∑
l=1

x
(l)
j x

(l)
k ω

(l) (7c)

Here and below we assume that Gram matrix Gjk is a non–singular. In case of a degenerated

Gjk, e.g. in case of data redundancy in (1), for example a situation when two input attributes

are identical xk = xk+1 for all l, a regularization procedure is required. A regularization

algorithm is presented in the Appendix A. Below we consider the matrix Gjk to be positively

definite (a regularization is already applied).
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Familiar L2 least squares minimization (2) regression answer to (3) is a linear system

solution:

fLS(x) =
n−1∑
j,k=0

xjG
−1
jk ⟨fxk⟩ (8)

The Radon–Nikodym answer[7] is:

fRN(x) =

n−1∑
j,k,l,m=0

xjG
−1
jk FklG

−1
lmxm

n−1∑
j,k=0

xjG
−1
jk xk

(9)

1/K(x) =
n−1∑
j,k=0

xjG
−1
jk xk (10)

Here G−1
kj is Gram matrix inverse, the K(x) is a Christoffel–like function. In case xk = Qk(x),

where x is a continuous attribute and Qk(x) is a polynomial of the degree k, the Gjk and

Fjk matrices from (7) are the ⟨Qj |Qk⟩ and ⟨Qj | f |Qk⟩ matrices of Refs. [1, 7], and the

Christoffel function is 1/K(x) =
∑n−1

j,k=0Qj(x)G
−1
jk Qk(x). The (1) is a more general form, the

xk now can be of arbitrary origin, an important generalization of previously considered a

polynomial function of a continuous attribute.

The (5) solution is n pairs (λ[i], ψ[i](x)). For positively definite Gjk = ⟨xj |xk⟩ the solution

exists and is unique. For normalized ψ[i] we have:

δij =
〈
ψ[i]
∣∣ψ[j]

〉
=

n−1∑
m,k=0

α[i]
m ⟨xm |xk⟩α[j]

k (11a)

λ[i]δij =
〈
ψ[i]
∣∣ f ∣∣ψ[j]

〉
=

n−1∑
m,k=0

α[i]
m ⟨xm | f |xk⟩α[j]

k (11b)

Familiar L2 least squares minimization (2) regression answer and Radon–Nikodym answers

can be written in ψ[i] basis. The (12), (13), and (14) are the (8), (9), and (10) written in the

ψ[i] basis:

fLS(x) =
n−1∑
i=0

λ[i]
〈
ψ[i]
〉
ψ[i](x) (12)

fRN(x) =

n−1∑
i=0

λ[i]
[
ψ[i](x)

]2
n−1∑
i=0

[ψ[i](x)]
2

(13)
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1/K(x) =
n−1∑
i=0

[
ψ[i](x)

]2
(14)

The main result of [1] is the construction of the Lebesgue integral quadrature:

f [i] = λ[i] (15a)

w[i] =
〈
ψ[i]
〉2

(15b)

⟨1⟩ =
n−1∑
i=0

w[i] (15c)

n =
n−1∑
i=0

〈[
ψ[i]
]2〉

(15d)

The Gaussian quadrature groups sums by function argument; it can be viewed as a n–point

discrete measure, producing the Riemann integral. The Lebesgue quadrature groups sums

by function value; it can be viewed as a n–point discrete distribution with f [i] support

points (15a) and the weights w[i] (15b), producing the Lebesgue integral. Obtained discrete

distribution has the number of support points equals to the rank of ⟨xj |xk⟩ matrix, for

non-degenerated basis it is equal to the dimension n of vector x. The Lebesgue quadrature is

unique, hence the principal component spectral decomposition is also unique when written

in the Lebesgue quadrature basis. Substituting (12) to (2) obtain PCA variation expansion:

〈
[f(x)− fLS(x)]

2〉 = 〈f 2
〉
−

n−1∑
i=0

(
f [i]
)2
w[i] =

〈(
f − f

)2〉−
n−1∑
i=0

(
f [i] − f

)2
w[i] (16)

Here f = ⟨f⟩/⟨1⟩. The difference between (16) and regular principal components is that the

basis
∣∣ψ[i]

〉
(5) of the Lebesgue quadrature is unique. This removes the major limitation of the

principal components method: it’s dependence on the scale of x attributes. The (16) does not

require scaling and normalizing of input x, e.g. if xk attribute is a temperature in Fahrenheit,

when it is converted to Celsius or Kelvin — the (16) expansion will be identical. Due to (5)

invariance the variation expansion (16) will be the same for arbitrary non–degenerated linear

transform of x components: x′j =
∑n−1

k=0 Tjkxk.

In the basis of the Lebesgue quadrature Radon–Nikodym derivative expression (13) is the

eigenvalues weighted with (22) weights. Such a solution is natural for interpolation type of

problem, however for a classification problem different weights should be used.

https://en.wikipedia.org/wiki/Principal_component_analysis#Properties_and_limitations_of_PCA
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A. Prior and Posterior Probabilities

Assume that in (13) for some x only a single eigenfunction ψ[i](x) is non–zero, then (13)

gives the corresponding f [i] regardless the weigh w[i]. This is the proper approach to an

interpolation problem, where the f is known to be a deterministic function on x. When

considering f as random variable, a more reasonable approach is to classify the outcomes

according to overall weight. Assume no information on x is available, what is the best answer

for estimation of outcomes probabilities of f ? The answer is given by the prior probabilities

(17a) that correspond to unconditional distribution of f according to (15b) weights.

Prior weight for f [i]: w[i] (17a)

Posterior weight for f [i]: w[i]Proj[i](x) = w[i]

[
ψ[i](x)

]2
n−1∑
j=0

[ψ[j](x)]
2

(17b)

The posterior distribution uses the same
[
ψ[i](x)

]2 probability as (13) adjusted to f [i] outcome

prior weight w[i]. The corresponding average

fRNW (x) =

n−1∑
i=0

λ[i]w[i]Proj[i](x)

n−1∑
i=0

w[i]Proj[i](x)

=

n−1∑
i=0

λ[i]w[i]
[
ψ[i](x)

]2
n−1∑
i=0

w[i] [ψ[i](x)]
2

(18)

is similar to (13), but uses the posterior weights (17b). There are two distinctive cases of f

on x inference:

• If f is a deterministic function on x, such as in an interpolation problem, then the

probabilities of f outcomes are not important, the only important characteristic is:

how large is
∣∣ψ[i]

〉
eigenvector at given x; the weight is the i–th eigenvector projection

(22). The best interpolation answer is then (13) fRN(x): the eigenvalues λ[i] weighted

with the projections Proj[i](x) as the weights.

• If f (or some xk) is a random variable, then inference answer depends on the distribution

of f . The classification answer should include not only what the outcome λ[i] corresponds

to a given x, but also how often the outcome λ[i] occurs; this is determined by the prior

weights w[i]. The best answer is then (18) fRNW (x): the eigenvalues λ[i] weighted with

https://en.wikipedia.org/wiki/Prior_probability
https://en.wikipedia.org/wiki/Posterior_probability
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the posterior weights w[i]Proj[i](x). An important characteristic is

Coverage(x) =
n−1∑
i=0

w[i]Proj[i](x) (19)

that is equals to Lebesgue quadrature weights w[i] weighted with projections. For (15)

the probability space is n vectors
∣∣ψ[i]

〉
with the probabilities w[i]. The coverage is a

characteristic of how often given x occurs in the observations (here we assume that

total sample space is projected to
∣∣ψ[i]

〉
states). Entropy Sf of a random variable f

can be estimated from prior probabilities:

Sf = −
n−1∑
i=0

w[i]

⟨1⟩
ln

(
w[i]

⟨1⟩

)
(20)

It can be used as a measure of statistical dispersion of f . Similarly, conditional entropy

Sf |x can be obtained from prior and posterior probabilities (17):

Sf |x = −
n−1∑
i=0

w[i]Proj[i](x)

⟨1⟩
ln

(
w[i]Proj[i](x)

Coverage(x)

)
(21)

The fRNW can be interpreted as a Bayes style of answer. An observation x changes outcome

probabilities from (17a) to (17b). Despite all the similarity there is a very important difference

between Bayesian inference and Radon–Nikodym approach. In the Bayesian inference[10]

the probability space is fixed, new observations can adjust only the probabilities of pre–set

states. In the Radon–Nikodym approach, the probability space is the Lebesgue quadrature

(15) states
∣∣ψ[i]

〉
, the solution to (4) eigenproblem. This problem is determined by two

matrices ⟨xj | f |xk⟩ and ⟨xj |xk⟩, that depend on the observation sample themselves. The key

difference is that new observations coming to (1) change not only outcome probabilities, but

also the probability space
∣∣ψ[i]

〉
. This is a remarkable feature of the approach: both the

probabilities and the probability space are constructed from the data. For probability space

of the Lebesgue quadrature (15) this flexibility allows us to solve the problem of optimal

clustering.

III. OPTIMAL CLUSTERING

Considered in previous section two inference answers (13) and (18) use vector x of n

components as input attributes xk. In a typical ML setup the number of attributes can grow

https://en.wikipedia.org/wiki/Probability_space
https://en.wikipedia.org/wiki/Entropy_(information_theory)#Definition
https://en.wikipedia.org/wiki/Bayesian_inference
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quite substantially, and for a large enough n the problem of data overfitting is starting to

rise. This is especially the case for norm–minimization approaches such as (12), and is much

less so for Radon–Nikodym type of answer (13), where the answer is a linear superposition of

the observed f with positive weight ψ2(x) (the least squares answer is also a superposition

of the observed f , but the weight is not always positive). However, for large enough n the

overfitting problem also arises in fRN . The Lebesgue quadrature (15) builds n cluster centers,

for large enough n the (13) finds the closest cluster in terms of x to ψ[i] distance, this is the

projection Proj[i](y) =
〈
ψy

∣∣ψ[i]
〉2 to localized at x = y state ψy(x):

Proj[i](x) =

[
ψ[i](x)

]2
n−1∑
j=0

[ψ[j](x)]
2

=
〈
ψx

∣∣ψ[i]
〉2

(22)

1 =
n−1∑
i=0

Proj[i](x) =
n−1∑
i=0

〈
ψx

∣∣ψ[i]
〉2

(23)

ψy(x) =

n−1∑
i=0

ψ[i](y)ψ[i](x)√
n−1∑
i=0

[ψ[i](y)]
2

=

n−1∑
j,k=0

yjG
−1
jk xk√

n−1∑
j,k=0

yjG
−1
jk yk

(24)

and then uses corresponding f [i] as the result. Such a special cluster always exists for large

enough n, with n increase the Lebesgue quadrature (15) separates the x space on smaller

and smaller clusters in terms of (22) distance as the square of wavefunction projection.

In practical applications a hierarchy of dimensions is required. The number of sample

observations M is typically in a 1, 000− 100, 000 range. The dimension n of attributes vector

x is at least ten times lower than the M , n is typically 5− 100. The number of clusters D,

required to identify the data is several times lower than the n, D is typically 2 − 10; the

D ≤ n ≤M hierarchy must be always held.

The Lebesgue quadrature (15) gives us n cluster centers, the number of input attributes.

We need to construct D ≤ n clusters out of them, that provide “the best” classification for a

given D. Even the attributes selection problem (select D “best” attributes out of n available

xk) is of combinatorial complexity[11], and can be solved only heuristically with a various

degree of success. The problem to construct D attributes out of n is even more complex.

The problem is typically reduced to some optimization problem, but the difficulty to chose a

norm and computational complexity makes it impractical.

https://en.wikipedia.org/wiki/Overfitting
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In this paper an original approach is developed. The reason for our success is the very

specific form of the Lebesgue quadrature weights (15b) w[i] =
〈
ψ[i]
〉2 that allows us to

construct a D–point Gaussian quadrature in f– space, it provides the best D–dimensional

separation of f , and then to convert obtained solution to x space!

A Gaussian quadrature constructs a set of nodes f [m]
G and weights w[m]

G such that

⟨g(f)⟩ ≈
D−1∑
m=0

g(f
[m]
G )w

[m]
G (25)

is exact for g being a polynomial of a degree 2D − 1 or less. The Gaussian quadrature can

be considered as the optimal approximation of the distribution of f by a D–point discrete

measure. With the measure ⟨·⟩ in the form of M terms sample sum (7) no inference of f on

x can be obtained, we can only estimate the distribution of f (prior probabilities).

Now consider D–point Gaussian quadrature built on n point discrete measure of the

Lebesgue quadrature (15), D ≤ n. Introduce the measure ⟨·⟩L

⟨g(f)⟩L =
n−1∑
i=0

g(f [i])w[i] (26)

⟨1⟩L = ⟨1⟩ (27)

and build Gaussian quadrature (25) on the Lebesgue measure ⟨·⟩L. Select some polynomials

Qk(f), providing sufficient numerical stability, the result is invariant with respect to basis

choice, Qm(f) = fm and Qm = Tm(f) give identical results, but numerical stability can be

drastically different[12, 13]. Then construct two matrices Fst and Gst (in (28a) and (28b) the

f [i] and w[i] are (15a) and (15b)), solve generalized eigenvalue problem (28c), the D nodes

are f [m]
G = λ

[m]
G eigenvalues, the weights w[m]

G , m = 0 . . . D − 1, are:

Fst = ⟨Qs | f |Qt⟩L =
n−1∑
i=0

Qs(f
[i])Qt(f

[i])f [i]w[i] (28a)

Gst = ⟨Qs |Qt⟩L =
n−1∑
i=0

Qs(f
[i])Qt(f

[i])w[i] (28b)∣∣∣F∣∣∣ψ[m]
G

〉
L
= λ

[m]
G

∣∣∣G∣∣∣ψ[m]
G

〉
L

(28c)

D−1∑
t=0

Fstα
[m]
t = λ

[m]
G

D−1∑
t=0

Gstα[m]
t (28d)

ψ
[m]
G (f) =

D−1∑
t=0

α
[m]
t Qt(f) (28e)

https://en.wikipedia.org/wiki/Gaussian_quadrature
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f
[m]
G = λ

[m]
G (28f)

w
[m]
G =

1[
ψ

[m]
G (λ

[m]
G )
]2 (28g)

⟨1⟩L = ⟨1⟩ =
D−1∑
m=0

w
[m]
G =

n−1∑
i=0

w[i] (28h)

The eigenfunctions ψ[m]
G (f) are polynomials of D−1 degree that are equal (within a constant)

to Lagrange interpolating polynomials L[m](f)

L[m](f) =
ψ

[m]
G (f)

ψ
[m]
G (f

[m]
G )

=

1 if f = f
[m]
G

0 if f = f
[s]
G ; s ̸= m

(29)

Obtained D clusters in f–space are optimal in a sense they, as the Gaussian quadrature,

optimally approximate the distribution of f among all D–points discrete distributions. The

greatest advantage of this approach is that attributes selection problem of combinatorial

complexity is now reduced to generalized eigenvalue problem (28d) of dimension D! Obtained

solution is more generic than typically used disjunctive conjunction or conjunctive dis-

junction forms[11] because it is invariant with respect to arbitrary non–degenerated linear

transform of the input attribute components xk.

The eigenfunctions ψ[m]
G (f) (28d) are obtained in f–space. Because the measure ⟨·⟩L (26)

was chosen with the Lebesgue quadratures weights w[i] =
〈
ψ[i]
〉2, the ψ[m]

G (f) (28e) can be

converted to x basis, m, s = 0 . . . D − 1:

ψ
[m]
G (x) =

n−1∑
i=0

ψ
[m]
G (f [i])

〈
ψ[i]
〉
ψ[i](x) (30)

δms =
〈
ψ

[m]
G (x)

∣∣∣ψ[s]
G (x)

〉
(31)

λ
[m]
G δms =

〈
ψ

[m]
G (x)

∣∣∣ f ∣∣∣ψ[s]
G (x)

〉
(32)

w
[m]
G =

〈
ψ

[m]
G (x)

〉2
=
〈
ψ

[m]
G (f)

〉2
L

(33)

The ψ[m]
G (x) is a function on x, it is obtained from ψ

[m]
G (f) basis conversion (30). This became

possible only because the Lebesgue quadratures weights w[i] =
〈
ψ[i]
〉2 have been used to

construct the ψ[m]
G (f) in (28c). The ψ[m]

G (x) satisfies the same orthogonality conditions (31)

and (32) for the measure ⟨·⟩ as the ψ[m]
G (f) for the measure ⟨·⟩L. Lebesgue quadrature weight

for ψ[m]
G (x) is the same as Gaussian quadrature weight for ψ[m]

G (f), Eq. (33).
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The (30) is the solution to clustering problem. This solution optimally separates f–

space relatively D linear combinations of xk to construct1 the separation weights ψ2(x)

of ⟨fψ2⟩ / ⟨ψ2⟩ form. In the Appendix A a regularization procedure is described, and the

1+dimSd linear combinations of xk were constructed to have a non–degenerated Gjk matrix.

No information on f have been used for that regularization. In contrast, the functions

(30) select D ≤ n linear combinations of xk, that optimally partition the f–space. The

partitioning is performed according to the distribution of f , the eigenvalue problem (28c) of

the dimension D has been solved to obtain the optimal clustering. Obtained ψ[m]
G (x) (they

are linear combination of xk) should be used as input attributes in the approach considered

in the Section II above, Eq. (13) is directly applicable, the sum now contains D terms, the

number of clusters2. Familiar variation expansion (16) is also applicable, total variation

⟨f 2⟩ −
D−1∑
m=0

(
λ
[m]
G

)2
w

[m]
G is the same when clustering to any D in the range 2 ≤ D ≤ n and is

equal to least square norm
〈
[f(x)− fLS(x)]

2〉 calculated in original attributes basis x of the

dimension n, Eq. (2).

A. Optimal Clustering For Unsupervised Learning

Obtained optimal clustering solution assumes that there is a scalar function f , which

can be put to (5) to obtain
∣∣ψ[i]

〉
, then to construct the ⟨·⟩L measure and to obtain optimal

clusters (30). For unsupervised learning a function f does not exist and the best what we

can do is to put the Christoffel function as f(x) = K(x):
n−1∑
k=0

⟨xj |K(x) |xk⟩α[i]
k = λ

[i]
K

n−1∑
k=0

⟨xj |xk⟩α[i]
k (34)

ψ
[i]
K (x) =

n−1∑
k=0

α
[i]
k xk (35)

∥ρK∥ =
n−1∑
i=0

∣∣∣ψ[i]
K

〉
λ
[i]
K

〈
ψ

[i]
K

∣∣∣ (36)

1 The (30) defines D clusters. If 1) D = n, 2) all Lebesgue quadrature nodes f [i] are distinct and 3) no weigh

w[i] is equal to zero, then λ[m]
G = f [m] and ψ[m]

G (x) = ψ[m](x).
2 One can also consider a “hierarchical” clustering similar to “hidden layers” of the neural networks. The

simplest approach is to take n input xk and cluster them to D1, then cluster obtained result to D2, then to

D3, etc., n ≤ D1 ≤ D2 ≤ D3 . . . . Another option is to initially group the xk attributes (e.g. by temporal

or spatial closeness), perform Section III optimal clustering for every group to some (possibly different for

different groups) D, then use obtained ψ[m]
G (x) for all groups as input attributes for the “next layer”.

https://en.wikipedia.org/wiki/Cluster_analysis
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FIG. 1. The Christoffel function K(x) for the measures dµ = dx (blue), dµ = dx/
√
1− x2 (green),

and dµ = dx
√
1− x2 (olive) with n = 7 and n = 25 (thin). The 1/K(x) is a polynomial on x of the

degree 2n− 2. Christoffel function is determined by integration measure and the basis used. If one

chooses the harmonic basis: 1/
√
2, sin(kπx), cos(kπx), x ∈ [−1 : 1], dµ = dx, k = 1, . . . , n− 1 then,

in contradistinction to the blue line of this chart for dµ = dx in a polynomial basis, the Christoffel

function is exactly the constant 1/(n−0.5). Christoffel function study for non–polynomial bases may

be an important direction of further research. The first step in this direction is numerical experiments:

from polynomial bases (where an extra degree gives one more basis function) to harmonic basis

(where an extra degree gives two more basis functions), following a transition to “product” attributes

(53), where the number of basis functions growths with a degree as (56).

⟨1⟩ =
n−1∑
i=0

λ
[i]
K (37)

S = −
n−1∑
i=0

λ
[i]
K

⟨1⟩
ln

(
λ
[i]
K

⟨1⟩

)
(38)

The sum of all eigenvalues (37) is equal to total measure, see Theorem 4 of [1]. The (38)

is an entropy of the distribution of x(l), it is similar to (20), but the weights are now

obtained only from x(l). In Fig. 1 a demonstration of the Christoffel function in 1D case is
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presented for the measures: dµ = dx and Chebyshev first and second kind dµ = dx/
√
1− x2

and dµ = dx
√
1− x2. One can see from the figure that K(x) for Chebyshev measure

dµ = dx/
√
1− x2 is close to a constant, this follows from the fact that all Gaussian quadrature

weights are the same for Chebyshev measure. The operator ∥ρK∥ allows us to construct a

Chebyshev–like measure for a multi–dimensional basis:

∥ρTK∥ =
n−1∑
i=0

∣∣∣ψ[i]
K

〉
λ
[i]
TK

〈
ψ

[i]
K

∣∣∣ (39)

λ
[i]
TK =

⟨1⟩
n

(40)

The operator ∥ρTK∥ has the same eigenvectors as the ∥ρK∥, but different eigenvalues; all the

eigenvalues are now the same (40), this is a generalization from 1D Chebyshev measure. For

a large enough n density matrix operator (39) has similar to Chebyshev measure properties.

Note that the entropy (38) is maximal for (40) distribution (all weights are equal). One may

also consider to put entropy density s(x) = −K(x) ln
(
K(x)/ ⟨1⟩

)
to Eq. (34) instead of

K(x) from Eq. (10) to obtain a “spectral decomposition of the entropy” as S =
n−1∑
i=0

λ
[i]
s . But it

would be less convenient than the entropy (38), where we construct a discrete distribution λ[i]K
and the entropy is then calculated in a usual way. For a large enough n these two approaches

produce similar results.

The technique of an operator’s eigenvalues adjustment was originally developed in [14]

and applied to hydroacoustic signals processing: first a covariation matrix is obtained and

diagonalized, second the eigenvalues (not the eigenvectors!) are adjusted for an effective

identification of weak hydroacoustic signals. The (39) is a transform of this type.

Before we go further let us take advantage of the basis
∣∣∣ψ[i]

K

〉
uniqueness to obtain a

familiar PCA variation expansion (16) but with the Christoffel function operator (36), the

average is defined as matrix Spur:

Spur

(
∥ρK∥ −

⟨1⟩
n

∥1∥
)2

=
n−1∑
i=0

(
λ
[i]
K − ⟨1⟩

n

)2

(41)

The (41) is invariant with respect to an arbitrary non–degenerated linear transform of x

components, no scaling and normalizing is required, the same as for (16). One can select a

few eigenvectors with a large λ[i]K − ⟨1⟩ /n difference to capture “most of variation”. However,

our goal is not to capture “most of variation” but to construct a basis of the dimension D ≤ n
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that optimally separates the dataset. Note that when the ∥ρTK∥ operator is used in (41) the

variation is minimal (zero).

We are interested not in variance expansion, but in coverage expansion. If we sort eigen-

values in (37)

⟨1⟩ =
n−1∑
i=0

λ
[i]
K =

n−1∑
i=0

〈
ψ

[i]
K

∣∣∣ ρK ∣∣∣ψ[i]
K

〉
(42)

is a sum of continuously decreasing terms, by selecting a few eigenvectors we can create

a projected state, that covers a large portion of observations. This portion is minimal for

Chebyshev density matrix (39), where it is equal to the ratio of the number of taken/total

eigenvalues. As in the previous section we are going to obtain D ≤ n states that optimally

separate the ∥ρK∥ by constructing a Gaussian quadrature of the dimension D. However, in

it’s original form there is an issue with the measure (26).

For f(x) = K(x) a different separation criteria is required. Consider the measure “all

eigenvalues are equal”, a typical one used in random matrix theory, it is actually the Chebyshev

density matrix (39).

⟨g(f)⟩E =
n−1∑
i=0

g(λ
[i]
K) (43)

⟨1⟩E = n (44)

The measure (43) takes all eigenvectors of (5) with equal weight, the nodes are λ[i]K , the weight

is 1 for every node. If we now construct the Gaussian quadrature (28) on the measure ⟨·⟩E
instead of the ⟨·⟩L, the quadrature nodes

λ
[m]
G =

〈
ψ

[m]
G

∣∣∣ f ∣∣∣ψ[m]
G

〉
E〈

ψ
[m]
G

∣∣∣ψ[m]
G

〉
E

=

n−1∑
i=0

λ
[i]
K

[
ψ

[m]
G (λ

[i]
K)
]2

n−1∑
i=0

[
ψ

[m]
G (λ

[i]
K)
]2 m = 0 . . . D − 1 (45)

have a meaning of a weight per original eigenvalue3. Then m = 0 . . . D − 1 eigenfunctions

ψ
[m]
G (f) of (28d) optimally cluster the weight per eigenvalue, a “density” like function required

for unsupervised learning. The measure (43) does not allow to convert obtained optimal

clustering solution ψ
[m]
G (f), a pure state in f–space, to a pure state in x–space ψ[m]

G (x),

3 If to use the Christoffel function average ⟨g(f)⟩K =
∑n−1

i=0 λ
[i]
Kg(λ

[i]
K) the meaning of the nodes is unclear

n−1∑
i=0

(
λ
[i]
K

)2 [
ψ
[m]
G (λ

[i]
K)
]2/n−1∑

i=0

λ
[i]
K

[
ψ
[m]
G (λ

[i]
K)
]2
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however it can be converted to a density matrix state ∥Ψ[m]
G ∥, see Appendix C of [1]. While

the ψ[m]
G (x) does not exist for a mixed state, the p[m](x), an analogue of

[
ψ

[m]
G (x)

]2
that enters

to the solutions of Radon–Nikodym type, can always be obtained. For the measure (43) the

conversion is:

p[m](x) =
n−1∑
i=0

[
ψ

[i]
K (x)ψ

[m]
G (λ

[i]
K)
]2

m = 0 . . . D − 1 (46)

for a general case see Appendix C of [1].

This theory is based on using the (34) eigenproblem to obtain invariant (with respect

to (71a) input transform) basis in which data analysis can be performed. A question arises

about an existence of other such bases. One of them can be obtained from consideration of a

localization factor

L[i](x) =

[
ψ[i]
]2

n−1∑
j=0

[ψ[j]]
2

=
[
ψ[i](x)

]2
K(x) (47)

1 ≥ L[i] ≥ 0 (48)

1 =
n−1∑
i=0

L[i] (49)

and the problem
n−1∑
i=0

〈[
ψ[i]
]2
L[i]
〉
=

n−1∑
i=0

〈 [
ψ[i]
]4

n−1∑
j=0

[ψ[j]]
2

〉
=

n−1∑
i=0

〈[
ψ[i]
]4
K(x)

〉
−→
ψ

max (50)

is of finding an orthogonal basis ψ[i] maximizing the (50) functional. From (47) definition

it follows that the maximal possible value of (50) is n; note that for any orthogonal basis〈
ψ[i]
∣∣ψ[j]

〉
= δij we have

⟨1⟩ =
n−1∑
i=0

〈[
ψ[i]
]2
K(x)

〉
(51)

n =
n−1∑
i=0

〈[
ψ[i]
]2〉

(52)

The problem (50) has the 4–th power of ψ, formally it can be considered as a multiplication

of non–averaged terms from (51) and (52) and then taking common average. The problem

cannot be reduced to an eigenvalue problem and a different technique needs to be applied,

see [15].
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In this section a completely new look to unsupervised learning PCA expansion is presented.

Whereas a “regular” PCA expansion is attributes variation expansion, which is scale–dependent

and often does not have a clear domain problem meaning4, the Christoffel function density

matrix expansion (42) is coverage expansion: every eigenvector covers some observations,

total sum of the eigenvalues is equal to total measure ⟨1⟩, the answer is invariant relatively

any non–degenerated linear transform of input vector x components. In the simplistic form

one can select a few eigenvectors with a large λ[i]K) (e.g. use --flag_replace_f_by_chris

toffel_function=true with the Appendix B software). In a more advanced form D ≤ n

optimal clusters can be obtained by constructing a Gaussian quadrature with the measure

(43) and then converting the result back to x–space with (46) projections.

IV. SELECTION OF THE ANSWER: fRN VS. fRNW

For a given input attributes vector we now have two answers: interpolation fRN (13) and

classification fRNW (18). Both are the answers of Radon–Nikodym ⟨fψ2⟩ / ⟨ψ2⟩ form, that

can be reduced to weighted eigenvalues with Proj[i] and w[i]Proj[i] weights respectively. A

question arise which one to apply.

For a deterministic function f(x), the Proj[i] weights from (22) construct the state in∣∣ψ[i]
〉

basis that is the most close to a given observation x. The fRN is a regular Radon–

Nikodym derivative of the measures fdµ and dµ, see Section II.C of [1]. This is a solution of

interpolatory type, see Appendix C below for a demonstration.

For a probabilistic f the w[i]Proj[i] weights, that include prior probability of f outcomes,

is a preferable form of outcome probabilities estimation, see Appendix B 2 below for a

demonstration. The w[i]Proj[i] posterior weights typically produce a good classification even

without optimal clustering algorithm of Section III. For a given scalar f the solution to

supervised learning problem is obtained in the form of (outcome,weight) posterior distribution

(17b).

For unsupervised learning the function f does not exist, thus the eigenvalue problem (4)

cannot be formulated. However, we still want to obtain a unique basis that is constructed

from the data, for example to avoid PCA dependence on attributes scale. For unsupervised

4 There is a situation[14] where the variation has a meaning of total energy E =
∑n−1

j,k=0 xjEjkxk, the energy

matrix Ejk is determined by antenna design.

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
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learning the Christoffel function should be used as f(x) = K(x), then PCA expansion of

coverage can be obtained, this is an approach of Section IIIA to unsupervised learning.

V. A FIRST ORDER LOGIC ANSWER TO THE CLASSIFICATION PROBLEM.

PRODUCT ATTRIBUTES.

Obtained solutions to interpolation (13) and classification (17b) problems are more general

than a propositional logic type of answer. A regular basis function expansion (3) is a local

function of arguments, thus it can be considered as a “propositional logic” type of answer.

Consider formulas including a quantor operator, e.g. for a binary xk and f in (1) expressions

like these:

if ∃xk = 1 then f = 1

if ∀xk = 0 then f = 1

Similar expressions can be written for continuous xk and f , the difference from the proposi-

tional logic is that these expressions include a quantor–like operator that is a function of

several xk attributes. The ψ2(x) expansion includes the products of xjxk, thus the Radon–

Nikodym representation can be viewed as a more general form than a propositional logic. The

most straightforward approach to obtain a “true” first order logic answer from a propositional

logic model is to add all possible Qk0(x0)Qk1(x1) . . . Qkn−1(xn−1) products to the list of input

attributes. For a large enough D (55) we obtain a model with properties that are very similar

to a first order logic model. The attributes xk are now polynomials of n variables with

multi–index k of a degree D; they are constructed from initial attributes xk with regular

index k. Multi–index degree (55) is invariant relatively any linear transform of the attributes:

x′j =
∑n−1

k=0 Tjkxk. Because in the Radon–Nikodym approach all the answers are invariant

relatively any non–degenerated linear transform of the basis, we can construct similar to

the first order logic knowledge representation with known invariant group! The situation is

different with logical formulas of disjunctive conjunction or conjunctive disjunction, where

a basis transform change formula index[11], and the invariant group is either completely

unknown or poorly understood; a typical solution in this situation is to introduce a “formula

complexity” concept to limit the formulas to be considered, a mutli–index constraint (55)

https://en.wikipedia.org/wiki/Propositional_calculus#Terminology
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Multi-index_notation#Definition_and_basic_properties
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can be viewed as a complexity of the formulas allowed. The terms

xk = xk00 x
k1
1 . . . x

kn−1

n−1 (53)

k = (k0, k1, . . . , kn−1) (54)

D =
n−1∑
j=0

kj (55)

N (n,D) = CD
n+D−1 (56)

are now identified by a multi–index k and added to (1) as attributes5. We will call the set of

all possible (53) terms used as ML attributes in (1) — the “product” attributes. An individual

(53) is called “term”, see [18–20]. The number N (n,D) of “product” attributes is the number

of possible polynomial distinct terms with multi–index not higher than D, it is equal to (56).

A few values: N (n, 1) = n, N (n, 2) = (n+ 1)n/2, N (7, 7) = 1716, N (8, 7) = 3432, etc. In a

typical ML setup such a transform to “product” attributes is not a good idea because of:

• A linear transform of input attributes produces a different solution, no gauge invariance.

• Attributes offset and normalizing difficulty.

• Data overfitting (curse of dimensionality), as we now have a much bigger number

of input attributes N (n,D). A second complexity criteria (the first one is maximal

multi–index (55)) of constructed attributes is typically introduced to limit the number

of input attributes. For example, a neural network topology can be considered as a

variant of a complexity criteria.

The approach developed in this paper has these difficulties solved. The invariant group

is a non–degenerated linear transform Tjk of input attributes components, the xjxk and∑n−1
j′,k′=0 Tjj′xj′Tkk′xk′ attributes produce identical solutions; for the same reason the terms

(53) Qk0(x0)Qk1(x1) . . . Qkn−1(xn−1) are Qk invariant, e.g. Qk(x) = xk and Qk(x) = Tk(x)

produce identical solutions. The attributes offset and normalizing are not important since (5)

is invariant relatively any non–degenerated linear transform of x components. The problem
5 Note, that since the constant does always present in the original xk attributes (1) linear combinations,

the xjxk (and high order) products always include the xk (lower order products), what may produce a

degenerated basis. The degeneracy can be removed either manually or by applying any regularization

algorithm, such as the one from Appendix A. Unlike polynomials in a single variable, multidimensional

polynomials cannot, in general, be factored[16, 17].

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks
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of data overfitting is not an issue since Section III optimal clustering solution (30) allows

to reduce N (n,D) input attributes to a given number D of their linear combinations that

optimally separate the f . The only cost to pay is that the Lebesgue quadrature now requires a

generalized eigenproblem of N (n,D) dimension to be solved, but this is purely a computational

complexity issue. Critically important, that we are now limited not by the data overfitting, but

by the computational complexity. Regardless input attributes number the optimal clustering

solution (30) selects given number D ≪ N (n,D) of input attributes linear combinations that

optimally separate f in terms of ⟨fψ2⟩ / ⟨ψ2⟩.

In the Appendix C a simple example of usage of polynomial function of a single attribute

x as input attributes was demonstrated (C1). Similarly, a polynomial of several variables (53)

identified by the multi–index (54) can be used to construct input attributes6. An increase

of attributes number from n to N (n,D) using “product” attributes (53) combined with

subsequent attributes number decrease to D by the clustering solution (30) is a path to ML

answers of the first order logic type: n original attributes (1) → N (n,D) “product” attributes

(53) → D cluster attributes (30).

A. Lenna Image Interpolation Example. Multi–index Constraints Comparison.

In [21] a two–dimensional image interpolation problem was considered with multi–index j

constraint

(x, y)(l) → f (l) weight ω(l) = 1 (57)

j = (jx, jy) (58)

0 ≤ jx ≤ nx − 1 (59)

6 See numerical implementation of multi–index recursive processing in com/polytechnik/utils/At
tributesProductsMultiIndexed.java. Due to invariant group of the Radon–Nikodym approach
the “product” attributes (53) can be calculated in any basis. For example these two solutions are
identical:

• Take original basis, perform basis regularization of Appendix A, obtain “product” attributes
(53) from Xk, then solve (5) of N (n,D) dimension. Obtain the Lebesgue quadrature (15).

• In the previous step, after Xk calculation, solve (5) of dimension n to find ψ[i](x) (6), obtain
“product” attributes (53) from these ψ[i](x), then solve (5) of N (n,D) dimension. Obtain (15).

See com/polytechnik/utils/TestRN.java:testAttributesProducts() for unit test example.
This result is also invariant to input attributes ordering method.

For highly degenerated input attributes a direct application of com/polytechnik/utils/Attri
butesProductsMultiIndexed.java algorithm to create N (n,D) “product attributes” and then
regularize them all at once may not be the best approach from computational stability point
of view. In this case it may be a better option to perform basis regularization incrementally,
simultaneously with product attributes construction: obtain original basis regularized attributes
B(1), multiply them by itself (square), regularize the products to obtain the basis B(2). Repeat the
procedure: on each step multiply the basis B(d−1) by B(1) and do a regularization of products to
obtain B(d) until the sought basis B(D) is obtained.



20

0 ≤ jy ≤ ny − 1 (60)

basis : xjxyjy dim(basis) = nxny (61)

of each multi–index component being in the [0 . . . n{x,y} − 1] range; total number of basis

functions is then nxny (61). This is different from the constraint (55), where the sum of all

multi–index components is equal to D; total number of basis functions is then (65). Different

basis functions produce different interpolation, let us compare the interpolation in these two

bases. Transform dx × dy image pixel coordinates (x, y) (x = 0 . . . dx − 1; y = 0 . . . dy − 1)

and gray intensity f to the data of (1) form:

(x, y, 1)(l) → f (l) weight ω(l) = 1 (62)

j = (jx, jy, jc) (63)

D = jx + jy + jc (64)

basis : xjxyjy = xjxyjy1jc dim(basis) = N (n,D) (65)

Input attributes vector x is of the dimension n = 3: two pixel coordinates and const, this

way the (53) “product” attributes with the constraint (64) include all xjxyjy terms with lower

than D degree jx + jy ≤ D. Observation index l runs from 1 to the total number of pixels

M = dx × dy.

Let us compare [21] nx = ny = 50; dim(basis) = nxny = 2500 of basis (61) with n =

3;D = 69; dim(basis) = N (n,D) = 2485 of basis (65). The value of D = 69 is selected to

have approximately the same total number of basis functions. The bases are different: x67y2,

x66y2, etc. are among “product” attributes (65), but they are not among the (61) where the

maximal degree for x and y is 49; similarly the x49y49 is in (61), but it is not in (65). As in

[21] we choose 512x512 Lenna grayscale image as a testbed. If you have scala installed run

scala com.polytechnik.algorithms.ExampleImageInterpolation \

file:dataexamples/lena512.bmp 50 50 chebyshev

to reproduce [21] results using (8) and (9) for least squares and Radon–Nikodym. Then run

(note: this code is unoptimized and slow):

java com/polytechnik/algorithms/ExampleImageInterpolation2 \

file:dataexamples/lena512.bmp 50 50 69

https://en.wikipedia.org/wiki/Lenna
https://www.scala-lang.org/
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To obtain 4 files. The files lena512.bmp.LS.50.50.bs2500.png and lena512.bmp.RN.50.

50.bs2500.png are obtained as (12) and (13) using (61) basis with nx = ny = 50, the result

is identical to [21]. The files lena512.bmp.LS.D.69.bs2485.png and lena512.bmp.RN.D.6

9.bs2485.png are obtained from (12) and (13) using (65) basis with D = 69. The images

are presented in Fig. 2. It was shown in [21] that the Radon–Nikodym interpolation produces

a sfumato type of picture because it averages with always positive weight ψ2(x); the (13)

preserves the bounds of f : if original gray intensity is [0 : 1] bounded then interpolated

gray intensity is [0 : 1] bounded as well; this is an important difference from positive

polynomials interpolation[22] where only a low bound (zero) is preserved. In contradistinction

to Radon–Nikodym the least squares interpolation strongly oscillates near image edges and

may not preserve the bounds of gray intensity f . In this section we compare not least squares

vs. Radon–Nikodym as we did in [21] but the bases: (61) vs. (65) as they have different

multi–index constraints. We observe that:

• The bases produce similar results. Basis differences in LS are more pronounced, than

in RN; always positive weight makes the RN less sensitive to basis choice.

• In RN a small difference is observed near image edges. With (61) RN still has small

oscillations near edges, and with (65) RN has oscillations completely suppressed.

• The multi–index constraint (61) is not invariant relatively a linear transform of input

attributes, for example xnx−1yny−1 relatively x = x′ − y′, y = x′ + y′, but the (65) is

invariant.

This make us to conclude that the specific multi–index constraint is not very important,

the results are similar. Whereas in an interpolation problem an explosion of basis functions

number increases interpolation precision, in a classification problem an explosion of basis

functions number leads to data overfitting. The optimal clustering solution (30) reduces the

number of basis functions to a given D thus it solves the problem of data overfitting. This

reduction makes multi–index constraint used for initial basis construction even less important

for a classification problem than for an interpolation problem.

https://en.wikipedia.org/wiki/Sfumato
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FIG. 2. Top: original image. Middle: least squares in (61) basis (left) and (65) basis (right). Bottom:

Radon–Nikodym in (61) basis (left) and (65) basis (right). The bases (61) and (65) are of 2500

elements (nx = ny = 50) and 2485 elements (n = 3, D = 69) respectively.

B. On The Christoffel Function Conditional Optimization

All the solutions obtained in this paper have a distribution of f as the answer: the

distribution with posterior weights (17b), optimal clustering (28), etc. Recently, a promising



23

approach to interpolation problem has been developed [23]. In this subsection we consider

a modification of it to obtain, for a given x, not a single outcome of f , but a distribution.

Obtained weights can be considered as an alternative to the posterior weights (17b). A sketch

of [23] theory:

• Introduce a vector z = (x, f) of the dimension n+ 1.

• Construct “product” attributes (53) out of z components with the degree equals to D;

because a constant always presents in xk it is sufficient to consider the degree equals

to D, lower order terms are obtained automatically as in (65). There are N (n+ 1,D)

“product” attributes obtained from n+ 1 components of z.

• Construct Christoffel function (10) from obtained “product” attributes K(z) = K(x, f).

Now the 1/K(z), for a given x, is a positive polynomial on f of the degree 2D.

• For a given x, the interpolation [23] of f is the value providing the minimum of the

polynomial 1/K(x, f); the value of x is fixed:

K(x, f)
∣∣∣
x
−→
f

max (66)

As an extension of this approach consider Christoffel function average, Appendix B of [1],

but use the K(z) = K(x, f) to calculate the moments of f :

⟨fm⟩K(x,·) =
〈
fmK(z)

∣∣∣
x

〉
=

M∑
l=1

(
f (l)
)m

1/K(x, f (l))
ω(l) (67)

When one uses x = x(l) as Christoffel function argument in the right hand side of (67), the

average is the Christoffel function average of Ref. [1] with the properties similar to regular

average (7); the Gaussian quadrature built from the moments obtained with the Christoffel

function average is similar to the one built from the regular moments ⟨fm⟩, and to the one

built from (26) moments with g = fm. However, if to consider a fixed value of x, then the

solution becomes similar to the approach of Ref. [23], the K(x, f) is now used as a proxy to

joint distribution ρ(x, f). Because 1/K(x, f) at fixed x is a positive polynomial on f of the

degree 2D, the moments ⟨fm⟩K(x,·) do exist for at least m = 0 . . . 2D. A D–point Gaussian

quadrature can be built from them, exactly as (28), but with the measure ⟨·⟩K(x,·) instead of

⟨·⟩L. The result is D nodes (28f) and weights (28g). The major difference from [23] is that
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instead of single f we now obtained i = 0 . . .D − 1 (outcome,weight) pairs (f
[i]
K(x,·), w

[i]
K(x,·))

of the distribution of f conditional to a given x. The most close to [23] interpolation answer

is to find the f [i]
K(x,·), corresponding to the maximal w[i]

K(x,·). However, in ML the distribution

of outcomes, not a single “answer”, is of most interest. From the Gaussian quadrature built

on the ⟨·⟩K(x,·) measure conditional distribution characteristics can be obtained:

• The ⟨1⟩K(x,·) is an analogue of Coverage(x) from (19): how many observations are “close

enough” to a given x.

• The Gaussian quadrature nodes and weights (f
[i]
K(x,·), w

[i]
K(x,·)) are an analogue of the

posterior distribution (17b). However, in (67) approach both: the outcomes f [i]
K(x,·) and

the weights w[i]
K(x,·) depend on x. In (17b) approach the outcomes are always the same

f [i] and only posterior weights depend on x as w[i]Proj[i](x). This distinction is similar

to [3] with x–dependent outcomes vs. [24] with x–independent outcomes.

• The approach (67) cannot provide an optimal clustering solution of (30) type. Ide-

ologically, x–dependent outcomes make optimal clustering difficult. Technically, the

m = 0 . . . 2D moments ⟨fm⟩K(x,·) cannot be reduced to a density matrix average of

Appendix C of [1] or to a simple pure state average (15b).

VI. A SUPERVISED CLASSIFICATION PROBLEM WITH VECTOR–VALUED

CLASS LABEL

In the ML problem (1) the class label f is considered to be a scalar. A problem with

vector–valued class label f

(x0, x1, . . . , xk, . . . , xn−1)
(l) → (f0, f1, . . . , fj, . . . , fm−1)

(l) weight ω(l) (68)

where an attributes vector x of the dimension n is mapped to a class label vector f of

the dimension m is a much more interesting case. For a vector class label f , the most

straightforward approach is to build an individual model for every fj component. However,

constructed models are often completely different and obtained model set cannot be viewed

as a probability space. In addition, the invariant group of f (what transform of fj components

does not change the prediction) may become unknown and basis–dependent. The situation is

similar to the one of our previous works[3, 24], where the distribution regression problem
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can be directly approached by the Radon–Nikodym technique, however the distribution to

distribution regression problem is a much more difficult case.

Whereas the Christoffel function maximization approach (66) of Ref. [23] is interesting

for a scalar f , it becomes extremely promising for a vector class label f . Consider a vector z

of the dimension n+m:

z = (x0, x1, . . . , xk, . . . , xn−1, f0, f1, . . . , fj, . . . , fm−1)
(l) weight ω(l) (69)

The vector z mixes input attributes x with class label vector f . The N (n+m,D) “product”

attributes Zi can be obtained out of n+m z components as in (53). The “product” attributes Zi

with the constraint (55) are the ones with the simplest invariant group: the answer is invariant

relatively any non–degenerated linear transform of z components: z′s =
∑n+m−1

s′=0 Tss′zs′ ;

s, s′ = 0 . . . n+m− 17. The invariant group can be viewed as a gauge transformations and is

a critical insight into the ML model built.

From (69) z data construct N (n +m,D) “product” attributes Zi according to (55) (if

necessary perform regularization of the Appendix A), then, finally, construct the Christoffel

function K(z) according to (10). Classification problem is to find f–prediction for a given x.

When one puts xk, k = 0 . . . n− 1 part of vector z equal to a given x the K(x, f), for a fixed

x, can be viewed as a proxy to joint distribution ρ(x, f). Find it’s maximum over the vector f :

K(x, f)
∣∣∣
x
−→
f

max (70)

to obtain Ref. [23] solution. The solution (70) is exactly (66), but with a vector class label f !

For a fixed x and a degree D the 1/K(x, f)
∣∣∣
x

is a polynomial on fj of the degree 2D,

there are total N (m,D) distinct terms. In applications it may be convenient to minimize the

polynomial 1/K(x, f)
∣∣∣
x

instead of maximizing the Christoffel function (70), but these are

implementation details.

Critically important, that, for a given x, we now obtained a probability distribution of f

as K(x, f)
∣∣∣
x
. When a specific value of f is required, it can be estimated from the distribution

as:
7 In practical applications, it is often convenient to consider different degree D for x and f , e.g. to consider

D > 1 only for x to obtain N (n,D) “product” attributes and, for the class label, consider D = 1. There are

will be m = N (m, 1) attributes fj , total N (n,D) +m attributes Zi. Below we consider only the case of

the constraint (55), providing N (n+m,D) attributes Zi. The transition to “product” attributes extends

the basis space, but the |ψ⟩ still form a linear space [25].

https://en.wikipedia.org/wiki/Introduction_to_gauge_theory
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• Christoffel function maximum (70).

• The distribution of Christoffel function eigenvalues (34)

• The simplest one is to average f with K(x, f)
∣∣∣
x
, the same as (67) but with the vector f

instead of fm:
〈
fK(z)

∣∣∣
x

〉
and similar generalizations.

The most remarkable feature is that the K(x, f)
∣∣∣
x

approach is trivially applicable to a vector

class label f , and the constructed model has a known “gauge group”.

A. A Vector–Valued Class Label: Selecting Solution Type

While the idea [23] to combine input attributes x with class label vector f into a single

vector z (69) with subsequent construction of “product” attributes Z (53) and finally to

obtain Gram matrix ⟨ZiZj⟩ and Christoffel function K(z) (10) is a very promising one, it

still has some limitations.

Consider a D = 1 example: let a datasample (68) has f0 = x0 for all l = 1 . . .M . Then

Gram matrix ⟨zizj⟩ is degenerated. When attributes regularization is applied — it will remove

either f0 or x0 from z, thus the resulting K(z)
∣∣∣
x

depends on attributes regularization: a

polynomial 1/K(z)
∣∣∣
x

on f is different, thus
〈
fK(z)

∣∣∣
x

〉
produces the result depending on the

regularization. An ultimate example of this situation is: for k = 0 . . . n− 1, let fk = xk for

all l = 1 . . .M with n = m. In this case Gram matrix has two copies of exactly the same

attributes and what combination of them propagate to the final set of attributes depends on

regularization. For example if xk are selected and fk are dropped then K(z)
∣∣∣
x

is a constant

and
〈
fK(z)

∣∣∣
x

〉
is x–independent. Such a regularization–dependent answer cannot be a solid

foundation to ML classification problem, a regularization–independent solution is required.

Consider two Gram matrices ⟨xkxk′⟩ and ⟨fjfj′⟩ with attributes possibly “producted” (53)

to Dx and Df . It’s “gauge transformation” is:

x′k =
n−1∑
k′=0

Tkk′xk′ (71a)

f ′
j =

m−1∑
j′=0

Tjj′fj′ (71b)
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There are no x ⇔ z “cross” terms as when we were working with the combined z, this makes

the solution regularization–independent.

Consider the simplest practical solution. Let xk attributes being regularized and “producted”

(53) to a degree D. The f attributes are untransformed. The Radon–Nikodym interpolation

solution (9) is directly applicable:

fRN(x) =

n−1∑
l,j,k,i=0

xlG
−1
lj ⟨xj | f |xk⟩G−1

ki xi

n−1∑
j,k=0

xjG
−1
jk xk

(72)

This “vector” type of solution to distribution to distribution regression problem (that was

obtained back in [24]) is just (9) applied to every component of f . As we discussed in Section

II and demonstrated in the Appendix B 2, such a solution, while being a good one to an

interpolation problem, leads to data overfitting when applied to a classification problem. We

need to use the posterior (17b) distribution weights to obtain an analogue of fRNW (x) (18),

but without generalized eigenvalue problem on f , as the f is now a vector. This is feasible

if we go from “regular” average to Christoffel function average of Section IIIA. All density

matrix averages posses the duality property[1]:

Spur ∥f |ρK∥ =
n−1∑
i=0

λ
[i]
K

〈
ψ

[i]
K

∣∣∣ f ∣∣∣ψ[i]
K

〉
=

n−1∑
i=0

λ
[i]
f

〈
ψ

[i]
f

∣∣∣ ρK ∣∣∣ψ[i]
f

〉
(73)

Thus, for a vector f , where the pairs
(
λ
[i]
f ;
∣∣∣ψ[i]

f

〉)
do not exist, obtain in

∣∣∣ψ[i]
K

〉
basis:

fRNW (x) =

n−1∑
i=0

λ
[i]
K

[
ψ

[i]
K (x)

]2 〈
ψ

[i]
K

∣∣∣ f ∣∣∣ψ[i]
K

〉
n−1∑
i=0

λ
[i]
K

[
ψ

[i]
K (x)

]2 (74)

This is the simplest practical solution8 to a classification problem with vector class label f . It

uses unsupervised learning basis
∣∣∣ψ[i]

K

〉
of generalized eigenvalue problem (34) to solve the

problem with a vector class label f . The solution (74) assumes every component of vector

f is diagonal in the basis
∣∣∣ψ[i]

K

〉
. This is not generally the case, but allows to build a single

classificator for a vector class label f instead of constructing an individual classificator for

every fj component. The option --flag_assume_f_is_diagonal_in_christoffel_funct

8 One can also try the fRN (x) from (72) with ⟨xj |K(x) |xk⟩ and ⟨xj | f(x)K(x) |xk⟩ used instead of

Gjk = ⟨xj |xk⟩ and ⟨xj | f |xk⟩.
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ion_basis=true of the provided software (see Appendix B below) builds such a classifier.

This “same
∣∣∣ψ[i]

K

〉
basis for all fj” classifier typically has worse quality that the one built in∣∣ψ[i]

〉
basis corresponding to an individual scalar class label fj

The approach of two Gram matrices ⟨xkxk′⟩, k, k′ = 0 . . . n−1 and ⟨fjfj′⟩, j, j′ = 0 . . .m−1

without “mixed” terms ⟨xkfj⟩ in basis allows to obtain a “relative frequency” characteristic, a

density of state type of solution. Consider R, the ratio of two Christoffel functions:

K(f(x)) = R ·K(x) (75)

R =

n−1∑
k,k′=0

αk ⟨xk |K(f(x)) |xk′⟩αk′

n−1∑
k,k′=0

αk ⟨xk |K(x) |xk′⟩αk′
(76)

which is an estimator of Radon–Nikodym derivative[26]. The R is a dimensionless “relative

frequency”: how often a given realization of vector f corresponds to a given realization of

vector x in (68) sample. The K(x) and K(f) are Christoffel functions calculated on x and

f portion of (68) data, possibly regularized and “producted”. The 1/K(x) and 1/K(f) are

positive polynomials on xk and fj components respectively.

To obtain the distribution of R multiply left- and right- hand side of (75) by ψ2(x) and

integrate it over all l = 1 . . .M observations of (68) datasample, obtain (76). The calculation

of ⟨xk |K(f(x)) |xk′⟩ matrix elements is no different from the one performed in (34): use (10)

expression, but now in f–space. A familiar generalized eigenvalue problem is then:

n−1∑
k′=0

⟨xk |K(f(x)) |xk′⟩α[i]
k′ = λ

[i]
R

n−1∑
k′=0

⟨xk |K(x) |xk′⟩α[i]
k′ (77)

ψ
[i]
R(x) =

n−1∑
k=0

α
[i]
k xk (78)

Obtained λ[i]R is a spectrum of “relative frequency”. In
∣∣∣ψ[i]

R

〉
state there are λ[i]R time more f

observations than x observations. The matrices ⟨xk |K(f(x)) |xk′⟩ and ⟨xk |K(x) |xk′⟩ are

n×n matrices calculated from a training datasample. The knowledge is accumulated in their

spectrum. When evaluating a testing dataset the simplest usage of (76) is this: for a given

x, how often/seldom we see an f? The answer is (76) with localized αk =
∑n−1

k′=0G
−1
kk′xk′ or,
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when written in (78) basis

R(x) =

n−1∑
i=0

λ
[i]
R

[
ψ

[i]
R(x)

]2
n−1∑
i=0

[
ψ

[i]
R(x)

]2 (79)

While the (74) is f–value predictor, the R is “relative frequency” estimator, an important

characteristic when considering a vector–to–vector type of mapping.

B. A Vector–Valued Class Label: Error Estimation

The vector–value estimators (72) and (74) are an estimation of f by averaging class label

f (l) = (f0, f1, . . . , fj, . . . , fm−1)
(l) from (69) with a x– dependent positive weight Wx(x

(l)):

f(x) =

M∑
l=1

Wx(x
(l))f (l)

M∑
l=1

Wx(x(l))

(80)

⟨1⟩Wx
=

M∑
l=1

Wx(x
(l)) (81)

What is the best way to estimate an error of a solution of this type? A “traditional” approach

would be to consider a standard deviation type of answer
〈(
f − f

)2〉, a variation of f

components relatively their average value. This solution can be obtained from Gram matrix

in f–space (with some complications because of vector class label f):

Gjk = ⟨fjfk⟩Wx
=

M∑
l=1

Wx(x
(l))f

(l)
j f

(l)
k j, k = 0 . . .m− 1 (82)

As we discussed in [8] and then earlier in this paper all standard deviation error estimators

cannot be applied to non–Gaussian data, thus they have a limited applicability domain. A

much better estimator can be constructed from the Christoffel function. Consider Christoffel

function in f–space KWx(f), obtained from Gram matrix (82) as 1/KWx(f) =
∑m−1

j,k=0 fjG
−1
jk fk,

exactly as we did in (10) in x–space9. Consider the best possible situation when (80) has no
9 To calculate Christoffel function properly there always should be a constant present in the

(f0, f1, . . . , fj , . . . , fm−1) basis space, if it does not have one – add an attribute fm = 1 to the basis.

If Gjk is degenerated the vector (f0, f1, . . . , fj , . . . , fm−1) should be regularized according to Appendix A

with the replacement xj → fj . Described there regularization algorithms always add a constant to the

basis if it does not have one.
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variation, i.e. the averaging gives exact values. The support of this measure is then a single

point f from (80) (compare with a Gaussian quadrature in case when a single node has a

dominantly large weight). When a prediction is not perfect we have a variation of f (l) around

average. Exactly as we did above, instead of considering a variation in f–space, consider the

support of a measure, a “Lebesgue” style approach. The total measure is ⟨1⟩Wx
, the support

of f–localized state is KWx(f), their difference gives error estimation:

Error = ⟨1⟩Wx
−KWx(f) (83)

Errorrel =
Error

⟨1⟩Wx

= 1− KWx(f)

⟨1⟩Wx

(84)

Error estimator (83) has a dimension of weight (number of observations). It has the meaning

of the difference between total measure and the measure of f–localized state. It is gauge

invariant relatively (71).

Even when a predictor (in a form of x– dependent positive weight Wx(x)) does not exist

we can still obtain an information of how well a vector in f -space can be recovered from

x-space. In scalar case f = f the simplistic solution to the problem is the aforementioned L2

norm (2): if standard deviation is zero then f can be completely recovered from the value of

x. However, this solution, besides depending on the scale of f , is problematically to generalize

to a vector f .

We can construct an original solution to vector f from three matrices: ⟨fj′fk′⟩ (the (82)

with Wx = 1), ⟨xjxk⟩, and ⟨xjfk′⟩. The first two are Gram matrices in f - and x- space

respectively:

Gf
j′k′ = ⟨fj′fk′⟩ j′, k′ = 0 . . .m− 1 (85)

Gx
jk = ⟨xjxk⟩ j, k = 0 . . . n− 1 (86)

Gxf
jk′ = ⟨xjfk′⟩ j = 0 . . . n− 1; k′ = 0 . . .m− 1 (87)

In scalar f case we have m = 2 or greater:

f = (1, f) f0 = 1; f1 = f ;m = 2 (88)

f = (1, f, f 2) f0 = 1; f1 = f ; f2 = f 2;m = 3

f = (1, f, f 2, f 3) f0 = 1; f1 = f ; f1 = f 2; f3 = f 3;m = 4

a constant should always present in the basis (both in f and x). A criterion of how well f can

be recovered from x is to compare the matrices ⟨fj′fk′⟩ and ⟨fj′(x)fk′(x)⟩; the fj′ is exact



31

value and the fj′(x) is obtained from (8) projection of f on x-space:

f(x) = Proj(f→x)f (89)

fj′(x) =
n−1∑
j,k=0

xjG
x;−1
jk ⟨fj′xk⟩ (90)

⟨fj′(x)fk′(x)⟩ =
n−1∑
j,k=0

⟨fj′xj⟩Gx;−1
jk ⟨fk′xk⟩ =

n−1∑
j,k=0

Gxf
jj′G

x;−1
jk Gxf

kk′ (91)

Here Gx;−1
jk is an inverse of Gx

jk from (86). The non–negative m×m symmetric matrices10:

⟨fj′(x)fk′(x)⟩ (Eq. (91)) and ⟨fj′fk′⟩ (Eq. (85)) coincide if f is a subspace of x; both represent

the f -space: the former is projected on x, the later is calculated directly.

Solve generalized eigenproblem with these two matrices in left- and right- hand side

respectively, exactly as in (5):

m−1∑
k′=0

⟨fj′(x)fk′(x)⟩α[i]
k′ = λ[i]

m−1∑
k′=0

⟨fj′ | fk′⟩α[i]
k′ (92)

m−1∑
k′=0

n−1∑
j,k=0

Gxf
jj′G

x;−1
jk Gxf

kk′α
[i]
k′ = λ[i]

m−1∑
k′=0

Gf
j′k′α

[i]
k′

If f -space is a subspace of x-space then all i = 0 . . .m− 1 eigenvalues λ[i] are equal to 1 and

their sum is equal to matrix ⟨fj′ | fk′⟩ rank m. Otherwise the difference represents an error:

how big is the remaining error after projecting f -space on x-space:

Errorrank = m−
m−1∑
i=0

λ[i] = m−
m−1∑
j,k=0

⟨fj(x)fk(x)⟩Gf ;−1
kj (93)

This error is gauge–invariant relatively (71), it is dimensionless and represents how well f -space

can be projected on x-space. It can be viewed as a gauge–invariant “squared multi–dimensional

correlation” between f(x(l)) and f (l), l = 1 . . .M . If n = m = 2 we have: x = (1, x); f = (1, f)

then (92) has the maximal eigenvalue λ[1] = 1 because a constant presents in both bases, and

minimal eigenvalue is equal to regular correlation between x and f squared: λ[0] = ρ2(x, f).

The (93) can also be calculated directly using matrix Spur, without solving a generalized

eigenvalue problem. It is a “rank–difference” error estimator what makes it not always

convenient in practical ML applications. The most convenient error estimator in ML is of

“coverage” type: how many observations are correctly classified (or misclassified). This error

10 If the matrix ⟨fj′fk′⟩ is not positive — apply Appendix A regularization first.
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can be obtained using (90) projection and Christoffel function technique we applied in Section

VI C below to the Low-Rank Representation(LRR) problem. The solution is straightforward:

• Construct a ψg(f) state, localized at f = g, it is exactly (24) with a replace x → f ;

y → g; G→ Gf , see Eq. (E5).

• In every g = f (l) point we have
〈
ψ2
f (l)

〉
= 1, exactly as in full basis expansion (116).

• If one, instead of ψg(f), take it’s projection (90) to x-space — the value (94) can be

lower than 1, similarly to (117). Then sum it over all l = 1 . . .M sample observations

to obtain the number of covered points. The Error is then:

ϖ(g) =

〈[
Proj(f→x)ψg

]2〉
=

n−1∑
j,k=0

m−1∑
s′,j′,k′,t′=0

gs′G
f ;−1
s′j′ G

xf
jj′G

x;−1
jk Gxf

kk′G
f ;−1
k′t′ gt′

m−1∑
j′,k′=0

gj′G
f ;−1
j′k′ gk′

(94)

Error = ⟨1⟩ −
M∑
l=1

ω(l)ϖ(f (l)) (95)

The (95) is an analogue of (83) with no predictor available, this is a characteristics of the

data, not of a predictor, the sum of basis projection successes ϖ(f (l)) in every observation

point l with the weight ω(l). This expression can be generalized with an operator U in x-space

converting ψx(l)(x) to some other function in x-space |ψ(x)⟩ = |U|ψx(l)(x)⟩ and only then

projecting the result to actual realization ψf (l)(f) in f -space:

Error = ⟨1⟩ −
M∑
l=1

ω(l) |⟨ψf (l) | U |ψx(l)⟩|2 (96)

This error is the number of misclassified observations for specific predictor ∥U∥, it is always

greater than the error (95). The (95) corresponds to |U|ψx(l)⟩ (a single vector in x-space)

being replaced by direct projection to a full orthogonal basis
∣∣ψ[i]

〉
in x-space, similar to

(117) and (F1):

ϖ(g) =
n−1∑
i=0

〈
ψg

∣∣ψ[i]
〉2

1 ≥ ϖ(g) (97)

The ϖ(g) determines how well a localized in f -space state ψg(f) can be projected to x-space

basis. This criterion is then tested for all l = 1 . . .M observation points, For the reason

of testing the entire sample of M points, not just n basis functions, the Error (95) is an
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estimation of the best possible predictor performance, thus it is useful as a bound (G3) for a

predictor of (96) form.

The Error can be spectrally expanded. Introduce

〈
fj
∣∣K(f)

∣∣ fk〉 = M∑
l=1

ω(l)
f
(l)
j f

(l)
k

m−1∑
j′,k′=0

f
(l)
j′ G

f ;−1
j′k′ f

(l)
k′

j, k = 0 . . .m− 1 (98)

Which is exactly Christoffel function matrix (34), but in f -space. Then (95) can be expressed

as matrix spur (100):

K
(f→x)
jk =

m−1∑
k′,t′,s′,j′=0

Gxf
kk′G

f ;−1
k′t′

〈
ft′
∣∣K(f)

∣∣ fs′〉Gf ;−1
s′j′ G

xf
jj′ j, k = 0 . . . n− 1 (99)

Error = ⟨1⟩ −
n−1∑
j,k=0

K
(f→x)
jk Gx;−1

kj = ⟨1⟩ − SpurK(f→x)Gx;−1 (100)

From which immediately follows, that if we solve generalized eigenproblem with K(f→x)
jk and

Gx
jk = ⟨xjxk⟩ matrices in left- and right- hand side respectively, the Error can be spectrally

expanded:
n−1∑
k=0

K
(f→x)
jk α

[i]
k = λ[i]

n−1∑
k=0

⟨xjxk⟩α[i]
k (101)

Error = ⟨1⟩ −
n−1∑
i=0

λ[i] (102)

The (102) is a spectral decomposition of (95), it has at most m non–zero eigenvalues (the

rank of (99) is m or lower, we also assume m ≤ n). If f belongs to a subspace of x then the

sum of these m eigenvalues in (102) is equal to ⟨1⟩. The eigenvectors corresponding to a few

(m or lower) maximal eigenvalues of (101) is the solution to vector class label classification

problem target basis (not the problem itself).

Consider a simple demonstrative solution. Let us project ψg(f) to ψfLS(x)(f) to obtain a

joint probability estimator: what is the probability11 of outcome g given input vector y if

fLS(x) model is assumed.

ψfLS(y)(f) =
1

Norm(y)

n−1∑
j,k=0

m−1∑
j′,k′=0

yjG
x;−1
jk Gxf

kj′G
f ;−1
j′k′ fk′ (103)

11 The coverage of the predictor (105) at y can be estimated from the value of 1/Norm2(y), similar to using

Christoffel function K(y) for estimation of the support of the measure of localized at x = y state.
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Norm2(y) =
n−1∑

j,k,s,t=0

m−1∑
j′,k′=0

yjG
x;−1
jk Gxf

kj′G
f ;−1
j′k′ G

xf
sk′G

x;−1
st yt (104)

Prob(g|y) =
〈
ψfLS(y)(f)

∣∣ψg(f)
〉2

=

[
n−1∑
j,k=0

m−1∑
j′,k′=0

yjG
x;−1
jk Gxf

kj′G
f ;−1
j′k′ gk′

]2
Norm2(y)

m−1∑
j′,k′=0

gj′G
f ;−1
j′k′ gk′

(105)

Ẽrror = ⟨1⟩ −
M∑
l=1

ω(l)Prob(f (l)|x(l)) (106)

This solution has a form of conditional probability (105) which can be used to introduce

a predictor-specific error estimator Ẽrror. Whereas the “maximal coverage” estimator (95)

estimates data recoverability without constructing a predictor, the estimator (106) estimates

specific simple prediction of least squares type; usual least squares property holds: it is zero

if f is a subspace of x. This estimator can be spectrally decomposed only at some given x,

this makes it’s properties (70) related. Introduce bj′(y):

bj′(y) =
1

Norm(y)

n−1∑
j,k=0

yjG
x;−1
jk Gxf

kj′ (107)

m−1∑
k′=0

bj′(y)bk′(y)α
[i]
k′ = λ[i]

m−1∑
k′=0

Gf
j′k′α

[i]
k′ (108)

Then (108) has a single non–zero eigenvalue λ[m−1] =
∑m−1

j,k=0 bjG
f ;−1
jk bk = 1, which is the

maximal value of (105). While vector–to–vector prediction models are not implemented in

the provided software yet, a reference unit test for (105) and (106) is available therein; it

can be run with random data. The calculations require only matrix algebra: the (105) is

a ratio of a quadratic form squared and a product of two quadratic forms. Hence, as with

any Radon–Nikodym type of solution, it tends to a constant (not to infinity like e.g. least

squares) when y → ∞ or g → ∞. See DirectProjectionTestSolutionVectorXVectorF.j

ava:evaluateAt(final double []X) for simple examples. The (105) estimates conditional

probability, not the value of most probable outcome. A familiar least squares (90) estimation

of f given x can be obtained from:

fLS(x) = Norm(x)b(x) fLS j′(x) =
n−1∑
j,k=0

xjG
x;−1
jk Gxf

kj′ (109)

Prob(fLS(x)|x) = 1 (110)

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
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The (105) is just a simple example of conditional probability estimator, a demonstration, that

even with least squares näıve form (109) there exists a big improvement when we consider a

conditional probability estimation instead of typically considered value estimation. A general

form a “unitary” type of conditional probability estimator is discussed below in Appendix E,

All considered estimators are gauge–invariant relatively 71). The main idea behind these

estimators is straightforward: consider localized at f = g state ψg(f) (the (24) in f -space),

project it to some x-dependent vector space (in the simplistic case it is just (90) direct

projection, in most general case – a unitary transformation (E7) following a projection (E2)),

then sum it over the entire sample as in (95), (106), (118), or (E8) below to obtain the

number of covered observations.

This approach can be deployed to estimate, as the number of misclassified observations,

other vector–to–vector predictor systems that result in the value f(x), not in conditional

probability Prob(f |x): for example a distribution–to–distribution regression model, a neural

network with vector output, etc. Take a projection12 of the state localized in realized outcome

ψf (l)(f) to the state localized in predicted outcome ψf(x(l))(f), obtain an expression similar to

(105) weighted over the entire sample:

Error = ⟨1⟩ −
M∑
l=1

ω(l)
〈
ψf (l)

∣∣ψf(x(l))

〉2 (111)

⟨ψf |ψg⟩2 =

[
m−1∑
j,k=0

fjG
f ;−1
jk gk

]2
m−1∑
j,k=0

fjG
f ;−1
jk fk

m−1∑
j,k=0

gjG
f ;−1
jk gk

(112)

This error estimator is outlier–stable, it has the meaning of the number of misclassified

observations. In can be applied to any predictor of f(x) output type; when least squares

prediction fLS(x
(l)) is put to (111) obtain (106). These are not bounded by (95) as they are

not of (96) form.

Another interesting option to consider is to put f ≡ x, then spectral decomposition (102)

corresponds to “coverage expansion” (42) above and to LRR solution (120) below with D = n.

Let us demonstrate an application of this technique to the Low-Rank Representation problem.

12 Note: this is a different concept from a typical consideration of how close are predicted and realized

outcomes. For an estimation of this type — one can test how much the (92) eigenvalues are lower than 1.

The Errorrank from (93) is an aggregated estimator of this type.
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C. A Christoffel Function Solution to Low-Rank Representation

For an unlabeled data (no class label f available) consider the problem of clustering to

build a Low-Rank Representation (LRR). Consider a data (1) without f :

(x0, x1, . . . , xk, . . . , xn−1)
(l) weight ω(l) (113)

the problem is to cluster vector space x of a dimension n on a subspace of D < n dimension.

A solution[27] is to introduce a n×M matrix x(l)k of the rank n (we assume the problem is

already regularized), and to represent it by n×M matrix X (l)
k of lower rank D < n and an

“error” matrix E(l)
k :

x
(l)
k = X (l)

k + E
(l)
k (114)

The problem is then to find a low-rank representation X (l)
k from the given observation matrix

x
(l)
k , that allows to recover the given matrix with a small enough error E(l)

k . The [27] authors

consider the following minimization problem:

min
X ,E

[
rank(X ) + λ̃∥E∥F

]
(115)

where λ̃ > 0 is a parameter and ∥E∥F is a norm, such as the squared Frobenius norm. The

main issue with (115) minimization, besides computational difficulties, is that the solution is

not gauge invariant relatively (71a).

The (83) type of error estimator allows us to construct a gauge invariant solution. Consider

(24) state ψy(x) localized at x = y. As a regular wavefunction, when expanded in any full

basis
∣∣ψ[i]

〉
obtain:

1 =
n−1∑
i=0

〈
ψy

∣∣ψ[i]
〉2

(116)

When, instead of a full basis
∣∣ψ[i]

〉
of the dimension n, a basis of lower dimension D < n is

used, this can be for example ψ[i]
G (x) of the dimension D < n from (30) or any other lower

dimension basis
∣∣ϕ[i]

〉
orthogonal as δij =

〈
ϕ[i]
∣∣ϕ[j]

〉
, the sum of squared projections can be

lower than 1:

1 ≥
D−1∑
i=0

〈
ψy

∣∣ϕ[i]
〉2

(117)

https://en.wikipedia.org/wiki/Low-rank_approximation#Basic_low-rank_approximation_problem
https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
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The (117) was obtained back in [6] as Eq. (20) therein, where we summed it over the

entire sample. Similarly, let us sum (117) with the weights ω(l) over all y ∈ x(l), l = 1 . . .M

observations. If all (117) terms are equal to 1 then the total measure ⟨1⟩ is obtained. Otherwise

the difference is an estimation: how well the space
∣∣ϕ[i]

〉
of the dimension D < n allows to

recover the full space xk of the dimension n. The error is:

Error = ⟨1⟩ −
M∑
l=1

ω(l)

D−1∑
i=0

〈
ψx(l)

∣∣ϕ[i]
〉2

(118)

X (l)
k =

D−1∑
i=0

〈
xk
∣∣ϕ[i]

〉
ϕ[i](x(l)) (119)

Unsupervised clustering solution is a D–dimensional ϕ[i](x) basis minimizing the (118)

error. The solution to (118) minimization problem can be readily obtained from ⟨ψy |ϕ⟩2 =

K(y)ϕ2(y) and
∣∣∣ψ[i]

K

〉
definition in (35):

Error = ⟨1⟩ −
D−1∑
i=0

λ
[i]
K (120)

This is (118) written in a subset of
∣∣∣ψ[i]

K

〉
basis. For D = n this is previously obtained coverage

expansion (42). The Christoffel function clustering solution
∣∣ϕ[i]

〉
is then: the D ≤ n vectors∣∣∣ψ[i]

K

〉
out of n corresponding to D largest λ[i]K . It can be converted to x basis as (119). The

(119) is a low-rank representation of the data: the matrix X (l)
k of rank D represents the

original data matrix x(l)k of rank n. In contradistinction to (115) solution, the solution (120)

is gauge invariant relatively (71a) and unique if there is no λ[i]K degeneracy. This property

enables a new range of availabilities that are not practical (or even not possible) for other

clustering methods. The two most remarkable features — a possibility to use the “product

attributes” (53) and the fact that the “coverage expansion” solution (120) is obtained from

the expansion (36) of the Christoffel function, that is small for a seldom observed x. This is

important when input data (113) is a union of subspaces. If x ∈ S1 and y ∈ S2 the union

S1 ∪ S2 does not form a vector space (ax + by ∈ S1 ∪ S2 iff S1 ⊆ S2 or S2 ⊆ S1). The

Christoffel function is small for the vectors not in S1 ∪ S2, thus it serves as an indicator

function of a vector from subspaces direct sum S1 ⊕ S2 to belong to subspaces union S1 ∪ S2.

The option --flag_replace_f_by_christoffel_function=true of Appendix B software

makes the program to construct and output the ψ[i]
K (x

(l)) matrix from read x(l)i input matrix

of the dimensions: i = 0 . . . n − 1; l = 1 . . .M . Set option --flag_print_verbosity=3 to



38

print all
〈
xk

∣∣∣ψ[i]
K

〉
coefficients and ψ[i]

K (x
(l)) values to obtain X (l)

k . The error (120) depends

on how many
∣∣∣ψ[i]

K

〉
are included in (119) as

∣∣ϕ[i]
〉
, the error is zero if all

∣∣∣ψ[i]
K

〉
are included.

D. An application of LRR representation solution to dynamic system identification

problem.

For an application of LRR solution to a dynamic system identification consider a linear

stochastic dynamic system:

x
(l+1)
j − x

(l)
j

τ
≈
dx

(l)
j

dt
=

n−1∑
k=0

Mjkx
(l)
k + ϵ

(l)
j (121)

Here we assume that the dataset (113) is l–ordered (e.g. l is time and all ω(l) = 1). The

(121) left–hand side is a discrete analogue of time–derivative, the ϵ(l) is a noise with some

distribution (not necessary Gaussian). The problem: to determine the matrix Mjk for a given

observation set x(l)k , k = 0 . . . n− 1; l = 1 . . .M .

This problem has a trivial “projection” solution, similar to (90) projection with a replace

fk → dxk/dt:

Mjk =
n−1∑
i=0

〈
dxj
dt

∣∣∣∣xi〉G−1
ik (122)

corresponding to a direct projection of dxj/dt vectors to x-space; it has zero error when

ϵ(l) = 0. This solution is formally applicable even when x and dx/dt spaces are of different

dimension, e.g. dxj/dt, j = 0 . . . n− 1, are original attributes derivatives, and xk are product

attributes (53) with a multi–index k; there are N (n,D) product attributes (56). Then

the matrix Mjk is of the dimension n × N (n,D) and the matrix G−1
ik is of the dimension

N (n,D)×N (n,D) The selection of a space to project is the key element of any approach, a

direct use of the full x-space (even more so for product attributes space) typically produces

poor results.

The x is a phase space of the dynamic system (121), for a mechanical system it is coordinates

and momentums x = (q, p). Dynamic system equation determines the evolution of a point in

the phase space. The biggest practical problem with a dynamic system identification is that

the phase space can be of a very large dimension. We need a low–dimensional subset that

captures most of the dynamic features.

https://en.wikipedia.org/wiki/Phase_space
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In case of a stationary dynamic system (121) our solution is straightforward: apply Section

VI C LRR solution to the phase space matrix x(l)k , k = 0 . . . n− 1; l = 1 . . .M : Construct the

K(x), perform (34) coverage expansion in x–space, then select D ≤ n maximal eigenvalues

(according to (120) error condition), new basis functions ϕ[i], i = 0 . . . D−1 are corresponding

to them eigenvectors (35). Then study the system dynamics in ϕ[i] basis of dimension D ≤ n:

dϕ[i]

dt
=

D−1∑
k=0

M̃ikϕ
[k] + ϵi i, k = 0 . . . D − 1 (123)

ϕ[i] =
n−1∑
j=0

α
[i]
j xj (124)

Instead of the original problem to identify the matrix M of the dimension n the problem

became to identify the matrix M̃ of the dimension D ≤ n.

The (123) is a “projected” dynamic equation. One can use (119) to obtain the dynamics

in original variables xj and dxj/dt. The LRR solution of Section VIC constructs the
∣∣ϕ[i]

〉
basis of the dimension D, this basis is the optimal one to recover the dynamics of (121) in

the form (123) among all D-dimensional bases.

E. Localized states |ψy⟩ dynamics.

A dynamic equation of (121) form is written in x-space directly. It is equivalent to a

recurrent relation:

x
(l+1)
j =

n−1∑
k=0

Mjkx
(l)
k + ϵ

(l)
j (125)

with Mjk = δjk + τMjk being evolution matrix and a renormalized noise. This equation

determines the dynamics of a point in the original phase space x of the system. Existing

dynamics techniques typically use a variant of Kalman filter[28] approach, which is a linear

quadratic estimation (LQE). The central concept of these approaches is the covariance matrix,

a “glorified standard deviation” concept. The technique developed in this paper is based on

using a wavefunction ψ(x) =
∑n−1

k=0 αkxk and obtaining the results by averaging with the

ψ2(x) weight. For this reason, instead of considering the dynamic of a point itself, we are

going to consider the dynamics of a wavefunction localized at some point of the phase space:

not the dynamics of x(l) but of a state ψx(l)(x), localized at x = x(l); it is the state ψy(x)

from (24) with y = x(l).

https://en.wikipedia.org/wiki/Phase_space
https://en.wikipedia.org/wiki/Kalman_filter
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The transition x(l) → x(l+1) corresponds to localized wavefunction transition |ψx(l)⟩ →

|ψx(l+1)⟩:

ψx(l+1)(x) = Uψx(l)(x) + ϵ (126)

|ψx(l+1)⟩ = |U|ψx(l)⟩+ |ϵ⟩

Here the ∥U∥ is a unitary operator (to preserve normalizing) converting ψy(x) from (24)

from y = x(l) to y = x(l+1); in the simplest stationary case it can be considered l–independent,

and |ϵ⟩ is a noise vector. The (126) is written in two types of notation; it can be projected to

any orthogonal basis ψ[i] (for example (6) with any f , Christoffel basis (35), regularized basis

Xi from the Appendix A, etc.) to be written in the matrix form:

s
(l)
i =

〈
ψx(l)

∣∣ψ[i]
〉
=

ψ[i](x(l))√
n−1∑
j=0

|ψ[j](x(l))|2
1 =

n−1∑
i=0

∣∣∣s(l)i ∣∣∣2 (127)

s
(l+1)
j =

n−1∑
k=0

Ujks(l)k (128)

The (128) is the dynamic equation for the projections
〈
ψx(l)

∣∣ψ[i]
〉
.

The dynamic system identification problem, for a given observation sequence x(l)k , k =

0 . . . n− 1; l = 1 . . .M , instead of determining evolution matrix Mjk of the dimension n× n

that transforms x(l) to x(l+1) now became: to determine a unitary operator Ujk of the

dimension n× n that transforms ψx(l) to ψx(l+1) . If one apply (122) solution to (128) this will

be incorrect13: because the (122) is a equation for a point in phase space. It corresponds to

minimizing predicted/observed differences which is the L2 norm error applied to (125):
M∑
l=1

ω(l)

[
x
(l+1)
j −

n−1∑
k=0

Mjkx
(l)
k

]2
−−→
Mjk

min j = 0 . . . n− 1 (129)

This result in linear system solution with
M∑
l=1

x
(l+1)
j x

(l)
k ω

(l) determining linear system right

part and Gram matrix (7c) determining linear systems matrix.

The (128) is a equation for wavefunction, e.g. if one apply a l-dependent transform

s
(l)
i → exp(iφ(l))s

(l)
i , i = 0 . . . n − 1, the result should be identical; similarly Ujk and −Ujk

13 It is also incorrect to consider time evolution operator as an “average” of observed state transitions:

∥Ũ∥ =
∑M

l=1 |ψx(l+1)⟩ ⟨ψx(l) | with subsequent “unitarization” procedure (e.g. SVD followed by setting

Σjk = δjk we deployed in Eq. (D10) for numerical optimization) because identical dynamics must be

obtained under transform ψx(l) → exp(iφ(l))ψx(l) with arbitrary phases φ(l), l = 1 . . .M ; this invariance is

satisfied only in (132).
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should provide identical dynamics (compare with Mjk → −Mjk). Were we study a quantum

system time evolution operator can be readily obtained as Hamiltonian related:

U = exp

[
−i t

ℏ
H

]
(130)∣∣ψ(t)

〉
=
∣∣U|ψ(t=0)

〉
(131)

Now, however, we are trying to construct operator U from the data. The functional14

M∑
l=1

ω(l)
∣∣∣ ⟨ψx(l+1) | U |ψx(l)⟩

∣∣∣2 −→
U

max (132)

determines how well ψx(l+1) is reconstructed from ψx(l) by a unitary operator U when system

dynamics takes the form of a sequence of unitary transformations (126) of a wavefunc-

tion. It can be interpreted as a density matrix dynamics: consider localized pure state

density matrix ∥ρx∥ = |ψx⟩ ⟨ψx|. Then ∥ρ̃x(l+1)∥ = ∥U|ρx(l)|U †∥ and the criterion (132) de-

termines the difference between realized ∥ρx(l+1)∥ and predicted ∥ρ̃x(l+1)∥ density matrices:∑M
l=1 ω

(l)Spur∥ρx(l+1)|U|ρx(l)|U †∥. If there is a perfect recovery ∥ρ∥ = ∥ρ̃∥ for all l – then, as

for pure states Spur∥ρ2∥ = 1, total coverage ⟨1⟩ is obtained, the difference is an error. The

problem is: to find a unitary transformation U maximizing (132). In (127) basis the (132) is:

Sjk;j′k′ =
M∑
l=1

ω(l)s
(l+1)
j s

(l)
k s

(l+1) ∗
j′ s

(l) ∗
k′ (133)

n−1∑
j,k,j′,k′=0

UjkSjk;j′k′U∗
j′k′ −→U max (134)

n−1∑
k′=0

Ujk′U∗
kk′ = δjk (135)

Sjk;j′k′ = S∗
j′k′;jk (136)

The optimization problem (134) is considered for a matrix Ujk satisfying unitarity constraint

(135); the Sjk;j′k′ is a Hermitian tensor (136) obtained from the data sample, in an orthogonal

basis it takes the form (133); for Sjk;j′k′ = δjj′δkk′ Eq. (134) becomes (137). A complex unitary

matrix Ujk of dimension n is determined by n2 real parameters (a complex Hermitian matrix

of full rank is determined by n2 real parameters, a unitary matrix is obtained from it’s complex

14 In (132) the | · | denote absolute value, not an operator. Here
∣∣∣ ⟨ψx(l+1) | U |ψx(l)⟩

∣∣∣2 =

⟨ψx(l+1) | U |ψx(l)⟩ ⟨ψx(l+1) | U |ψx(l)⟩∗ is [0 . . . 1] bounded value having the meaning of conditional probability

and determining how well the ψx(l+1) is recovered from ψx(l) using (126).

https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
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exponent, similar to (130)). Were the constraint (135) be of scalar type
∑n−1

j,k,k′=0 Ujk′U∗
kk′ = n

or, even better, the squared Frobenius norm of U :
n−1∑
j,k=0

UjkU∗
jk = n (137)

which is the sum of all (135) diagonal components, then Eq. (134) can be considered as a

quadratic form with a vector of n2 dimension obtained from matrix elements of operator Ujk
row by row; the (137) is a regular Euclidean scalar product for this vector, the Frobenius

inner product. Remarkably, that (134) solution with the constraint (137) instead of (135) can

be obtained as a regular eigenproblem solution, however it does not produce the matrix Ujk
that is exactly unitary, nevertheless it may be a good starting point for a numerical method.

For exact unitary constraint optimization problem (134) can be approached using Lagrange

multipliers technique where it takes the form (D6), similar to an eigenvalue problem:

SU = λU (138)

but S is now a Hermitian tensor, “eigenvector” U is a unitary matrix, and “eigenvalues”

λ is a Hermitian matrix (D11); functional (132) extremal value is equal to λ spur.

While a complete mathematical structure of this problem requires a separate study, it’s

portion required for a dynamic system identification: find a unitary matrix Ujk maximizing

(134), can be readily solved numerically, see Appendix D below.

When performing realtime analysis of (113) data at any given moment l only the data of

1 . . . l interval is available, not 1 . . .M as required in (7c) and (133) for calculation of Gjk

and Sjk;j′k′ . In this case the Gjk and Sjk;j′k′ should be calculated on 1 . . . l sample, thus all

the calculations start having “sliding” Gjk and Sjk;j′k′ , e.g. every new observation coming add

one more ωxjxk term to Gjk; a weight such as ω(t) = exp (−(tnow − t)/τ) allows recurrently

adjust the sum without re-calculating aggregates of previously observed sample. An example

of sliding Gjk technique can be found in [9]. Moreover, in this case a “secondary” Hilbert

space can be constructed from some calculated at t = l value (such as the maximal eigenvalue

of operator I = dV/dt, the number of shares traded per unit time; a highly singular function

[8]) treating it as it were plain observed at t = l with the weight ω(l). For marker dynamics

this allows us to separate price changes that occurred on rising and falling execution flow

I = dV/dt. As only the former ones have predictive power, this allows us to construct a

“scalp” price: the sum of price changes occurred on rising execution rate.

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
https://en.wikipedia.org/wiki/Frobenius_inner_product
https://en.wikipedia.org/wiki/Frobenius_inner_product
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In this section a new approach to dynamic system identification is developed. Instead of

considering a trajectory in phase space we convert a sequence of phase space observations

x(l) to a sequence of probability states ψx(l)(x) (wavefunctions) localized at x(l). Then system

dynamics is considered as a sequence of unitary transformations of the wavefunction. The

approach allows us to write the dynamics of these probability states; quality criterion (134)

estimates the number of correctly predicted outcomes. The probability of the next outcome

x(l+1) being equal y given currently observed outcome equal x(l) is:

P (x(l+1) = y)
∣∣∣
x(l)

=
∣∣∣ ⟨ψy | U |ψx(l)⟩

∣∣∣2 (139)

The approach can be readily generalized to density matrix states, however a unitary form

(131) of the dynamics has limitations in data analysis (e.g. in application to the data of

Markov chain type), this requires to approach the problem of state decoherence, see Appendix

I below. In this section we solved the problem of determining evolution operator Ujk from

a “sequence of wavefunctions” ψx(l)(x) that are obtained from a sequence of observation

points in phase space x(l). The key element for this success is the (132) form of quality

criteria. This criterion satisfies wavefunction unobservability, a fundamental characteristic

of a quantum system: whereas Schrödinger equations is written for a wavefunction, the

wavefunction itself is not observable, only it’s absolute square can be measured. The (132)

is invariant if all l = 1 . . .M observations has the wavefunction defined within an arbitrary

phase shifts: ψx(l) → exp(iφ(l))ψx(l) ; similarly two time–evolution operators ∥U∥ produce

identical dynamics if they transform a wavefunction within a phase shift. One may ask a

question: given a sequence of quantum mechanical wavefunctions, can this approach identify a

quantum system? The answer is definitely yes if only time–evolution operator (130) is required

(Appendix D optimization problem). If the Hamiltonian, not just time evolution operator, is

required then the formal answer is yes, but practically this requires taking a logarithm of a

unitary matrix, what is a complex problem required a separate consideration[29].

Another important topic to discuss is allowed transformation of a |ψ⟩ state. Whereas for

quantum systems only unitary transformation (131) determined by a unitary matrix Ujk
is allowed, in data analysis it can possibly be of a non–unitary form. We see “non–unitary

dynamics” as an important direction of further research, see Appendix E discussing unitary

transformations following by a projection and Appendix I discussing quantum channel type

of transformation (I9). A trivial example of non–unitary dynamics is the situation when

https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Quantum_channel#Pure_channel
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the l + 1-th state depends non only on the l-th state as in (125) and (126) but on a finite

sequence (of the length J) of previous observations:

x
(l+1)
j =

n−1∑
k=0

J−1∑
t=0

Mt
jkx

(l−t)
k (140)

|ψx(l+1)⟩ = |U|ψx(l) , ψx(l−1) , . . . , ψx(l−J+1)⟩ (141)

In this case “classical” problem (140) can be reduced to least squares problem (129) with

matrix M of a more general form, and “quantum” problem (141) can be viewed with operator

U transforming a vector of J ×n dimension to a vector of dimension n and satisfying “partial

unitarity” constraint (G13) with these dimensions.

VII. CONCLUSION

In this work the support weight of Radon–Nikodym form ψ2(x), with ψ(x) function to be

a linear function on xk components was considered and applied to interpolation, classification,

and optimal clustering problems. The most remarkable feature of the Radon–Nikodym

approach is that input attributes xk are used not for constructing the f , but for constructing

a probability density (support weight) ψ2(x), which is then used for evaluation of the value

f = ⟨f(x)ψ2⟩ / ⟨ψ2⟩ or conditional probability. This way we can avoid using a norm in

f–space, what greatly increases practical applicability of the approach.

A distinguishing feature of the developed approach is knowledge of the predictor’s invariant

group. Given (1) dataset, what x basis transform does not change the solution? Typically in

ML (neural networks, decision tree, SVM, etc.) the invariance is either completely unknown

or poorly understood. The invariance is known for linear regression (and a few other linear

models), but linear regression has an unsatisfactory knowledge representation. Developed in

this paper Radon–Nikodym approach has 1) known invariant group (non–degenerated linear

transform of x components) and 2) advanced knowledge representation in the form of matrix

spectrum; even an answer of the first order logic type becomes feasible. The knowledge is

extracted by applying projection operators, thus completely avoiding using a norm in the

solution to interpolation (13), classification (18), and optimal clustering (30) problems.

The developed approach, while being mostly completed for the case of a scalar class

label f , has a number of unsolved problems in case of a vector class label f . As the most
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intriguing one we see the question: whether the optimal clustering solution of Section III

can be generalized to vector–valued class label approach of Section VI: the solutions (72)

and (74) have no basis dimension reduction feature, and the conditional probability solution

(105) currently always sets clusters number to be equal to the dimension of vector class label.

For our first try to construct a subspace with an arbitrary number of D ≤ n clusters see

optimization problem (G6) below.

Appendix A: Regularization Example

An input vector x = (x0, x1, . . . , xk, . . . , xn−1)
(l) from (1) may have redundant data, often

highly redundant. An example of a redundant data is the situation when two attribute

components are equal e.g. xk = xk+1 for all l. In this case the Gjk = ⟨xj |xk⟩ matrix becomes

degenerated and the generalized eigenvalue problem (5) cannot be solved directly, thus a

regularization is required. A regularization process consists in selection of such xk linear

combinations that remove the redundancy, mathematically the problem is equivalent to

finding the rank of a symmetric matrix.

All the theory of this paper is invariant with respect to any non–degenerated linear

transform of x components. For this reason we may consider the vector x̃ with equal to zero

average, as this transform improves the numerical stability of ⟨xj |xk⟩ calculation. Obtain

⟨x̃j | x̃k⟩ matrix (it is plain covariance matrix):

x̃ = (x0 − x0, x1 − x1, . . . , xk − xk, . . . , xn−1 − xn−1) (A1)

xk =
⟨xk⟩
⟨1⟩

(A2)

G̃jk = ⟨x̃j | x̃k⟩ (A3)

σk =

√
G̃kk

⟨1⟩
(A4)

For each k = 0 . . . n− 1 consider standard deviation σk of xk, select the set S of indexes k,

that have standard deviation greater that a given ε, determined by computer’s numerical

precision. Then construct the matrix G̃jk with the indexes in the set obtained: j, k ∈ S. The

new matrix G̃jk is obtained by removing xk components that are equal to a constant, but it

still can be degenerated.

We need to regularize the problem by removing the redundancy. The criteria is like a

https://en.wikipedia.org/wiki/Rank_(linear_algebra)
https://en.wikipedia.org/wiki/Covariance_matrix
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condition number in a linear system problem, but because we deploy generalized eigenproblem

anyway, we can do it straightforward. Consider generalized eigenproblem (A7) with the right

hand side matrix equals to diagonal components of G̃jk.

j, k ∈S (A5)

G̃d
jk = δjkG̃kk (A6)∑

k∈S

G̃jkα
[i]
k = λ[i]

∑
k∈S

G̃d
jkα

[i]
k (A7)

Sd :a set of i, such that:λ[i] > ε (A8)

XSd =
∑
k∈S

α
[Sd]
k (xk − xk) (A9)

By construction of the S set the right hand side diagonal matrix G̃d
jk has only positive

terms, that are not small, hence the (A7) has a unique solution. The eigenvalues λ[i] of the

problem (A7) have a meaning of a “normalized standard deviation”. Select (A8) set: the

indexes i, such that the λ[i] is greater than a given ε, determined by computer’s numerical

precision. Obtained Sd set determines regularized basis (A9). The matrix ⟨Xi |Xm⟩ with

i,m ∈ Sd is non–degenerated. After the constant component X = 1 is added to the basis

(A9) the X = (. . . Xi . . . , 1) can be used in (1) instead of the x = (. . . xk . . . ). This algorithm

is implemented in com/polytechnik/utils/DataReadObservationVectorXF.java:getDa

taRegularized_EV().

Alternatively to (A8), a regularization can be performed without solving the eigenproblem

(A7), using an approach similar to Gaussian elimination with pivoting in a linear system

problem. This algorithm is implemented in com/polytechnik/utils/DataReadObservati

onVectorXF.java:getDataRegularized_LIN(). Which regularization method to be used

depends on the parameter --regularization_method= supplied to com/polytechnik/uti

ls/RN.java driver, see Appendix B below.

A singular value decomposition is often used as a regularization method. However, for a

symmetric matrix considered in this appendix, without pseudoinverse required, a regular-

ization method based on symmetric eigenproblem (A7) provides the same result with lower

computational complexity. Moreover, even a “Gaussian elimination with pivoting” type of

regularization provides the result of about the same quality.

Regardless the regularization details, for a given input data in the basis xk, different

regularization methods produce the same number of X components, formed vector space

https://en.wikipedia.org/wiki/Condition_number#Matrices
https://en.wikipedia.org/wiki/Pivot_element#Partial_and_complete_pivoting
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://en.wikipedia.org/wiki/Vector_space
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is the same regardless the regularization used; the dimension of it is the rank of ⟨xj |xk⟩

matrix. Important, that because the developed theory is “gauge invariant” relatively (71), all

inference results are identical regardless regularization method used, see com/polytechnik/u

tils/TestRN.java:testRegularizations() unit test for a demonstration. It is important

to stress that:

• No any information on f have been used in the regularization of Gjk = ⟨xj |xk⟩.

• All “standard deviation“ type of thresholds were compared with a given ε, determined

by the computer’s numerical precision. No “standard deviation“ is used in solving the

inference problem itself.

The result of this appendix is a new basis X = (. . . Xi . . . , 1) of 1+dimSd elements ((A9) and

const, the rank of ⟨xj |xk⟩) that now can be used in (1) instead of original x = (. . . xk . . . ).

Obtained basis provides a non–degenerated Gram matrix ⟨Xi |Xm⟩ (7c).

Appendix B: RN Software Usage Description

The provided software is written in java. The source code files of interest are com/polytec

hnik/utils/{RN,RadonNikodymSpectralModel,DataReadObservationVectorXF,Attrib

utesProductsMultiIndexed}.java. The class DataReadObservationVectorXF reads input

data (1) from a comma–separated file and stores the observations. The methods getDataRe

gularized_EV() or getDataRegularized_LIN() perform Appendix A data regularization

and return an object of DataRegularized type that contains the matrices ⟨Xj |Xk⟩ and

⟨Xj | f |Xk⟩ in the regularized basis X. The method getRadonNikodymSpectralModel() of

this object creates Radon–Nikodym spectral model of Section II, it returns an object of Rado

nNikodymSpectralModel class. The method getRNatXoriginal(double [] xorig) of this

object evaluates an observation at a xorig in the original basis (1) and returns an object

of RadonNikodymSpectralModel.RNPointEvaluation type; this object has the methods ge

tRN(), getRNW(), and getPsikAtX() that, for a xorig given, calculate the (13), (18), and

ψ[i](xorig) components. An object of RadonNikodymSpectralModel type has a method red

uceBasisSize(int D) that performs optimal clustering of Section III and returns RadonNi

kodymSpectralModel object with the basis chosen as the optimal dimension D clusterization

of f . The documentation produced by javadoc is bundled with the provided software.

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://docs.oracle.com/en/java/javase/13/javadoc/javadoc.html#GUID-7A344353-3BBF-45C4-8B28-15025DDCC643
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip


48

The com/polytechnik/utils/RN.java is a driver to be called from a command line. The

driver’s arguments are:

• --data_file_to_build_model_from= The input file name to read (1) data and build

a Radon–Nikodym model from it. The file is comma–separated, if the first line starts

with the |# — it is considered to be the column names, otherwise the column names are

created from their indexes. Empty lines and the lines starting with the | are considered

comments. All non–comment lines must have identical number of columns.

• --data_file_evaluation= The input files (multiple options with multiple files possi-

ble) to evaluate the model built. The same format.

• --data_cols= The description of the input files data columns. The format is --data_c

ols=numcols:xstart,xend:f:w:label, where numcols is the total number of columns

in the input file, xstart,xend are the columns to be used for xk, e.g. the columns (

xstart,xstart+1,...,xend-1,xend) are used as the (x0, x1, . . . , xk, . . . , xn−1) in (1)

input. The f and w are the columns for class label f and weight ω, if weight column

index w is set to negative then all weights ω are set to 1. The label is column index of

observation identification string (uniquely identifies a data row in the input data file,

a typical identification is: row number 12345, x× y image pixel id 132x15, customer

id johnsmith1990, etc.), it is copied without modification (or set to ?? if label is

negative) from input data file to the first column of output file. All column identifiers

are integers, base 0 column index. For example input file dataexamples/runge_fun

ction.csv of Appendix C has 9 columns, the xk are in the first 7 columns, then f

and ω columns follow, the x1 is used as observation string label of input file row. This

corresponds to --data_cols=9:0,6:7:8:1

• --clusters_number= The value of D. If presents Section III optimal clustering is

performed with this D and the output is of this dimension. Otherwise all n input

components are used to construct the ψ[i](x) from (6) and the dimension of the output

is the rank of ⟨xj |xk⟩ matrix.

• --regularization_method= Data regularization method to be used, possible values:

NONE, EV (default), and LIN, see Appendix A for algorithms description.
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• --max_multiindex= The value of D. If presents then N (n,D) “product” attributes

Xk0
0 X

k1
1 . . . X

kn−1

n−1 are constructed (53) in regularized basis (using recursive algorithm)

with the multi–index k lower or equal than the D, these “product” attributes are then

used instead of n original attributes xk, see Section V above. For a large enough D

the problem may become numerically unstable. For N (n,D) ≥ 500 used eigenvalue

routines may be very slow15. The option is intended to be deployed together with --cl

usters_number= with the goal to obtain a model of a “first order logic” type.

• --flag_print_verbosity= By default is 2. Set --flag_print_verbosity=1 to sup-

press the output of ψ[i](x(l)) values or set --flag_print_verbosity=3 to output the

projections
〈
xk
∣∣ψ[i]

〉
in expansion x(l)k =

∑n−1
i=0

〈
xk
∣∣ψ[i]

〉
ψ[i](x(l)). Useful for obtaining

LRR X (l)
k matrix (119) from printed ψ[i](x(l)) values.

• --flag_replace_f_by_christoffel_function= By default is false. If set to true

then, after regularization of the Appendix A, the Christoffel function (10) is calculated

for every observation and used instead of f ; datafile read values of f are discarded.

Useful for unsupervised learning. While mathematical result does not depend on f , the

specific basis used may affect numerical stability because of initial regularization; in

this situation a good heuristic is to use observation number as the f , this removes class

label degeneracy and makes the basis more stable.

• --flag_assume_f_is_diagonal_in_christoffel_function_basis= By default is

false. If set to true then f is considered to be diagonal in
∣∣∣ψ[i]

K

〉
basis (35). Sampled

matrix ⟨xj | f |xk⟩ is converted to
〈
ψ

[j]
K

∣∣∣ f ∣∣∣ψ[k]
K

〉
, all off–diagonal elements are removed,

then the matrix diagonal in
∣∣∣ψ[i]

K

〉
basis is converted back to xi basis. This can be viewed

as [14] type of transform: ∥f∥ ≈
n−1∑
i=0

∣∣∣ψ[i]
K

〉〈
ψ

[i]
K

∣∣∣ f ∣∣∣ψ[i]
K

〉〈
ψ

[i]
K

∣∣∣. This is an experimental

option to vector class label classification problem of Section VIA.

• --output_files_prefix= If set all output files are prefixed by this string. A typical

usage is to save output to some directory, such as --output_files_prefix=/tmp/.

The program reads the data, builds Radon–Nikodym model from --data_file_to_

build_model_from= then evaluates it on itself and on all --data_file_evaluation=
15 For eigenproblem routines one can use JNI interface com/polytechnik/lapack/Eigenvalues_JNI_lapac

ke.java to LAPACK instead of java code, see com/polytechnik/utils/EVSolver.java for selection.

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
http://www.netlib.org/lapack/
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files. The output file has the same filename with the .RN.csv extension appended. In the

comments section it prints data statistics (filename, observations number, and the Lebesgue

quadrature (15)). Column data description is presented in the column header. Every output

row corresponds to an input file row. An output row has a number of columns. The first

column is observation string label, then n + 2 columns follow: observation original input

attributes xk, observation class label f , and observation weight ω. Calculated data is put

into additional columns of the same row. The columns are: f_RN (13), f_LS (8), Christoffe

l (14), f_RNW (18) Coverage (19), and, unless --flag_print_verbosity=1, the ψ[i](x(l)) (6)

D components. Here the D is either the rank of ⟨xj |xk⟩ matrix, or the parameter --cluste

rs_number= if specified. For all output files the following relations are held for the columns:

f_RN(l) =

D−1∑
i=0

f [i]
[
ψ[i](x(l))

]2
D−1∑
i=0

[ψ[i](x(l))]
2

(B1)

Christoffel(l) =
1

D−1∑
i=0

[ψ[i](x(l))]
2

(B2)

f_RNW(l) =

D−1∑
i=0

f [i]w[i]
[
ψ[i](x(l))

]2
D−1∑
i=0

w[i] [ψ[i](x(l))]
2

(B3)

Coverage(l) =

D−1∑
i=0

w[i]
[
ψ[i](x(l))

]2
D−1∑
i=0

[ψ[i](x(l))]
2

(B4)

For the file the model is built from (learning data) a few additional relations are held

(i,m = 0 . . . D − 1):

w[m] =

[
M∑
l=1

ψ[m](x(l))ω(l)

]2
(B5)

f [m]δim =
M∑
l=1

ψ[i](x(l))ψ[m](x(l))f (l)ω(l) (B6)

δim =
M∑
l=1

ψ[i](x(l))ψ[m](x(l))ω(l) (B7)

Obtained D states ψ[m](x) (for D < rank of ⟨xj |xk⟩ these are the ψ[m]
G (x) from (30), w[m] =



51

w
[m]
G from (33), and f [m] = λ

[m]
G ) provide the optimal clustering of class label f among all

D–point discrete measures.

1. Software Installation And Testing

• Install java 19 or later.

• Download the source code code_polynomials_quadratures.zip from [30].

• Decompress and recompile the program. Run a selftest.

unzip code_polynomials_quadratures.zip

javac -g com/polytechnik/*/*java

java com/polytechnik/utils/TestRN

• Run the program with bundled deterministic data file (Runge function (C2)).

java com/polytechnik/utils/RN --data_cols=9:0,6:7:8:1 \

--data_file_to_build_model_from=dataexamples/runge_function.csv \

--data_file_evaluation=dataexamples/runge_function.csv

Here, for usage demonstration, we evaluate the model twice. The file runge_function.

csv.RN.csv will be created (the same file is written twice, because the built model

is then test–evaluated on the same input dataexamples/runge_function.csv). See

Appendix C below for interpolation results obtained from the output.

• Run the program with the constructed ψ[i](x(l)) (6) as input. They are in the columns

with the index 15 to 21 of the file runge_function.csv.RN.csv (22 columns total).

java com/polytechnik/utils/RN --data_cols=22:15,21:8:9:0 \

--data_file_to_build_model_from=runge_function.csv.RN.csv

The file runge_function.csv.RN.csv.RN.csv will be created. Because the input xk

are now selected as ψ[k](x), with this input, the Radon–Nikodym approach of Section

II produce exactly the input xk as the result ψ[k](x), possibly with ±1 factor. There

https://www.oracle.com/java/technologies/javase/jdk19-archive-downloads.html
http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
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are 7 nodes/weights of the Lebesgue quadrature (15) for input data file dataexamples

/runge_function.csv:

f [0] = 0.042293402383175485 w[0] = 0.2453611587632685

f [1] = 0.043621284685679745 w[1] = 0

f [2] = 0.06535351052058812 w[2] = 0.5222926033815862

f [3] = 0.07864169617926474 w[3] = 0

f [4] = 0.16469273913045052 w[4] = 0.6710343400073819

f [5] = 0.28493524789476266 w[5] = 0

f [6] = 0.7025238747369117 w[6] = 0.5613118978475747

(B8)

Some of the Lebesgue weights are 0. This may happen with (15b) definition. The

weights sum is equal to total measure, for (C3) it is equal to 2.

• The dimension of the Lebesgue quadrature is n, it is the number of input attributes xk.

When we start to increase the n, the Lebesgue quadrature starts to partition the x

space on smaller and smaller elements. The (13) type of answer will eventually start

to exhibit data overfitting effect. Radon–Nikodym is much less prone to it than a

direct expansion of f in xk, a (3) type of answers, but for a large enough n even the

⟨fψ2⟩ / ⟨ψ2⟩ type of answer is starting to overfit the data. We need to select D ≤ n

linear combinations of xk that optimally separate the f . Optimal clustering is described

in Section III. Run the program

java com/polytechnik/utils/RN --data_cols=9:0,6:7:8:1 \

--data_file_to_build_model_from=dataexamples/runge_function.csv \

--clusters_number=4

Running with --clusters_number equals to 5, 6, or 7 may fail to construct a Gaussian

quadrature (28c) as the number of the measure (26) support points should be greater

or equal than the dimension of Gaussian quadrature built on this measure. For --c

lusters_number=4 the obtained quadrature gives exactly the (B8) nodes with zero

weights removed: the optimal approximation of the measure with four support points
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by a four points discrete measure is the measure itself.

f [0] = 0.04229340238319568 w[0] = 0.24536115876382128

f [1] = 0.065353510520606 w[1] = 0.5222926033810373

f [2] = 0.1646927391304516 w[2] = 0.6710343400073585

f [3] = 0.7025238747369116 w[3] = 0.5613118978475746

(B9)

A more interesting case is to set --clusters_number=3

java com/polytechnik/utils/RN --data_cols=9:0,6:7:8:1 \

--data_file_to_build_model_from=dataexamples/runge_function.csv \

--clusters_number=3

f [0] = 0.0553329558917533 w[0] = 0.737454390130916

f [1] = 0.16285402990411255 w[1] = 0.701183615381193

f [2] = 0.7025131758981266 w[2] = 0.5613619944877021

(B10)

The (B10) is the optimal approximation of the measure (B8) with 4 support points by a

3–point discrete distribution, this is a typical application of Gaussian quadrature. The

n–point Gaussian quadrature requires 0 . . . 2n− 1 distribution moments for calculation,

the measure must have at least n support points. The distribution moments of f can

be obtained using a different method, for example using the sample sum (7) directly. A

remarkable feature of the Lebesgue integral measure (26) is that obtained eigenvectors

(28e) can be converted from f to x space. The conversion formula is (30). The ψ[m]
G (x),

m = 0 . . . D − 1 create the weights, that optimally separate f in terms of ⟨fψ2⟩ / ⟨ψ2⟩

separation. This is a typical setup of the technique we developed:

– For a large number n of input attributes create the Lebesgue integral quadrature

(15).

– Select the number of clusters D ≤ n. Using Lebesgue measure (26) build Gaussian

quadrature (28) in f space. It provides the optimal clustering of the dimension D.

– Convert obtained results from f to x space using (30), obtain the ψ[m]
G (x) classifiers.

– One can also entertain a first order logic –like model using the attributes of Section

V.
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FIG. 3. Runge function (C2) data (C1) clustered to D = 3. Corresponds to (B10) data. The

projections (22) to ψ[m]
G (x), m = 0 . . . D − 1 are presented.

• The three function ψ[m]
G (x), corresponding to (B10) nodes, are presented in Fig. 3. The

Proj[i](x) (this is squared and normalized ψ
[m]
G (x) as (22)). One can clearly see that

the states ψ[m]
G (x) are localized exactly near the f [m] nodes (B10). This technique is a

much more powerful one, than, say, support–vector machine linear separation. In the

Radon–Nikodym approach the separation weights are the
[
ψ

[m]
G (x)

]2
that are obtained

without an introduction of a norm with subsequent minimization the difference between

the result and a prediction with respect to the norm. The separation by the functions

ψ
[m]
G (x) is optimal among all D– dimensional separations of [ψ(x)]2 type. The cost is

that the solution is now two–step[3]. On the first step the Lebesgue quadrature is built

and the measure (26) is obtained. On the second step the Gaussian quadrature (28) is

built on this measure; the result is then converted to x space (30). The
[
ψ

[m]
G (x)

]2
are

the optimal separation weights.

https://en.wikipedia.org/wiki/Support-vector_machine#Definition
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2. Nominal Attributes Example

In ML applications the attributes (1) can be nominal. They may be of orderable (low,

medium, high) or unorderable (apple, orange, tomato) type. A nominal attribute taking two

values can be converted to {0, 1} binary attribute. Orderable attributes (low, medium, high)

can be converted to {1, 2, 3}, or, say, {1, 2, 10} this depends on the problem. For unorderable

attributes the conversion is more difficult, however in some situations it is straightforward: a

“country” attribute taking the value: “country name from a list of eight countries”, can be

converted to three binary attributes.

The f , predicted by a ML system, is called class label. It is often a binary attribute. This

leads to the nodes (15a) of the Lebesgue quadrature to be grouped near two values of the class

label. We have tested a number of datasets from UC Irvine Machine Learning Repository,

Weka datasets, and other sources. For direct comparison with the existing software such

as C5.0 or Weka 3: Machine Learning Software in Java a care should be taken of nominal

attributes conversion and class label representation. We are going to discuss the details in a

separate publication, here we present only qualitative aspects of Radon–Nikodym approach

application to ML problem with the binary class label. Take breast-cancer-wisconsin database,

the breast-cancer-wisconsin.data dataset[31] is of 699 records, we removed 16 records

with unknown (“?”) attributes and split the dataset as 500:183 for training:testing. Obtained

files are

wc breast-cancer-wisconsin_S.names \

breast-cancer-wisconsin_S.data \

breast-cancer-wisconsin_S.test

139 938 6234 breast-cancer-wisconsin_S.names

500 500 14266 breast-cancer-wisconsin_S.data

183 183 5182 breast-cancer-wisconsin_S.test

822 1621 25682 total

The data has nominal class label 2:Benign, 4:Malignant. C5.0, when run on this dataset

produces a very good classifier:

c5.0 -f mldata/breast-cancer-wisconsin_S

Evaluation on training data (500 cases):

https://archive.ics.uci.edu/ml/
https://www.cs.waikato.ac.nz/ml/weka/datasets.html
https://www.rulequest.com/see5-unix.html
https://www.cs.waikato.ac.nz/ml/weka/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
https://www.rulequest.com/see5-unix.html
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(a) (b) <-classified as

---- ----

293 10 (a): class 2

3 194 (b): class 4

Evaluation on test data (183 cases):

(a) (b) <-classified as

---- ----

139 2 (a): class 2

4 38 (b): class 4

Now let us run the RN program to obtain the Lebesgue quadrature

java com/polytechnik/utils/RN --data_cols=11:1,9:10:-1:0 \

--data_file_to_build_model_from=mldata/breast-cancer-wisconsin_S.data \

--data_file_evaluation=mldata/breast-cancer-wisconsin_S.test

The number of the nodes is 10, it is equal to the number of input attributes xk.

f [0] = 2.090917684500027 w[0] = 308.30166232236996

f [1] = 3.198032991602546 w[1] = 5.307371268658678

f [2] = 3.344418191526764 w[2] = 0.0189894231470068

f [3] = 3.5619620739712725 w[3] = 0.3341989402039986

f [4] = 3.6221628167395497 w[4] = 0.2549558854552573

f [5] = 3.7509806530824346 w[5] = 1.2339290581894928

f [6] = 3.7939096228600513 w[6] = 5.146789024450902

f [7] = 3.8081118648848045 w[7] = 0.16082536035874645

f [8] = 3.8799894340830727 w[8] = 50.25004460556501

f [9] = 3.9574710127612613 w[9] = 128.99123411160124

(B11)

Then we calculate a joint distribution of realization/prediction for fRN and fRNW . The

continuous to nominal conversion for fRN and fRNW was performed by comparing predicted

value with the average. Evaluation without clustering on training data (B12) (500 cases),

and on test data (B13) (183 cases) is:

Distribution(fRN) :
183 120

0 197
Distribution(fRNW ) :

294 9

13 184
(B12)
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Distribution(fRN) :
91 50

0 42
Distribution(fRNW ) :

140 1

0 42
(B13)

We see that fRN that equally treats the states with low and high prior probability often gives

spurious misclassifications. In the same time the fRNW that uses the projections adjusted to

prior probability gives a superior prediction.

When we cluster to D = 2:

java com/polytechnik/utils/RN --data_cols=11:1,9:10:-1:0 \

--data_file_to_build_model_from=mldata/breast-cancer-wisconsin_S.data \

--data_file_evaluation=mldata/breast-cancer-wisconsin_S.test \

--clusters_number=2

f [0] = 2.09463398432689 w[0] = 310.52326905818705

f [1] = 3.924320437715293 w[1] = 189.47673094181317
(B14)

The evaluation with D = 2 clustering on training data (B15) (500 cases) and on test data

(B16) (183 cases) gives joint distribution of realization/prediction for fRN and fRNW :

Distribution(fRN) :
292 11

7 190
Distribution(fRNW ) :

295 8

13 184
(B15)

Distribution(fRN) :
141 0

0 42
Distribution(fRNW ) :

141 0

1 41
(B16)

Now, after the states with low prior probabilities (17a) are removed, both fRN and fRNW

exhibit a good classification. For D = 3, however, we still get a type of (B12) and (B13)

behavior of spurious misclassifications by fRN and no such behavior in fRNW .

This makes us to conclude that the fRNW answer is the superior answer for predicting a

probabilistic f . The posterior distribution (17b) is Radon–Nikodym alternative to Bayes.

Appendix C: RN Program Application With A Different Definition Of The Probability

Besides a typical ML classification problem the RN Program can be used for a number of

different tasks, e.g. it can be applied to an interpolation problem. The reason is simple: as an

input Radon–Nikodym only needs (7) matrices Fjk and Gjk, which are calculated from (1)

sample, that is a file of M rows and n+2 columns (n for xk and two for f and the weight ω).
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f(x)

fRN(x)

fRNW(x)

K(x)

Coverage(x)

 0

 0.1
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FIG. 4. Runge function (C2) interpolation result for n = 7. The input data (1) was prepared (C1)

in a way the classification problem solver from Appendix B to reproduce interpolation results of the

Appendix D of [13]. The fRNW (x) (18) (olive), Christoffel function (blue) (14), and the Coverage(x)

(sky) (19) for the measure ⟨g⟩ =
∫ 1
−1 g(x)dx (C3) are also calculated.

In the Appendix B the probabilities (7) were obtained as an ensemble average, calculated

from the data, this is typical for a ML classification problem.

Input file can be constructed in a way that calculated averages represent a probability

of different kind, such as time average probability. Consider function interpolation problem,

the ⟨·⟩ now has a meaning of time–average ⟨g⟩ =
∫
g(x)ω(x)dx, see Section II of [13]. A one–

dimensional interpolation problem[7] can be reduced to (1) data by converting a two–columns

sequence x(l) → f (l), l = 1 . . .M to:

(1, x, x2, . . . , xn−1)(l) → f (l) weight ω(l) (C1)

Because the result is invariant relatively any non–degenerated basis components linear

transform any polynomials (e.g. Pm(x), Tm(x), etc.) can be used instead of the xm in (C1).

For example: to reproduce Runge function d = 1 interpolation problem

f(x) =
1

1 + 25x2
(C2)

https://en.wikipedia.org/wiki/Ensemble_average_(statistical_mechanics)
https://en.wikipedia.org/wiki/Ergodicity
https://en.wikipedia.org/wiki/Runge%27s_phenomenon
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dµ = dx (C3)

x ∈ [−1 : 1]

for n = 7, the result of the Appendix D of [13], take x sequence with a small step

about dx = 10−4, it will be about M = 1 + 2/dx total points x ∈ [−1,−1 + dx,−1 +

2dx, . . . , 1− 2dx, 1− dx, 1] and create a comma–separated file of M rows and n+ 2 columns:

1, x, x2, . . . , xn−1, f(x), ω. First n columns are the x from (C1), then f(x) from (C2) follows,

and the last column is the observation weight ω = dx for all points except the dx/2 for

the edges. This file dataexamples/runge_function.csv is bundled with provided software.

Run the program

java com/polytechnik/utils/RN --data_cols=9:0,6:7:8:1 \

--data_file_to_build_model_from=dataexamples/runge_function.csv

The output file runge_function.csv.RN.csv has a few more columns, four of them are: the

fRN from (13), the Christoffel function (14), the fRNW from (18), and the Coverage(x) (19).

The result is presented in Fig. 4. With the data prepared as (C1) the Christoffel–like function

(14) is the regular Christoffel function for the measure (C3). The fRNW (x) is also presented

in Fig. 4. The fRNW (x), the same as the fRN(x), is a weighted superposition (18) of (4)

eigenvalues, but the weights are the posterior weights (17b), that are the product of prior

weights by the
∣∣ψ[i]

〉
projections: w[i]Proj[i]. For Runge function in n = 7 case only four prior

weights (B8) are non–zero, thus in Fig. 4 the fRNW (x) is a superposition of four eigenvalues.

As we discussed above in Section II A, the fRN (x) should be used for a deterministic functions,

and the fRNW (x) is a solution to classification problem for a probabilistic f ; it uses the

posterior weights (17b). Same result can be also obtained using multi–index multiplications

of Section V, take a single x attribute and multiply it by itself 6 times. The quadrature will

be identical.

java com/polytechnik/utils/RN --data_cols=9:0,1:7:8:1 \

--max_multiindex=6 \

--data_file_to_build_model_from=dataexamples/runge_function.csv

Radon–Nikodym interpolation [21] of an image (d = 2 problem), can be performed in

a similar way. Create a file of M = dx × dy rows and n = nx × ny + 2 columns. Each

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
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row corresponds to a single pixel. The last two columns are: pixel gray intensity and the

weight (equals to 1). The first n = nx × ny columns are a function of pixel coordinate

(xl ∈ 0 . . . dx − 1, yl ∈ 0 . . . dy − 1) as Tjx(2
xl

dx−1
− 1)Tjy(2

yl
dy−1

− 1), jx = 0 . . . nx − 1,

jy = 0 . . . ny − 1. The Tm(x) is Chebyshev polynomial T0 = 1;T1 = x; . . . , they are chosen for

numerical stability. In [21] the multi–index j = (jx, jy) has (59) and (60) constraints. After

running the RN Program interpolated fRN and Christoffel function columns are added to

output file, the fRN(xl, yl) provides required interpolation. While the Gaussian quadrature

cannot be obtained for d ≥ 2, the Christoffel function (10) can be easily calculated not only

in d ≥ 2 case, but also for an arbitrary x space with a measure ⟨·⟩.

The input file can be also constructed for x vector to represent a random variable. For

example a distribution regression problem where a “bag” of observations is mapped to a

single outcome f can be approached[24] by using the moments of the distribution of a single

“observations bag” as an input x. For every “bag”, calculate it’s distribution moments (one

can use any choice of polynomials), then put these moments as x (now the xk components

are the moments of the distribution of a bag’s instance), and use the f as the outcome.

Similarly, temporal dependencies can be converted to (1) type of data. Assume f has

a f(x(t)) form. Then each xk(t) can be converted to the moments ⟨Qs(xk)⟩t, s = 0 . . . nt,

relatively some time–averaging ⟨·⟩t measure, such as in the Section II of [13]. Then the

n×nt input attributes ⟨Qs(xk)⟩t, k = 0 . . . n = 1; s = 0 . . . nt− 1, are “mixed” moments: time

averaged ⟨·⟩t first and then ensemble averaged in (7). They can be used in (1) data input.

Note, that “combined” averaging in (7) as
〈
⟨Qs(xj(t)) |Qs′(xk(t))⟩t

〉
produces different result

than “mixed” one:
〈
⟨Qs(xj(t))⟩t

∣∣ ⟨Qs′(xk(t))⟩t
〉
. Numerical experiments show that ⟨Qs(xk)⟩t

attributes typically show a better result than using (xk(t), xk(t − δ), xk(t − 2δ), . . . ) as a

“vectorish” xk. With temporal (and spatial) attributes the dimension of (1) input can grow

very fast. In such a situation Section III optimal clustering is of critical importance: this way

we can select only a few combinations of input attributes, that optimally separate the f .

The strength of the Radon–Nikodym approach is that it requires only two matrices (7)

as an input, and the average ⟨·⟩, used to calculate the Fjk and Gjk, can be chosen with a

different definition of the probability. The input file (--data_file_to_build_model_fro

m= parameter) can be prepared in a form to represent any probability space in any basis

of any dimension. One row corresponds to a single realization, all rows correspond to the

entire sample. After input datafile is prepared for the chosen probability space — the features
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introduced in this paper fRN(x), K(x), fRNW (x), Coverage(x), along with ψ[m]
G (x) clusters

(30) are calculated by the provided software.

Appendix D: A Numerical Solution to Quadratic Form Maximization Problem in

Unitary Matrix Space

The constrained optimization problem (132)

M∑
l=1

ω(l)
∣∣∣ ⟨ψx(l+1) | U |ψx(l)⟩

∣∣∣2 −→
U

max (D1)

to find a unitary operator ∥U∥ most accurately transforming |ψx(l)⟩ to |ψx(l+1)⟩ is reduced to:

F =
n−1∑

j,k,j′,k′=0

UjkSjk;j′k′U∗
j′k′ −→U max (D2)

n−1∑
k′=0

Ujk′U∗
kk′ = δjk (D3)

Without loss of generality we will be considering the problem in (E10) basis Gx
kk′ = δkk′ to

simplify (D3) constraint. This is a problem of optimization of scalar function (quadratic form

with a Hermitian tensor Sjk;j′k′ from (136)) on the unitary group U(n). It is equivalent to a

problem of maximizing a quadratic form with a Hermitian matrix given multiple constraints

(D3) of quadratic form as well. The constraint may be of more general “partial unitarity

D ≤ n” form (G10); a slight algorithm modification is then required, see Appendix G 1 below.

A regular eigenvalue problem has a single quadratic form constraint, the problem in question

has multiple. We have already approached a problem with an extra quadratic form constraint

in the Appendix F of [9], the problem in question is of this type. Consider a “simplified

constraint” (137)

n−1∑
j,k=0

UjkU∗
jk = n (D4)

as a “partial” constraint for which optimization problem (D2) can be readily converted to

an eigenvalue problem to be directly solved. The idea is then to adjust obtained solution to

satisfy full unitary constraints and calculate new values for Lagrange multipliers. Performing

several iterations the process will converge to (D2) optimization problem solution with the

required constraints (D3).

http://www.ioffe.ru/LNEPS/malyshkin/code_polynomials_quadratures.zip
https://en.wikipedia.org/wiki/Unitary_group
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Consider Lagrange multipliers λjk to optimize (D2) with the constraints (D3)
n−1∑

j,k,j′,k′=0

UjkSjk;j′k′U∗
j′k′ +

n−1∑
j,k=0

λjk

[
δjk −

n−1∑
k′=0

Ujk′U∗
kk′

]
−→
U

max (D5)

and variate it over all Ujk components. There are 2n2 real number coefficients defining

Ujk = ajk + ibjk, only n2 of them are independent for a unitary matrix. One more coefficient

is dropped as a common phase, so (D2) optimization with the constraints (D3) is equivalent

to an unconstrained optimization problem over n2 − 1 independent real parameters.

It is typically more convenient to variate (D5) over Ujk and U∗
jk rather than over ajk and

bjk, then take care of the constraints by adjusting Lagrange multipliers λjk. The variations

0 =
n−1∑

j′,k′=0

Uj′k′Sj′k′;pq −
n−1∑
j′=0

λj′pUj′q (D6a)

0 =
n−1∑

j′,k′=0

Spq;j′k′U∗
j′k′ −

n−1∑
j′=0

λpj′U∗
j′q (D6b)

are consistent only when λjk is a Hermitian matrix

λjk = λ∗kj (D7)

From (D6) also immediately follows: the functional (D2) extremal value is equal to the spur

of λjk:

F (extr) =
n−1∑
j=0

λjj (D8)

An algorithm finding extremal (D2) is a generalization of the one from the Appendix F of

[9] to multiple constraints:

1. Take initial λjk and solve (D5) optimization with partial constraint (D4). Solution

method – an eigenvalue problem of n2 dimension in a vector space formed by writing

all Ujk matrix elements in a vector, row by row. The result is: F and Ujk matrix

reconstructed back from the eigenvector corresponding to maximal eigenvalue, row by

row.

2. Obtained from this solution matrix Ujk may not be unitary as the constraint (D4) is a

subset of the full one (D3). Expand Ujk in SVD

Ujk =
n−1∑

j′,k′=0

Ujj′Σj′k′V
†
k′k (D9)

https://en.wikipedia.org/wiki/Singular_value_decomposition
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Ũjk =
n−1∑
j′=0

Ujj′V
†
j′k (D10)

and adjust all SVD numbers to 1: Σjk = δjk, obtained Ũjk is a unitary matrix, it is the

next iteration of the solution. This matrix (D10) satisfies exact constraint (D3), the

value of F has decreased (became less optimal). The Ũjk becomes a new Ujk at this

iteration.

3. Put this new Ujk to (D6a), then multiply it by U∗
jq and sum over q = 0 . . . n− 1. As

the Ujk is unitary λjk =
∑n−1

p,q=0 λjpUpqU∗
kq obtain new values for Lagrange multipliers

λ̃jk and take it’s Hermitian part:

λ̃jk =
n−1∑

j′,k′,q=0

Uj′k′Sj′k′;kqU∗
jq (D11)

λjk =
1

2

[
λ̃jk + λ̃∗kj

]
(D12)

This λjk is the next iteration of Lagrange multipliers. As iterations proceed – the λ̃jk

should converge to a Hermitian matrix by itself, without (D12) required.

4. Put this new λjk to (D5) and repeat iteration process until converged. On the first

iteration take initial values for Lagrange multipliers as λjk = 0.

The convergence of this algorithm turned out to be poor. An effective algorithm to the problem will

be found later in [32, 33], see com/polytechnik/kgo/KGOIterationalSubspaceLinearConstraint

s.java for an implementation. This algorithm, instead of usual iteration internal state in the form

of a pair: approximation, Lagrange multipliers: (ujk, λij), uses iteration internal state in the form

of a triple: approximation, Lagrange multipliers, homogeneous linear constraints (ujk, λij , Cd;jk),

it is the linear constraints that provide a good convergence. The dimension of eigenvalue problem

to solve on each iteration is Dn− (D − 1)(D + 2)/2 instead of Dn of this paper algorithm in the

Appendix G 1. In addition to that, for calculation efficiency, SVD-based solution adjustment (D10)

was replaced by an eigenproblem-based solution adjustment.

Appendix E: Non–Unitary Dynamics

In the previous section an approach to numerical solution of optimization problem (D2)

with unitary constraint (D3) has been developed. Whereas for quantum systems time evolution
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operator Ujk can be only unitary, in data analysis it can possibly be of a non–unitary form.

The difference arises because in data analysis wavefunction is directly “observable” (within a

phase) with the goal to construct a “time evolution operator” (126).

The first non–unitary matrix of this type to consider is the (D4), having a single constraint:

the sum of squared elements is equal to n. With this matrix the problem can be easily solved.

It does not preserve the normalizing, but gives more weight to correctly matched predictions.

Regardless interpretation difficulties the dynamics with a matrix constrained the sum of

squared elements being equal n is the first one to try for the reasons of computational simplicity

(no iteration process required) and mathematical interpretation simplicity (eigenvalue problem

equivalence).

Another matrix of interest is a subspace-projection matrix. This type of constraint typically

makes Lagrange multipliers λjk calculation problematic, however some results can be obtained

analytically, what makes a subspace-projection matrix the first one to try for an analytic

study.

In the considered above approach to dynamics the x(l) and x(l+1) were belong to the same

phase space. It is of great interest to consider a situation where |ψx(l)⟩ and |ψx(l+1)⟩ belong to

different vector spaces, e.g. to use |ψf (l)⟩ instead of |ψx(l+1)⟩. In this case in (126) operator U

is transforming |ψx⟩ to a different vector space |ψf ⟩; this is not a true “dynamics” (l is the

same), but such a transform can be applied to a traditional ML classification problem.

While a study of a general non–unitary x → f homomorphism producing the most general

form of non–unitary dynamics is out of scope of this work (see Appendix I below for our

first attempt), let us consider a simple composition of a unitary transformation U : x → x

followed by projection of x on f , a “projective” form of non–unitary dynamics16. Let us apply

it to a vector–to–vector classification problem of Section VIB. Assume we have a problem

with vector–valued class label (68)

x(l) → f (l) weight ω(l); l = 1 . . .M (E1)

The choice of knowledge representation is the most important feature of a ML approach. For

example it can be a linear regression (90), a ratio of two quadratic forms (72) or (74), neural
16 Similar composition of a unitary transformation f → f followed by transform projection on x can be

constructed in exactly the same way; it looks, however, much less attractive. For isomorphic f -space and

x-space (e.g. considered in Section VI E above) the projection retains the full basis, thus f on x and x on f

inferences produce evolution operators U in (126) different only in time inverse. A promising direction for

future research may be to consider two unitary transformation: Ux acting x → x and U f acting f → f

then do transforms projection, see Appendix F below.
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network weights, etc. An important result of this appendix is to consider not x → f mapping,

but instead to construct localized wavefunctions (24) in x- and f - space: ψy(x) and ψg(f) to

study ψy(x) mapping with a unitary operator U in x-space following by a projection of the

transform |U|ψy⟩ on f -space outcome ψg(f):

Prob(g|y) = |⟨ψg | U |ψy⟩|2 1 ≥ ϖ(g) ≥ Prob(g|y) (E2)

F =
M∑
l=1

ω(l) |⟨ψf (l) | U |ψx(l)⟩|2 =
M∑
l=1

ω(l)Prob(f (l)|x(l)) (E3)

Error = ⟨1⟩ − F (E4)

Conditional probability (E2) is bounded by the value ϖ(g) of full basis expansion (97), a

situation without predictor available, this is the problem we considered in Section VI B above.

Because x- and f - space are different – a projection of a wavefunction from one to another

gives 1 ≥ ϖ(g) ≥ |⟨ψg | U |ψy⟩|2 in (E2). This non–unitarity, however, does not create any

practical difficulties as we separated a “unitary dynamics” in x-space and a “non–unitary

projection” to f -space. The (E4) error estimator has the meaning of misclassified observations

number, it is bounded by considered above simple projective estimator (95); it is zero if f is

a subspace of x (in (E10) below consider Ψ as a direct sum of Φ and the space orthogonal to

Φ, then in (E12) numerator cancels denominator).

Given the expressions (24) for ψy(x) and for ψg(f):

ψg(f) =

m−1∑
j,k=0

gjG
f ;−1
jk fk√

m−1∑
j,k=0

gjG
f ;−1
jk gk

(E5)

here Gf ;−1
jk is an inverse of Gf

jk from (85), we can write conditional probability (E2) as:

Prob(g|y) =

∣∣∣∣∣ n−1∑
j,k,p=0

m−1∑
j′,k′=0

yjG
x;−1
jk ukpG

xf
pj′G

f ;−1
j′k′ gk′

∣∣∣∣∣
2

n−1∑
j,k=0

yjG
x;−1
jk yk

m−1∑
j′,k′=0

gj′G
f ;−1
j′k′ gk′

(E6)

|U|xk⟩ =
n−1∑
p=0

ukpxp (E7)

The expression is very similar to (105), the difference is that instead of Gxf
kj′ we now have x

transformed by a unitary operator U as
∑n−1

p=0 ukpG
xf
pj′ . This is the key difference: instead of
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“direct projection” we now have a unitary transformation and then a projection. In

F =
M∑
l=1

ω(l)Prob(f (l)|x(l)) =
n−1∑

j,k,p,q=0

ujkSjk;pqu
∗
pq (E8)

a Hermitian tensor Sjk;pq is readily obtained from (E6) and (E8) with simple algebra. Thus

we reduced x → f classification problem to a dynamic problem of finding a unitary matrix

maximizing (E8), i.e. the problem considered in Section D! This is the most general solution to

a vector class label classification problem, it finds a unitary transformation U (E7), producing

the maximal coverage in (E8).

Note, that unitary operator U coefficients ukp are defined in (E7) in a general, non–

orthogonal basis xk, a one with real symmetric Gram matrix Gx
jk = ⟨xjxk⟩. This makes

unitarity constraint more verbose:

Gx
pq =

n−1∑
j,k=0

upjG
x
jku

∗
qk (E9)

It is convenient to select orthogonal bases Ψ[i](x), i = 0 . . . n− 1 and Φ[j](f), j = 0 . . .m− 1

for input data, we already did this in Eq. (127) above:

Ψ[i](x) =
n−1∑
k=0

Bx
ikxk i = 0 . . . n− 1 (E10)

s
(l)
i =

〈
ψx(l)

∣∣Ψ[i]
〉
=

Ψ[i](x(l))√
n−1∑
j=0

|Ψ[j](x(l))|2
1 =

n−1∑
i=0

∣∣∣s(l)i ∣∣∣2

δpq =
〈
Ψ[p]

∣∣Ψ[q]
〉
=

n−1∑
j,k=0

Bx
pjG

x
jkB

x
qk p, q = 0 . . . n− 1

Φ[i](f) =
m−1∑
k=0

Bf
ikfk i = 0 . . .m− 1 (E11)

d
(l)
i =

〈
ψf (l)

∣∣Φ[i]
〉
=

Φ[i](f (l))√
m−1∑
j=0

|Φ[j](f (l))|2
1 =

m−1∑
i=0

∣∣∣d(l)i ∣∣∣2

δpq =
〈
Φ[p]

∣∣Φ[q]
〉
=

m−1∑
j,k=0

Bf
pjG

f
jkB

f
qk p, q = 0 . . .m− 1

As the solution is gauge–invariant relatively (71) we can use any basis. An orthogonal

basis choice is also beneficial for computational complexity: it takes O(n) instead of O(n2)
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to calculate a quadratic form
∑n−1

j,k=0 yjG
x;−1
jk yk in a basis in which Gx

jk is diagonal. The

Prob(Φ|Ψ) also takes a much simpler form:

Prob(f |x) = Prob(Φ|Ψ) =

∣∣∣∣∣ n−1∑
j,k=0

m−1∑
i=0

Ψ[j]UjkGΨΦ
ki Φ

[i]

∣∣∣∣∣
2

n−1∑
j=0

|Ψ[j]|2
m−1∑
i=0

|Φ[i]|2
(E12)

GΨΦ
ki =

〈
Ψ[k]Φ[i]

〉
=

n−1∑
j=0

m−1∑
j′=0

Bx
kjG

xf
jj′B

f
ij′ (E13)

Sjk;pq =
M∑
l=1

ω(l)

m−1∑
r,t=0

s
(l)
j G

ΨΦ
kr d

(l)
r s

(l)
p G

ΨΦ
qt d

(l)
t (E14)

The (E14) corresponds to (133) when put formally s(l+1)
k =

∑m−1
j=0 G

ΨΦ
kj d

(l)
j and swap tensor

indexes (inverse time):
↫
Sjk;pq = Skj;qp. A unitary operator U now has a matrix Ujk with regular

unitarity constraint (D3). As the result is basis–independent it is practically convenient to use

input data x(l)k and f (l)
j to calculate the matrices (85) and (86), then build from them the bases

(E10) and (E11), with possible regularization of the Appendix A, then finally use Ψ[k](x(l))

and Φ[j](f (l)) as they were input data sample. In new bases the problem with Hermitian

tensor (E14) can be directly approached by (D2) optimization with unitary constraint (D3).

Obtained solution is independent on bases Ψ[k] and Φ[j] specific choice (gauge–invariant).

If contributing subspace is known explicitly the solution of dimension n can be reduced to

m using clustering approach (G5) of Appendix G below; there is also a general D-clusters

solution corresponding to a more general “partial unitarity D ≤ n” form of constraint (G7).

What is the main application of the approach of this appendix? Most often – it is a

“replacement” of a regression in a problem of recovering some hidden x → f relation. Both

theories take (E1) data as input and have zero error if f is a subspace of x. The differences

can be summarized in the table:
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Regression “Dynamic” theory

The Result Function value f(x) (90); diverges

at x → ∞

Conditional probability Prob(f |x)

(E12); does not diverge at x → ∞

Optimization L2 norm (2) in f -space The number of correctly classified ob-

servations (E3)

Mathematical

problem

Linear system solution Conditional optimization (D2) with

unitary constraint (D3)

Outliers and fat

tail sensitivity

Very sensitive; a single “several

orders off” outlier completely in-

validates the solution

Not sensitive; a single outlier may

invalidate only a single observation

point

Symmetry

ψ → −ψ

Broken: observable is linear on x;

ψ is also linear on x.

Preserved: ψ is linear on x, but the

probability (E2) behaves as ψ2, in-

variant with: ψx → −ψx; ψf → −ψf

Physical world

relation

A model Most of dynamic equations in na-

ture are equivalent to a sequence

of unitary transformations (Newton,

Maxwell, Schrödinger equations)

Appendix F: A Projective Non–Unitary Dynamics

Considered in Section E projective dynamics consists in a unitary transformation of x

following by a projection of the transform on f . The problem can be further generalized.

Consider input data (E1) as vector spaces x and f (it is convenient to convert them to Ψ

and Φ of Eqs. (E10) and (E11)). The Ψ and Φ are regular vector spaces of the dimensions n

and m with a scalar product determined by positively definite (otherwise apply Appendix A

regularization) matrices (85) and (86) calculated from the data sample (E1). In addition we

have a “cross–product” ⟨Ψ |Φ⟩ (E13) determined by the matrix Gxf
jk′ (87) calculated from the

same data sample. These bases may not be full with respect to each other:

1 ≥
m−1∑
j=0

〈
Ψ[i]Φ[j]

〉2
i = 0 . . . n− 1 (F1a)
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1 ≥
n−1∑
j=0

〈
Ψ[j]Φ[i]

〉2
i = 0 . . .m− 1 (F1b)

In Section VI A we considered an approach of various Ψ ↔ Φ projections. In Appendix E we

considered a composition of a unitary transformation UΨ Ψ → Ψ following by a projection

of the transform on Φ. In this appendix we consider the most general case, a composition of:

1. A Ψ → Ψ unitary transformation UΨ, the transform is
∣∣UΨ|Ψ

〉
.

2. A Φ → Φ unitary transformation UΦ, the transform is
∣∣UΦ|Φ

〉
.

3. Projection of these two transforms on each other:
〈
Φ
∣∣UΦ

∣∣UΨ
∣∣Ψ〉 using (E13) “scalar

product”.

The number of “covered” observations is then:

Prob(f |x) = Prob(Φ|Ψ) =
∣∣〈Φ ∣∣UΦ

∣∣UΨ
∣∣Ψ〉∣∣2 (F2)

F =
M∑
l=1

ω(l)
∣∣〈Φf (l)

∣∣UΦ
∣∣UΨ

∣∣Ψx(l)

〉∣∣2 = M∑
l=1

ω(l)Prob(f (l)|x(l)) (F3)

These expressions are different from (E2) and (E3) in a second unitary transformation ∥UΦ∥.

The problem is then: Maximize (F3) over UΨ
jk and UΦ

jk given two unitary constraints:

δjk =
n−1∑
i=0

UΨ
jiUΨ ∗

ki j, k = 0 . . . n− 1 (F4a)

δjk =
m−1∑
i=0

UΦ
jiUΦ ∗

ki j, k = 0 . . .m− 1 (F4b)

The optimization (F3) with the constraints (F4) can be approached by Appendix D type

of algorithm, however, as (F3) is a quadratic form over matrix elements products UΨ
jkUΦ

qp (a

“two–particle” system wavefunction basis is a product of individual particles wavefunction),

this makes the problem of dimensions product, thus makes it impractical. We expect that

a heuristic algorithm, such as alternately optimize (F3) over UΨ
jk and UΦ

qp, can be a better

fit. For isomorphic f -space and x-space (n = m and all coefficients in (F1) are equal to 1)

the dynamics is unitary and the problem itself becomes degenerated: It then depends on

a single operator ∥U∥ = ∥UΨ|UΦ∥ what is equivalent to the problem already considered in

Section VI E. This makes us to conclude that considered in Section E composition: a unitary

transformation of Ψ following by a projection of the transform on Φ is the most practical

approach to traditional ML classification problem x → f .
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Appendix G: On Clustering of a Dynamic System Phase Space

In Appendix E a “projective” solution to dynamic system identification problem has been

developed. The solution has the form of a unitary operator ∥U∥ in x-space. Conditional

probability given possible input/output is determined by (E2) projection of x vector transform

to a vector in f -space. The dimension of x-space and f -space can be quite different. The

n is typically of hundreds, often thousands, for a system with internal state (memory), see

Appendix H below, it may reach millions. The m is the dimension of f , the number of values

of interest, it is always below a few dozen. From this relation naturally arises the problem

of clustering: to construct a low dimension D < n subspace of phase space x that captures

most of the information about f . For a problem with vector class label only the case D = m

is easy.

Consider some orthogonal basis
∣∣ψ[i]

〉
in x-space and expand x(l)-localized states ψx(l)(x)

in this basis:

|ψx(l)⟩ =
n−1∑
i=0

〈
ψx(l)

∣∣ψ[i]
〉 ∣∣ψ[i]

〉
(G1)

then substitute to (E3), obtain the number of covered observations:

F =
M∑
l=1

ω(l) |⟨ψf (l) | U |ψx(l)⟩|2

=
M∑
l=1

ω(l)

n−1∑
i,j=0

〈
ψ[i]
∣∣ψx(l)

〉 〈
ψ[i]
∣∣U † ∣∣ψf (l)

〉 〈
ψf (l)

∣∣U ∣∣ψ[j]
〉 〈
ψx(l)

∣∣ψ[j]
〉

(G2)

Were we operate in terms of simple “projective paradigm” of Section VIB this would

correspond to (100) error with (102) spectral expansion. Now, however, the problem is that

sought basis
∣∣ψ[i]

〉
enters (G2) coverage four times, thus a direct eigenvalues expansion is no

longer possible. As the conditional probabilities are bounded (E2) by direct projection to the

entire x-space by probabilities (97), obtain F upper bound:

FDP =
M∑
l=1

ω(l)ϖ(f (l)) F ≤ FDP (G3)

The spectral expansion (102) has at most m eigenvectors (101) contributing to coverage

expansion with |ψf (l)⟩, for (G2) this means that only these |ϕ⟩ contribute to coverage:∣∣ψ[i]
〉
∈ |U|ϕ⟩ (G4)
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where
∣∣ψ[i]

〉
belongs to (101) eigenvectors subset having non–zero eigenvalue, there are at

most m out of total n. From this follows that only vector space
∣∣ϕ[i]

〉
contribute:

∣∣ϕ[i]
〉
=
∣∣U †|ψ[i]

〉
(G5)

where i takes m out of n values such that λ[i] > 0 in (101). The
∣∣ϕ[i]

〉
is the only x-subspace

contributing to total coverage (G2).

Appendix D solution to maximization (G2) (which is a quality criterion) finds unitary

matrix ∥U∥ in x-space of the dimension n. However, as quality criterion operates in f -space

of the dimension m, the transform (G5) allows to build x-subspace of the dimension D = m

as the only vector subspace contributing to quality criterion.

For a system with known contributing subspace numerical optimization algorithm of

Appendix D can be optimized by converting the basis to contributing subspace and simplifying

the constraints to act in contributing subspace only, i.e. considering a subset of a full set

of unitarity constraints. The conversion back from contributing subspace to x-space then

requires some algebra as the condition for unitary operators; U−1 = U † may no longer hold

true in full x-space.

In practice the problem of finding the contributing subspace (101) is typically “an extra

step”, thus it is sometimes more convenient to solve the problem directly to avoid a non-

unitary transformation between contributing subspace and x-space. Whereas constructing

a f -predictor of given input dimension D ≤ n creates the same problem as with (G2) (an

expression with the fourth power of sought basis), the problem of finding x subspace of the

dimension D ≤ n providing maximal coverage on f , can be directly reduced to a variant of

Appendix D optimization problem.

Consider coverage maximization problem with constraints:

F =
M∑
l=1

ω(l)

D−1∑
j=0

〈
ψf (l)

∣∣ϕ[j]
〉2 −→

ϕ
max (G6)

δjk =
〈
ϕ[j]
∣∣ϕ[k]

〉
j, k = 0 . . . D − 1 (G7)

the goal is to find an orthogonal basis ϕ[j](x) of dimension D ≤ n, j = 0 . . . D − 1, providing

maximal (G6) coverage; the solution is non-unique, it is (101) eigenvectors, corresponding to

D largest eigenvalues within an arbitrary unitary transformation of them. The problem (97)

of above corresponds to D = n case; (G3) is the upper bound of (G6). Here ψg(f) is f = g
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localized state (E5) in f -space, and ϕ[j](x) is x-space linear function:

ϕ[j](x) =
n−1∑
k=0

ujkxk j = 0 . . . D − 1 (G8)

Substituting (G8) to (G6) obtain optimization problem with some Sjk;j′k′ :

F =
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′u
∗
j′k′ −→

u
max (G9)

n−1∑
k,k′=0

ujkG
x
kk′u

∗
ik′ = δji j, i = 0 . . . D − 1 (G10)

The problem: to find ujk matrix of the dimensions j = 0 . . . D − 1, k = 0 . . . n− 1, providing

maximal (G9) subject to constraint (G10). Obtained ujk matrix defines ϕ[j](x) basis (G8)

of the dimension D ≤ n providing maximal coverage in (G6). This basis is then typically

used to construct in it a unitary operator U providing maximal coverage in (E3). Thus we

need to solve two optimization problems: first (G6) to construct a basis of lower dimension,

second (E3) to build a unitary operator in this basis. If D = m and f is a subspace of x then

the sought basis is this subspace and coverage is maximal F = ⟨1⟩. Otherwise we modify

Appendix D algorithm to D ≤ n case, specifically:

1. A Numerical Solution to Quadratic Form Maximization Problem With Partial

Unitarity Constraint

The constrained optimization problem (G2)

F =
M∑
l=1

ω(l) |⟨ψf (l) |u |ψx(l)⟩|2 −→
u

max (G11)

to find an operator ∥u∥ of the dimension n×D most accurately transforming a localized state

in x-space |ψx⟩ (of the dimension n) to a localized state in f -space |ψf ⟩ (of the dimension D)

is reduced to:

F =
D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′u
∗
j′k′ −→

u
max (G12)

n−1∑
k=0

ujku
∗
ik = δji j, i = 0 . . . D − 1 (G13)
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The upper bound of F is (G6). For n = D this would be a unitary optimization problem

considered in the Appendix D above; for D ≤ n we have a partial unitarity constraint.

Without loss of generality let Gx
kk′ = δkk′ , i.e. the problem is considered in bases (E10) and

(E11) to simplify (G13) constraint. Consider Lagrange multipliers λjj′ , a matrix of D ×D

dimension, to optimize (G12) with the constraints (G13)

D−1∑
j,j′=0

n−1∑
k,k′=0

ujkSjk;j′k′u
∗
j′k′ +

D−1∑
j,j′=0

λjj′

[
δjj′ −

n−1∑
k′=0

ujk′u
∗
j′k′

]
−→
u

max (G14)

The variations are consistent only when λjj′ is a Hermitian matrix. The “partial” constraint

is the squared Frobenius norm condition:

D−1∑
j=0

n−1∑
k=0

ujku
∗
jk = D (G15)

with which (G12) optimization can be reduced to a generalized eigenvalue problem. Then

repeat Appendix D iteration almost identically. Generalized eigenvalue problem of the dimen-

sion Dn is solved with partial constraint (G15) being wavefunction normalizing condition;

obtained with partially constrained solution ujk requires an adjustment to satisfy the full

constraints (G13); it is performed using SVD expansion:

ujk =
D−1∑
j′=0

n−1∑
k′=0

Ujj′Σj′k′V
†
k′k (G16)

followed by setting diagonal elements of the rectangular diagonal matrix Σjk to 1; new values

for Lagrange multipliers λjj′ are then calculated from adjusted ujk to perform a new iteration:

λ̃ji =
D−1∑
q=0

n−1∑
k,k′=0

uqkSqk;ik′u
∗
jk′ (G17)

λji =
1

2

[
λ̃ji + λ̃∗ij

]
j, i = 0 . . . D − 1 (G18)

With these changes to Appendix D algorithm the iteration process produces ujk matrix

maximizing (G12) subject to partial unitarity D ≤ n constraint (G13).

Appendix H: The Dynamics of a System with Internal State

The data (E1) x(l) → f (l) is the form most frequently studied in ML, where observations

corresponding to different l are considered as independent observations. Same data studied

https://en.wikipedia.org/wiki/Singular_value_decomposition
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in signal processing is typically considered as l–ordered (e.g. l is time), where the problem

of timeserie prediction corresponds to f (l) = x(l+1). Such an embedding of timeserie data to

(E1) implicitly selects a time–scale. Real system have some internal state z (memory); the

output now depends not only on the input signals x, but also on the internal state z:(
x(l), z(l)

)
→ f (l) weight ω(l); l = 1 . . .M (H1)

This produces a omnifarious dynamics, much richer compared to systems without internal

state. An example of a system with memory is a finite-state machine. From practical point

of view it is convenient to classify them as the systems with:

• Completely observable internal state.

• Partially observable internal state.

The same system (e.g. a vending machine) can be completely observable to a support team

(have a full access to vending machine memory) and partially observable to a customer (can

only see whether it is empty and not working). In this appendix we will be only considering

the systems with completely observable internal state.

Consider a very simple finite-state machine: synchronous positive-edge-triggered D flip-flop

(D trigger); it’s circuit has a positive feedback loop what creates a bistable system. CD4013

chip is a typical example of this device.

C Q

D Q

(H2)

It operates as following: on every 0 → 1 transition on C (on the rising edge of the clock)

input D is recorded and becomes immediately available on Q, the Q is it’s inverse. Any

changes on D has no effect on the state unless there is a rising edge on C:

C D Q

0 0

1 1

0

1 X unchanged

(H3)

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Flip-flop_(electronics)#Classical_positive-edge-triggered_D_flip-flop
https://www.ti.com/lit/ds/symlink/cd4013b.pdf
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This device can be used as a 1-bit memory register, pulses counter, frequency divider by 2

(connect D with Q to inverse the state on every on C), etc.

Consider a simple problem of the dimensions n = 2,m = 1. Take edge–triggered D flip-flop,

let x0 = D, x1 = C, and output f = Q. Also assume (to avoid timing considerations) that on

every tick l the x(l)1 takes the value slightly after x(l)0 was set. The output Q at l now depends

not only on current input x(l) but also on the previous state (and hence, previous inputs).

Now assume that all the input x(l) are completely random. For every new l–th input x(l)

coming (completely random) the system undergo transition:

f (l) =

x
(l)
0 if x(l−1)

1 = 0 and x(l)1 = 1

f (l−1) otherwise
(H4)

It is clear that this D-trigger cannot be predicted by n = 2, m = 1 system corresponding to

D, C, Q trigger terminals “connected” to x0, x1 and f . A system with (H4) transition rules

has a long–range dynamics17.

A typical result of interest for a study of such a system is: given a long sequence of random

x(l) as input be able to tell: there is a D-trigger inside. It is clear that an approach typical

for signal processing: take a finite number of previous inputs x(l−1), x(l−2), x(l−3), . . . , the

length is determined by e.g. autocorrelation length of the signal, is poorly applicable to a

system with internal memory.

For a system with completely observable internal state the problem can be directly

approached by using f and some previous x (like in signal processing) as system memory: put

z(l) =
(
f (l−1), x

(l−1)
1

)
in (H1), making a system of the dimensions n = 4, m = 1. Given this

input almost any ML technique can build an accurate predictor for D-trigger. The problem,

however, is that to apply obtained rules an information about system current internal state

is required and this information is typically not available. The approach of Appendix (E)

separates the system dynamics (in a form of unitary operator ∥U∥ obtained from (E3)

optimization) and calculation of conditional probability (E2) for a given input/output. When

applied to this problem only the first step is straightforward: construct a unitary operator of

dimension 4 in (H1) space that can be selected as a subspace of
(
x(l), f (l−1),x(l−1),x(l−2), . . .

)
17 A more straightforward example of a system with long–range dynamics is the aforementioned frequency

divider by 2 (connect D with Q) and use x = C, f = Q; this single input system switches the state to

the inverted f (l+1) = f (l) for every x
(l)
0 = 1 such that x(l−1)

0 = 0; this system has the state completely

determined by the initial state and the number of transitions on C input.

https://en.wikipedia.org/wiki/Flip-flop_(electronics)#Timing_considerations
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the transform then to be projected to f (l); the Error from (E4) will be 0. However, the second

step: it’s application to a prediction of future value of f is problematic as the “system current

state” is typically available only for training data. Nevertheless, obtained unitary operator

precisely identifies (H3) system dynamics and tells us exactly: there is a D-trigger inside!

Appendix I: Kraus Operators and State Decoherence Problem

A dynamics considered so far was of either unitary or unitary following by a projection

forms. The criterion (132) is the total coverage of a system with an initial state (e.g. a localized

pure state |ψx⟩ ⟨ψx|; it has a simple form in (E10) basis), the initial state is transformed to

predicted state with a unitary transformation (I2)

∥ρx∥ = |ψx⟩ ⟨ψx| =
n−1∑
i,k=0

∣∣Ψ[i]
〉 Ψ[i](x)Ψ[k]∗(x)

n−1∑
j=0

|Ψ[j](x)|2
〈
Ψ[k]

∣∣ (I1)

∥ρ̃x(l+1)∥ = ∥U|ρx(l)|U †∥ (I2)

following a comparison of predicted and realized density matrices to obtain the total coverage

by taking sum over all observations, exactly as we did in Eq. (132) above:

F =
M∑
l=1

ω(l)Spur∥ρx(l+1)|U|ρx(l)|U †∥ =
M∑
l=1

ω(l)Spur∥ρx(l+1) |ρ̃x(l+1)∥ (I3)

U †U = 1 (I4)

Error = ⟨1⟩ − F (I5)

This approach can be successfully applied to a number of problems, e.g. to a deterministic

finite-state machine such as considered in the Appendix H above.

An example of a system to which an application of unitary dynamics has limitations is the

data of Markov chain type. Consider single boolean variable Markov chain with a stationary

transition matrix Pyz:

x(l) : {0, 1} ω(l) = 1; l = 1 . . .M (I6)

Pyz = P (x(l+1) = z|x(l) = y) 1 =
∑
z=0,1

Pyz (I7)

For a boolean variable we can assume that x = 0 corresponds to
∣∣ψ[0]

〉
and x = 1 corresponds

to
∣∣ψ[1]

〉
; without loss of generality we can also assume

〈
ψ[y]

∣∣ψ[z]
〉
= δyz. For l = 1 . . .M

https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Stochastic_matrix
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observations Markov chain model (I6) gives the transition: if the value of x(l) is known then

x(l+1) outcome probabilities can be predicted according to (I7). If x at l is known and equal

x(l) then l → l + 1 transition of
∣∣ψ[x]

〉
state is:

∣∣ψ[x]
〉 〈
ψ[x]
∣∣→ Px 0

∣∣ψ[0]
〉 〈
ψ[0]
∣∣+ Px 1

∣∣ψ[1]
〉 〈
ψ[1]
∣∣ (I8)

Important, that Markov chain l → l + 1 transition transforms pure state (given we know

x = x(l) value) to a mixed state according to transition matrix probabilities Pyz. This type of

transformation cannot be obtained from unitary dynamics (I2). A fundamental property of

quantum dynamics is: a pure state can be transformed only to a pure state. Markov chain

dynamics (I8) is different in this sense as it possibly transforms pure state to a mixed state.

This problem is known as quantum decoherence and is a subject of active study[34] since

the inception of quantum theory initially in application to quantum measurement, following

by quantum computing, quantum field theory[35], etc.; for example as black hole radiates as

black body (Hawking radiation) thus it should completely evaporate within a finite time,

and in this process an initially pure quantum state should evolve to a mixed state[36].

The problem in hand is much less global. It is: given the data (68) to transform localized

pure state ψy(x) from (24) to a mixed state to be subsequently used e.g. in (I3) coverage

estimation instead of ∥U|ρx(l)|U †∥, corresponding to regular quantum dynamics (131).

Typically to obtain a mixed state from pure state one may consider some other space |φ⟩,

form a composite system |φ⟩ ⊗ |ψ⟩, then consider a pure state in the composite space; as the

|φ⟩ states are not observable take the Spur over |φ⟩ (partial spur) and obtain a mixed state

in |ψ⟩-space. The difficulty is that with (68) data there is no other space |φ⟩, only averaging

over l = 1 . . .M observations is available; there is no “second set of observations” for a given l

(with possible exception of distribution regression problem[24] type of data). For this reason

we need other methods to construct a mixed state.

Mathematically the problem is equivalent to constructing a completely positive trace-

preserving map (quantum channel). Considered in Appendix E above ML classification

problem consists in a unitary transformation in x-space following by a projection of the

transform to f -space; this is a trace-decreasing map (quantum operation) as these two spaces

are not necessary full with respect to each other.

https://en.wikipedia.org/wiki/Quantum_decoherence
https://en.wikipedia.org/wiki/Measurement_problem
https://en.wikipedia.org/wiki/Quantum_channel
https://en.wikipedia.org/wiki/Quantum_channel
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Kraus’ theorem determines the most general form of this operation[37]:

ρ̃ =
∑
s

BsρB
†
s (I9)

with Kraus operators Bs satisfying ∑
s

BsB
†
s = 1 (I10)

The number of terms in the s-sum is called Kraus rank. The maximal number of terms

is n2 (or nm for (I9) transformations between Hilbert spaces of different dimensions), in

ML applications a good heuristic is to choose Kraus rank between 1 and 3, a value below

n fits most data analysis problems. The transformation (I9) subject to constraint (I10) is

a generalization of regular quantum dynamics (I2) subject to unitary constraint (I4). A

fundamental question is then: whether Appendix G 1 numerical optimization algorithm of a

problem with partial unitarity constraint (G13) can be modified to approach the problem of

finding Kraus operators Bs maximizing

F =
M∑
l=1

ω(l)
∑
s

Spur∥ρx(l+1)|Bs|ρx(l)|B†
s∥ (I11)

subject to (I10) constraint; the problem solution “favors” pure states as only for them

Spurρ2 = 1 and the maximal coverage ⟨1⟩ can be reached; for a series of mixed state density

matrices ρ(l) maximal coverage is limited by the value
∑M

l=1 ω
(l)Spurρ2(l), which reaches ⟨1⟩

only when all ρ(l) are pure states. This optimization problem, the same as the one considered

in the Appendix D: maximize (I3) subject to (I4), has target function and constraints both

being quadratic functions on Kraus operators Bs matrix elements, a variant of quadratically

constrained quadratic program[38] (QCQP). Thus we can consider a “wavefunction” (of

the dimension n2 times the number of Bs operators in (I10) sum) constructed from Bs

matrix elements subject to “partial” constraint (a generalization of (D4)): the sum of all Bs

matrix elements absolute value squared (the sum of all Bs squared Frobenius norm) equals

to n. Optimization problem with partial constraint can be easily solved as equivalent to a

regular eigenvalue problem. An iteration process involving an update of obtained “partial

constraint” solution to a full constraint sub-optimal one with subsequent Lagrange multipliers

recalculation is then repeated until the required constraints (I10) are satisfied in full. This

treatment readily produces a numerical solution. The solution is non–unique (take e.g. a

https://en.wikipedia.org/wiki/Quantum_operation#Kraus_operators
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
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permutation of Bs; more generally – Bs are defined within a unitary transformation; it is often

convenient to work with orthogonal form of Kraus operators (canonical form) SpurBsB
†
t ∼ δst,

that is especially useful for adjusting “partial constraint” solution to a full constraint sub-

optimal one) but described numerical algorithm (contrary to näıve Newtonian type iterations)

is expected to be non–sensitive to this degeneracy unless the number of terms in (I10) sum

is chosen a very large; if there is just a single term in the sum (Kraus rank one) – then

the problem is reduced to previously considered optimization problem (D2) with unitary

constraint (D3), a pure quantum channel.

[1] V. G. Malyshkin, On Lebesgue Integral Quadrature, arXiv preprint arXiv:1807.06007

10.48550/arXiv.1807.06007 (2018).

[2] V. G. Malyshkin, On Numerical Estimation of Joint Probability Distribution from Lebesgue

Integral Quadratures, ArXiv e-prints 10.48550/arXiv.1807.08197 (2018), arXiv:1807.08197

[math.NA].

[3] V. G. Malyshkin, Multiple–Instance Learning: Christoffel Function Approach to Distribution

Regression Problem, arXiv preprint arXiv:1511.07085 10.48550/arXiv.1511.07085 (2015).

[4] J.-B. Lasserre and E. Pauwels, The empirical Christoffel function with applications in data

analysis, Advances in Computational Mathematics , 1 (2019).

[5] B. Beckermann, M. Putinar, E. B. Saff, and N. Stylianopoulos, Perturbations of Christoffel–

Darboux Kernels: Detection of Outliers, Foundations of Computational Mathematics , 1 (2020).

[6] V. G. Malyshkin, Norm-Free Radon-Nikodym Approach to Machine Learning, ArXiv e-prints

10.48550/arXiv.1512.03219 (2015), http://arxiv.org/abs/1512.03219, arXiv:1512.03219

[cs.LG].

[7] A. V. Bobyl, A. G. Zabrodskii, M. E. Kompan, V. G. Malyshkin, O. V. Novikova, E. E.

Terukova, and D. V. Agafonov, Generalized Radon–Nikodym Spectral Approach. Application

to Relaxation Dynamics Study., ArXiv e-prints 10.2139/ssrn.3229466 (2016), arXiv:1611.07386

[math.NA].

[8] A. V. Bobyl, V. V. Davydov, A. G. Zabrodskii, N. R. Kostik, V. G. Malyshkin, O. V. Novikova,

D. M. Urishov, and E. A. Yusupova, The Spectral approach to timeserie bursts analysis

(Спектральный подход к анализу всплесков временной последовательности), ISSN 0131-

https://en.wikipedia.org/wiki/Newton%27s_method#k_variables,_k_functions
https://en.wikipedia.org/wiki/Quantum_channel#Pure_channel
https://doi.org/10.48550/arXiv.1807.06007
https://doi.org/10.48550/arXiv.1807.08197
https://arxiv.org/abs/1807.08197
https://arxiv.org/abs/1807.08197
https://doi.org/10.48550/arXiv.1511.07085
https://doi.org/10.1007/s10444-019-09673-1
https://doi.org/10.1007/s10208-020-09458-9
https://doi.org/10.48550/arXiv.1512.03219
http://arxiv.org/abs/1512.03219
https://arxiv.org/abs/1512.03219
https://arxiv.org/abs/1512.03219
https://doi.org/10.2139/ssrn.3229466
https://arxiv.org/abs/1611.07386
https://arxiv.org/abs/1611.07386
https://doi.org/10.24411/0131-5226-2018-10010


80

5226.Теоретический и научно-практический журнал. ИАЭП. , 77 (2018).

[9] V. G. Malyshkin, Market Dynamics: On Directional Information Derived From (Time,

Execution Price, Shares Traded) Transaction Sequences, arXiv preprint arXiv:1903.11530

10.48550/arXiv.1903.11530 (2019).

[10] F. Mosteller and D. L. Wallace, Applied Bayesian and classical inference: the case of the

Federalist papers (Springer Science & Business Media, 1984).

[11] V. G. Malyshkin, R. Bakhramov, and A. E. Gorodetsky, A Massive Local Rules Search Approach

to the Classification Problem, arXiv preprint arXiv:cs/0609007 10.48550/arXiv.cs/0609007

(2001).

[12] B. Beckermann, On the numerical condition of polynomial bases: estimates for the condi-

tion number of Vandermonde, Krylov and Hankel matrices, Ph.D. thesis, Habilitationsschrift,

Universität Hannover (1996).

[13] V. G. Malyshkin and R. Bakhramov, Mathematical Foundations of Realtime Equity Trad-

ing. Liquidity Deficit and Market Dynamics. Automated Trading Machines, arXiv preprint

arXiv:1510.05510 10.48550/arXiv.1510.05510 (2015).

[14] G. S. Malyshkin, The comparative efficiency of classical and fast projection algorithms in the reso-

lution of weak hydroacoustic signals (Сравнительная эффективность классических и быстрых

проекционных алгоритмов при разрешении слабых гидроакустических сигналов), Acoustical

Physics 63, 216 (2017), doi:10.1134/S1063771017020099 (eng) ; doi:10.7868/S0320791917020095

(рус).

[15] V. G. Malyshkin, On Machine Learning Knowledge Representation In The Form Of Par-

tially Unitary Operator. Knowledge Generalizing Operator, arXiv preprint arXiv:2212.14810

10.48550/arXiv.2212.14810 (2022).

[16] M. H. Hayes and J. H. McClellan, Reducible polynomials in more than one variable, Proceedings

of the IEEE 70, 197 (1982).

[17] M. Nieto-Vesperinas, F. J. Fuentes, R. Navarro, and M. Perez-Ilzarbe, A FORTRAN routine to

estimate a function of two variables from its autocorrelation, Computer physics communications

78, 211 (1993).
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