Remarks  Referens  
Electron saturated drift velocity  4HSiC  V_{sat} = 8.0 x 10^{6} cm/s  300 K, (E, c) = 8° towards <1120>  Vassilevski et al. (2000) 
4HSiC  V_{sat} = 7.5 x 10^{6} cm/s  460K, (E,c) = 8° towards <1120>  Vassilevski et al. (2000)  
4HSiC  V_{sat} = 3.3 x 10^{6} cm/s  RT, Ec, saturation field = 1.55x10^{5} V/cm, n^{+}pn^{+} SiC structures 
Sankin et al. (2000) 

8HSiC  V_{sat} = 1.0 x 10^{6} cm/s  RT, Ec, saturation field = 1.35x10^{5} V/cm n^{+}pn^{+} SiC structures 
Sankin et al. (2000) 

15RSiC  V_{sat} = 1.2 x 10^{6} cm/s  RT, Ec, saturation field = 1.35x10^{5} V/cm n^{+}pn^{+} SiC structures 
Sankin et al. (2000) 

21RSiC  V_{sat} = 4.4 x 10^{3} cm/s  RT, Ec, saturation field = 1.35x10^{5} V/cm n^{+}pn^{+} SiC structures 
Sankin et al. (2000) 
3CSiC. Calculated electron steadystate drift velocity vs. electric
field at 2 different temperatures T. Total concentration of ionized dopants is 1.5x10^{18}cm^{3} 1  T = 300 K; 2  T = 600 K. Mickevicius & Zhao (1998) 

4HSiC. Calculated electron steadystate drift velocity vs. electric
field Doping concentration N_{d} = 1.5 x 10^{18} cm^{3}. 1  T = 300 K; electric field Ec; 2  T = 300 K, electric field Ec; 3  T = 600 K, electric field Ec; 4  T = 600 K, electric field Ec. Mickevicius & Zhao (1998) 

4HSiC. Experimental electron steady state drift velocity vs. electric
field T = 300 K. Electron concentration 1.4 x 10^{17} cm^{3.} Mobility in the low electric field is 400 cm^{2}/V·s. Khan & Cooper (1998) 

6HSiC. Calculated electron steadystate drift velocity
vs. electric field Doping concentration N_{d} = 1.5 x 10^{18} cm^{3}. 1  T = 300 K; electric field EcEc; 2  T = 300 K, electric field Ec; 3  T = 600 K, electric field Ec; 4  T = 600 K, electric field Ec. Mickevicius & Zhao (1998) 

6HSiC. Experimental electron steady state drift velocity vs. electric
field T = 300 K. Electron concentration 1.2 x 10^{17} cm^{3.} Mobility in the low electric field is 200 cm^{2}/V·s. Khan & Cooper (1998) 

6HSiC. Experimental electron steady state drift velocity vs. electric
field at two temperatures. Solid lines are generated using the equation V(E) = µ E /[1+ ( µ E / V_{sat} )^{a} ]^{1/a} with parameters: T = 23 K. µ = 450 cm^{2}/Vs, V_{sat}= 2.2x10^{7} cm/s, a =1.2; T = 320 K. µ = 130 cm^{2}/Vs, V_{sat}= 1.6x10^{7} cm/s, a =2.2. Khan & Cooper (2000) Contact authors: James A. Cooper. Also see High Field Transport. 

6HSiC. Experimental electron steady state drift velocity vs. electric
field at two temperatures. Solid lines are generated using the equation V(E) = µ E /[1+ ( µ E / V_{sat} )^{a} ]^{1/a} with parameters: T = 23 K. Mobility µ = 215 cm^{2}/Vs, V_{sat}= 1.9x10^{7} cm/s, a = 1.7; T = 135 K. Mobility µ = 120 cm^{2}/Vs, V_{sat}= 1.4x10^{7} cm/s, a = 2.5; T = 320 K. Mobility µ = 56 cm^{2}/Vs, V_{sat}= 1.0x10^{7} cm/s, a = 4.0. Khan & Cooper (2000) Contact authors: James A. Cooper. Also see High Field Transport. 
3CSiC. Calculated Hole steadystate drift velocity vs. electric field
applied along (100) direction (relatively low fields) T = 300 K; Impurity concentration: 1  0.1 x 10^{18}cm^{3}; 2  1.0 x 10^{18}cm^{3}; 3  7.0 x 10^{18}cm^{3}. Bellotti et al. (1999) 

3CSiC. Calculated average Hole energy vs. electric field applied
along (100) direction (relatively low fields). T = 300 K. Bellotti et al. (1999) 

3CSiC. Calculated Hole steadystate drift velocity vs. electric field
applied along (100) direction (high fields). T = 300 K; Impurity concentration: 1  0.1 x 10^{18}cm^{3}; 2  1.0 x 10^{18}cm^{3}; 3  7.0 x 10^{18}cm^{3}. Bellotti et al. (1999) 

3CSiC. Calculated average Hole energy vs. electric field applied
along (100) direction (high fields). T = 300 K. Bellotti et al. (1999) 