63

ТЕРМОЭЛЕКТРИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ИНТЕРМЕТАЛЛИДА ZnSb ПРИ ЛЕГИРОВАНИИ ЭЛЕМЕНТАМИ I ГРУППЫ

Прокофьева Л.В. 1 , Федоров М.И. 1,2 Шабалдин А.А. 1 , Константинов П.П. 1 ,

¹Физико-технический институт им. А.Ф. Иоффе, ²Университет ИТМО, Санкт Петербург, Россия

E-mail: lprokofieva496@gmail.com

После того, как был исследован механизм легирования ZnSb значительными добавками атомов меди [1], встал вопрос, к каким изменениям в свойствах приводит уменьшение содержания Cu как при ее внедрении, так и при замещении малой части атомов Zn. Ссылаясь на [1], можно полагать, что именно эти образцы интересны как термоэлектрики. Для поиска эффективных составов выбрана область легирования с концентрацией примеси N 0.05-0.15 at.%, акцепторами являются Cu, и Ag в виде как избыточной добавки, так и бинарной композиции с сурьмой. Состав и комнатные значения параметров образцов приведены в таблице.

Для начала были взяты образцы 3 и 4 с 0.1 Cu. Предстояло определить оптимальный состав добавки, Си или CuSb. Ранее было показано, что такая замена в образцах с 0.3 и 0.6 Си не изменяет концентрацию дырок Р_н, но заметно повышает их подвижность µ, в результате величина ZT в интервале 500-700 K при 0.6 CuSb оказывается не ниже 0.8, в то время как при 0.6 Си она достигает только 0.72 и лишь при 700 К. На образцах 3, 4 были измерены коэффициент Холла R_н и электропроводность о в цикле 300-700-300 К, результаты представлены на рис. 1. Видно, что кривая $R_H(T)$ для образца 4 опустилась вниз, P_H увеличилась и при всех T стала выше N_{Cu} , что указывает на участие в легировании $V_{Z_{D}}$. Изменения более сложного характера произошли в σ . При нагревании, несмотря на увеличение плотности дырок, о образца 4 вплоть до 600 К ниже, чем образца 3. Обратная ситуация имеет место только при более высоких T, а также при охлаждении до T ≈ 450 K. Дальнейшее понижение температуры рост о замедляет: увеличение рассеяния дырок на дефектах в образце 4 возвращает его о меньшие значения. Изменения претерпевает и холловская подвижность: на кривой ц(Т) состава 4 $Cu_xZn_{1-x}Sb$, x=0.001 наблюдается четко выраженный температурный гистерезис, значительно уменьшается величина особенно в интервале

пониженных Т, при нагревании появляется аномальной область Т со скачком и — всё это ранее наблюдалось в образцах ZnSb:Cu, когда содержание Си становилось больше 0.15 ат.%, и связывалось с трансформацией V_{Sb} в антиструктурные дефекты Си_{Sb} при низких Т и с обратной перестройкой дефектов при высоких Т [1]. Возникновение этих структурных процессов при введении малой концентрации CuSb, по всей видимости, инициируется ростом исходной концентрации V_{Sb} в ответ на увеличение числа $V_{Z_{D}}$ при добавлении сурьмы. Возросшее число V_{Sb} стимулирует процесс их заполнения атомами Си, сильно рассеивающими дырки. В ZnSb с большим содержанием CuSb реализуется иная ситуация. Дополнительные атомы Sb не создают в заметном количестве V_{Zn} , а занимают свободные узлы в своей подрешетке, улучшая микроструктуру легированного материала и тем самым увеличивая ц, о и ZT. В образце 4, наоборот, кристаллическая решетка становится более дефектной, поэтому и изменения свойств обратные. Интерпретация находит подтверждение в результатах второго цикла, который дополнительно включал охлаждение образцов 3 и 4 до 77 К (рис. 1, начало и конец цикла обозначены точками А и В). Обнаружено, что глубокое охлаждение увеличивает Рн. Это означает, что понижение Т перераспределяет примесные атомы по возможным локализациям в кристалле: концентрация акцепторов Cu_{Zn} уменьшается, освободившиеся узлы V_{Zn} , участвуя в легировании, повышают P_H благодаря вдвое большей акцепторной активности по сравнению с атомом Си; атомы Си, покинувшие места в подрешетке Zn, локализуются в свободных узлах подрешетки Sb.

Таблица. Состав и некоторые свойства тестируемых образцов при 300 К

Номер образца	Примесь ат. %	Холловская1 концентрация Р _н , 10 ¹⁹ см ⁻³	Коэффициент Зеебека S , мкВ·К ⁻¹	Электропровод- ность
1	Cu, 0.05	1.1	203	460
2	CuSb, 0.05	1.6	192	450
3	Cu, 0.1	1.7	158	770
4	CuSb, 0.1	2.3	137	640
5	Cu, 0.15	2.4	142	930
6	CuSb, 0.15	2.9	130	790
7	Ag, 0.05	0.75	221	325
9	Ag, 0.15	1.8	145	615
10	AgSb, 0.15	2.1	147	720

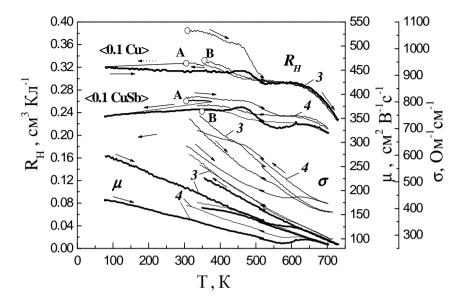


Рис. 1. Температурные зависимости кинетических коэффициентов в зависимости от состава акцепторной добавки для двух последовательных циклов, второй дополнительно включал охлаждение образца от 300 до 77 К. Тонкие линии относятся к результатам первого цикла.

Образование дефектов Cu_{Sb} в образце 3 приводит к тем изменениям в подвижности, которые обсуждались выше и хорошо видны на рис. 1. Изменения в свойствах образца 4 те же по своей сути, но в количественном отношении гораздо более значительные. Дефекты Cu_{Sb} в данном материале существуют изначально, глубокое охлаждение лишь увеличивает их число, что делает более резким скачок μ в аномальной области T и более убедительной новую особенность на кривых $R_H(T)$ при этих T — наличие минимума и связанное с ним обратное соотношение величин R_H для прямого и обратного хода температуры. Последние эффекты являются отражением достаточно высоких относительных концентраций примесных и собственных дефектов, при которых процессы перестройки $Cu_{Sb} \rightarrow V_{Sb}$ и последующей локализации атомов Cu в V_{Zn} способны заметно понижать P_H .

Итак, можно сделать следующее заключение: состав ZnSb:CuSb в отличие от ZnSb:Cu с содержанием 0.1 Cu менее эффективен из-за меньших значений α при всех T и более низкой σ в диапазоне 300-600 K.

Чтобы убедиться, что полученный результат о влиянии состава добавки на свойства отражает общую закономерность слабого легирования ZnSb медью, мы продолжили исследования на образцах ZnSb с содержанием 0.05 и 0.15 at.% Сu. На рис. 2 представлены данные по $R_{\rm H}$ и μ для образцов I и I и I и и и и I

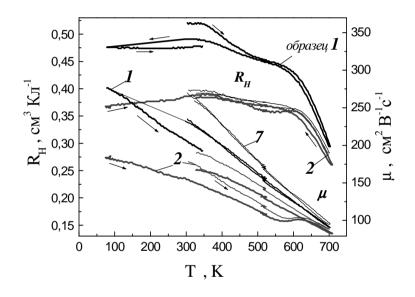


Рис. 2. Температурные зависимости R_H и μ для образцов ZnSb c 0.05 at.% Cu (1, 2). Тонкие линии относятся к первому циклу на образце 2. Кривая $\mu(T)$ с номером 7 относится к образцу с 0.05 Ag.

По термоэлектрической эффективности образец 1 уступает составу 3, прежде всего, благодаря гораздо меньшей σ из-за более низкой P_H , а главное, из-за снижения общего уровня μ относительно кривой $\mu(T)$ для образца 3 (рис. 1), которое можно объяснить присутствием дважды заряженных вакансий цинка. Согласно результатам, относительная доля их в легировании растет с понижением N примеси, причем сильнее при замене

Cu на CuSb. Добавка 0.15 at.% Cu превышает оптимальный уровень легирования, необходимый для получения максимальных величин ZT.

Теперь о главном в легировании ZnSb серебром. Ясно, что поведение Ад должно иметь свои особенности, определяемые взаимодействием примесных атомов с собственными атомами и дефектами кристалла. Набор возможных положений атомов Ад в решетке и предпочтение, которое атомы Ад будут отдавать тем или иным позициям в зависимости от концентрации и температуры, должны иметь специфику, связанную с различием атомов Ад и Си. Для подтверждения можно сравнить, например, образцы с наименьшим уровнем легирования (рис.2). Целый ряд данных отличают образец 7 от образца 1, все они говорят о том, что $V_{Z_{D}}$ при введении Ag не принимают заметного участия в легировании. Этого нельзя сказать в отношении их роли в образце 1: благодаря присутствию V_{Zn} P_H в образце 1 при 500 K в 1.4 раза превосходит N_{Cu} . Результаты сопоставления свойств Сu- и Ag-легированного ZnSb с содержанием примеси 0.15 at.% (5 и 9) тоже иллюстрируют различия в поведении Ад и Си, однако характер их другой. Как и при 0.05 at.% примеси, замена Си на Ад приводит к уменьшению начальной Рн. однако при $T \ge 600 \text{ K}$ различие исчезает, обе кривые $R_H(T)$ выходят на одно и то же плато, соответствующее концентрации примеси. Подвижность в образце с Си в этом случае выше, несмотря на большую величину Рн.

Если теперь сравнить свойства образцов с AgSb и CuSb при значении х = 0.0015 (10 и 6), то оказывается, что дополнительное присутствие Sb в образце с Ag только улучшает его свойства, увеличивая значения ц и сохраняя пренебрежимо малые гистерезис и излом на кривой μ(Т). Значимость последних эффектов заметно возрастает лишь при охлаждении до 77 К, однако немонотонность в изменении R_H в диапазоне 500-600 К, наблюдаемая в образце 6, при этом не появляется. Таким образом, изменения в поведении акцепторной добавки с серебром при вариации ее состава весьма противоречивы, однозначно лишь то, что при введении Ад область перспективных составов смещается в сторону более высокого легирования. Результаты для состава с 0.15 at.% AgSb демонстрируют возможность получить оптимум в генерации дырок и минимум в их рассеянии. Какие значения ZT реализованы в настоящее время, показывают измерения термоэлектрических свойств (рис. 3), представлены данные для двух наиболее перспективных легированных образцов 10 и 3. Эффективность их одинакова, в диапазоне 550-700 К значения ZT не ниже 1.0.

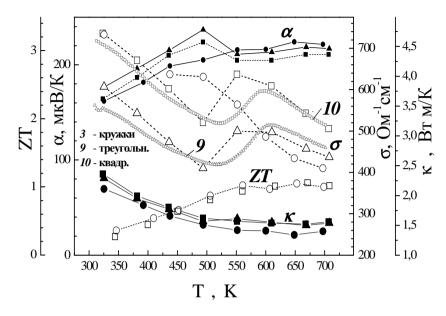


Рис. 4. Термоэлектрические свойства и эффективность лучших образцов ZnSb с примесями Cu и Ag. Сплошные кривые 9 и 10 относятся к σ тонких образцов.

Соавтор Шабалдин А.А. благодарен за финансовую поддержку проекту РФФИ 14-08-31678 мол а.

ЛИТЕРАТУРА

1. Прокофьева Л.В., Константинов П.П., Шабалдин А.А., Пшенай-Северин Д.А., Бурков А.Т., Федоров М.И., ФТП, т.48, 12, 2014, с. 1611-1620.