Breakdown field | ≈(1÷50)·103 V/cm |
Mobility electrons | See Fig. |
Mobility holes | ≤1000 cm2 V-1s-1 |
Electron thermal velocity | (9.8-4x)·105 m/s |
Hole thermal velocity | (1.8+0.3x)·105m/s |
Electron mobility versus composition parameter x for GaxIn1-xSb. T=300 K. Circles represent the data by Miki et al. (1975). Full circles - InSb substrate, Open circle - GaSb substrate. Squares represent the data by Kawashima and Kataoka (1979). Electron concentration no~1015÷1016 cm-3. |
|
Electron Hall mobility versus temperature for GaxIn1-xSb 1 - x=0.10, 2 - x=0.47, 3 - x=0.70, 4 - x=0.86, 5 - x=0.91. (Wooley and Gillett (1960)) See also Coderre and Woolley (1969). |
|
Electron Hall mobility versus electron concentration for GaSb (x=1). T=77 K. Open circles represent measurements with a group of samples having approximately the same residual acceptor concentrations Na . Full symbols: specimens with lower residual acceptor concentrations. Solid lines represent the theoretical calculations for different values of compensating acceptor densities - either singly (Na-) or doubly (Na--) ionized. 1 - Na-=1.2·1017 cm-3 or Na--=0.4·1017 cm-3, 2 - Na-=2.85·1017 cm-3 or Na--=0.95·1017 cm-3, 3 - Na-=4.5·1017 cm-3 (Baxter et al. (1967)). |
|
Electron mobility versus electron concentration for InSb (x=0). T=77 K. (Litwin-Staszewska et al. (1981)). |
|
The electron Hall factor versus carrier concentration for InSb (x=0). T=77 K. (Baranskii and Gorodnichii (1969)). |
|
Hole Hall mobility versus temperature for GaSb (x=1). MBE technique. Carrier concentration po at 300K: 1 - 2.28·1016 cm-3; 2 - 1.9·1016 cm-3. (Johnson et al. (1988)). |
|
Hole Hall mobility versus hole concentration for GaSb (x=1). T=300 K. Experimental data are taken from five different papers. (Wiley (1975)). |
|
Hole mobility versus hole concentration for InSb (x=0). 1 - 77 K (Filipchenko and Bolshakov (1976)). 2 - 290 K (Wiley (1975)). |
|
The hole Hall factor versus carrier concentration for InSb (x=0). T=77K. (Baranskii and Gorodnichii (1969)). |
Field dependences of the electron drift velocities calculated by Monte Carlo method for different values of x. T=300 K. (Ikoma et al. (1977)). |
|
Fraction of electrons in the Γ valley as a function of field for different values of x. (Ikoma et al. (1977)). |
|
Electron mean energies in the Γ and L valleys of Ga0.5In0.5Sb as a function of field. T=300 K. (Ikoma et al. (1977)). |
For T=300 K | τn = τp ≈5·10-8 s |
For T=77 K | |
n-type: the lifetime of holes |
τp ~ 10-6 s |
|
τn ~ 10-10 s |
Radiative recombination coefficient | ~5·10-11cm3s-1 |
Auger coefficient | ~5·10-26cm6s-1 |
Electron radiative (triangles) and nonradiative (squares) lifetime versus acceptor concentration, p-GaSb, T=77 K. (Titkov et al. (1986)). |
Radiative recombination coefficient | ~10-10 cm3/s; |
Auger coefficient | |
77 K |
2·10-29 cm6/s |
300 K |
5·10-30 cm6/s |
Auger coefficient in InAs/GaInSb superlattices (Youngdale (1994)) |
|
77 K |
1.3·10-27 cm6/s |
300 K |
8·10-25 cm6/s |
Surface recombination velocity for Ga0.6In04Sb (Mbow et al. (1993)) |
2·107 cm/s |