Package com.polytechnik.kgo
Class LinearConstraints
java.lang.Object
com.polytechnik.kgo.LinearConstraints
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescription(package private) static double[][]
getOrthogonalAllProj0
(int nC, int nX, double[] u, double[] fullBasis) All \(0=\mathrm{Herm}\left(\sum\limits_{k=0}^{nX-1}u_{jk}v_{ik}\right) \),nC*(nC+1)/2
conditions.static double[][]
getOrthogonalOffdiag0DiagEq
(int nC, int nX, double[] u, double[] fullBasis) Zero offdiagonal and all equal diagonal elements of the matrix \( \mathrm{Herm}\left(\sum\limits_{k=0}^{nX-1}u_{jk}v_{ik}\right) \), there are(nC-1)*(nC+2)/2
conditions.static double[][]
getVectorOrthogonal
(int nC, int nX, double[] u, double[] fullBasis) Zero scalar product \( 0=\sum\limits_{j=0}^{nC-1}\sum\limits_{k=0}^{nX-1} u_{jk}v_{jk} \), a single conditions.(package private) static void
testConstraintsOK_getOrthogonalOffdiag0DiagEq
(int nC, int nX, double[] u, double[] v, double eps) Check a matrix for: all offdiag 0, all diag are the same.
-
Constructor Details
-
LinearConstraints
public LinearConstraints()
-
-
Method Details
-
getVectorOrthogonal
public static double[][] getVectorOrthogonal(int nC, int nX, double[] u, double[] fullBasis) Zero scalar product \( 0=\sum\limits_{j=0}^{nC-1}\sum\limits_{k=0}^{nX-1} u_{jk}v_{jk} \), a single conditions. -
getOrthogonalAllProj0
static double[][] getOrthogonalAllProj0(int nC, int nX, double[] u, double[] fullBasis) All \(0=\mathrm{Herm}\left(\sum\limits_{k=0}^{nX-1}u_{jk}v_{ik}\right) \),nC*(nC+1)/2
conditions. Used for unit tests. -
getOrthogonalOffdiag0DiagEq
public static double[][] getOrthogonalOffdiag0DiagEq(int nC, int nX, double[] u, double[] fullBasis) Zero offdiagonal and all equal diagonal elements of the matrix \( \mathrm{Herm}\left(\sum\limits_{k=0}^{nX-1}u_{jk}v_{ik}\right) \), there are(nC-1)*(nC+2)/2
conditions. -
testConstraintsOK_getOrthogonalOffdiag0DiagEq
static void testConstraintsOK_getOrthogonalOffdiag0DiagEq(int nC, int nX, double[] u, double[] v, double eps) Check a matrix for: all offdiag 0, all diag are the same.
-