GaInSb - Gallium Indium Antimonide

Electrical properties

Basic Parameters
Mobility and Hall Effect
Transport Properties in High Electric Fields
Recombination Parameters

Basic Parameters

Breakdown field ≈(1÷50)·103 V/cm
Mobility electrons See Fig.
Mobility holes ≤1000 cm2 V-1s-1
Electron thermal velocity (9.8-4x)·105 m/s
Hole thermal velocity (1.8+0.3x)·105m/s

Mobility and Hall Effect

Electron mobility versus composition parameter x for GaxIn1-xSb. T=300 K.
Circles represent the data by Miki et al. (1975).
Full circles - InSb substrate,
Open circle - GaSb substrate.
Squares represent the data by Kawashima and Kataoka (1979).
Electron concentration no~1015÷1016 cm-3.
Electron Hall mobility versus temperature for GaxIn1-xSb
1 - x=0.10, 2 - x=0.47,
3 - x=0.70, 4 - x=0.86,
5 - x=0.91.
(Wooley and Gillett (1960))
See also Coderre and Woolley (1969).
Electron Hall mobility versus electron concentration for GaSb (x=1). T=77 K.
Open circles represent measurements with a group of samples having approximately the same residual acceptor concentrations Na . Full symbols: specimens with lower residual acceptor concentrations. Solid lines represent the theoretical calculations for different values of compensating acceptor densities - either singly (Na-) or doubly (Na--) ionized.
1 - Na-=1.2·1017 cm-3 or Na--=0.4·1017 cm-3, 2 - Na-=2.85·1017 cm-3 or Na--=0.95·1017 cm-3, 3 - Na-=4.5·1017 cm-3
(Baxter et al. (1967)).
Electron mobility versus electron concentration for InSb (x=0). T=77 K.
(Litwin-Staszewska et al. (1981)).
The electron Hall factor versus carrier concentration for InSb (x=0). T=77 K.
(Baranskii and Gorodnichii (1969)).
Hole Hall mobility versus temperature for GaSb (x=1).
MBE technique. Carrier concentration po at 300K:
1 - 2.28·1016 cm-3;
2 - 1.9·1016 cm-3.
(Johnson et al. (1988)).
Hole Hall mobility versus hole concentration for GaSb (x=1). T=300 K.
Experimental data are taken from five different papers.
(Wiley (1975)).
Hole mobility versus hole concentration for InSb (x=0).
1 - 77 K (Filipchenko and Bolshakov (1976)).
2 - 290 K (Wiley (1975)).
The hole Hall factor versus carrier concentration for InSb (x=0). T=77K.
(Baranskii and Gorodnichii (1969)).

Transport Properties in High Electric Fields

Field dependences of the electron drift velocities calculated by Monte Carlo method for different values of x. T=300 K.
(Ikoma et al. (1977)).
Fraction of electrons in the Γ valley as a function of field for different values of x.
(Ikoma et al. (1977)).
Electron mean energies in the Γ and L valleys of Ga0.5In0.5Sb as a function of field. T=300 K.
(Ikoma et al. (1977)).

Recombination Parameter

For x=0 (InSb):

For pure InSb at T≥250K lifetime of carrier (electrons and holes) is determined by Auger recombination: τn = τp 1/Cni2,
where C≈5·10-26 cm-6 s-1 is the Auger coefficient. ni is the intrinsic carrier concentration.
For T=300 K τn = τp ≈5·10-8 s
For T=77 K
n-type: the lifetime of holes
τp ~ 10-6 s

p-type: the lifetime of electrons

τn ~ 10-10 s
Radiative recombination coefficient ~5·10-11cm3s-1
Auger coefficient ~5·10-26cm6s-1

For x=1 (GaSb):

Electron radiative (triangles) and nonradiative (squares) lifetime versus acceptor concentration, p-GaSb, T=77 K.
(Titkov et al. (1986)).


Radiative recombination coefficient ~10-10 cm3/s;
Auger coefficient  
77 K
2·10-29 cm6/s
300 K
5·10-30 cm6/s
Auger coefficient in InAs/GaInSb superlattices
(Youngdale (1994))
 
77 K
1.3·10-27 cm6/s
300 K
8·10-25 cm6/s
Surface recombination velocity for Ga0.6In04Sb
(Mbow et al. (1993))
2·107 cm/s