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Talk Outline 
 

 
 

• Carbon at the Nanoscale 
 
• Modern nanodiamond (ND) particles 
 
• ND of dynamic synthesis  
  (using explosives) 
   - size, morphology 
   - N state 
 
• Recent advances in detonation ND 
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Facts about Carbon   

 
 

• “Carbon" comes from Latin carbo, coal 
 
• Carbon is the 4-th most abundant element in the universe by 
mass (after H, He, O) 
 
• Carbon is abundant in the Sun, stars, comets, atmospheres 
of most planets and meteorites (nanodiamond) 
 
• Carbon forms more compounds than any other element 
(~ten million organic compounds described to date) 
 
• Carbon is the 2-nd most abundant element in the human 
body by mass (about 18.5%) after oxygen 
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Carbon Chemistry 

sp3 hybrids  sp2 hybrids  sp1 hybrids  

Hybridization: + 
s p sp 
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Carbon Nanotubes 

SWNT: 
 

• Diameter:  typical  1-10nm 
• Range of  diameters: 0.3-100 nm 
• The thinnest carbon nanotube is armchair (2,2) CNT with a diameter of 3 Å. ) 
• Length range  10 nm –50 um 
• The longest: 18 cm (as of 2010) 
• The shortest: cycloparaphenylene 
 

• Most cited fact of discovery of SWNT: 1991 by Iijima, 
but there are reports on earlier discoveries 

 Total number of publications on  
Nanocarbons (in ISI): 
- nanodiamonds: 2,524 papers  
- fullerenes: 12,872  
- carbon nanotubes: 46,568 
- graphene: 6,539 

http://www.google.com/imgres?imgurl=http://cdn.slashgear.com/wp-content/uploads/2011/05/carbon-nanotubes.jpg&imgrefurl=http://www.slashgear.com/bee-venom-helps-detect-explosives-16152200/&usg=__KFSbq2T_bAcf1craXvo89PhzqJ0=&h=375&w=336&sz=95&hl=en&start=1&zoom=1&itbs=1&tbnid=EzsmUJEnAYmkxM:&tbnh=122&tbnw=109&prev=/search%3Fq%3Dcarbon%2Bnanotubes%26hl%3Den%26sa%3DX%26rls%3Dcom.microsoft:en-US%26biw%3D991%26bih%3D564%26tbm%3Disch%26prmd%3Divnsb&ei=SJjlTYFLytmAB8LXidMG
http://en.wikipedia.org/wiki/File:Cycloparaphenylene.PNG
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Carbon Nanotubes 

Properties: 
- Band gap of SWNT: from zero to ~2 eV 
- electrical conductivity of SWNTcan show metallic or semiconducting behavior 
- tensile strength: ~100GPa  
(specific strength of up to 48,000 kN·m·kg−1  vs. 154 kN·m·kg−1 for steel) 
- thermal conductivity along SWNT axis ~3500 W·m−1·K−1 (~2000 for diamond)  

Cost: 
- $1500 per gram of SWNT as of 2000  
- retail prices of around $50 per gram of as-produced  
(40–60% by weight) SWNTs as of 2010  

Methods of production: 
 

- arc discharge (1991 Iijima), SWNT & MWNT 
- laser ablation, (w/catalyst), SWNT  
- chemical vapor deposition (CVD)  
  (w\catalyst), SWNT & MWNT 
   - high pressure CO conversion (HiPco), SWNT 
   - water-assisted CVD (supergrowth) 
Manufactured ~100s of tons per year  
(Bayer and Showa Denko) 

Image by CSIRO: CNT being spun into yarn  
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Fullerenes (buckyballs) 

• Smallest: C20 
• Most abundant: C60 (buckminsterfullerene) 
• endohedral fullerenes have ions inside the 
cage atoms 

Carbon onions 
 

• Outer diameter: 10nm-1 um 
• Inner diameter: 0.7-1 nm (~C60) 

• Discovered in 1985 (laser vaporization of carbon in an inert atmosphere) 
• Using arc to vaporize graphite in 1990, macroscopic quantities  
  (Kratschmer and Huffmann) 
• Arc discharge method in 1991 (Smalley group), mass production 
• Nobel Prize in chemistry for 1996 (Curl, Kroto, Smalley) 
• Have been detected in outer space (2010) 
Properties: 
- superconductivity (33K for Cs2RbC60) 
- C60 molecules compose a solid of weakly bound molecules (fullerites)  
- C60 is well soluble in many organic solvents 

http://upload.wikimedia.org/wikipedia/commons/d/d7/C60_Fullerene_solution.jpg
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Graphene 

• Produced in 2004 (scotch tape graphite exfoliation) 
• Shown in 2005 ballistic transport of charges, large quantum oscillations,  
  anomalous quantum Hall effect, etc. (“exotic” physics) 
• Nobel Prize in physics for 2010 (Geim, Novoselov) 

Structural features\properties: 
 

• “Rippling" of the flat sheet (amplitude ~1nm) 
• The thinnest and the strongest material 
• As a conductor of electricity it performs as well as silver  
• As a conductor of heat it outperforms all other known materials 
• It is almost completely transparent 
• Sheets as wide as 70cm have been fabricated  
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Graphene 

VORBECK MATERIALS 

Production: 
 

- Drawing method (mechanical exfoliation of graphite by 
cohesive tape) 
- Epitaxial CVD growth on a substrate: SiC, metals (Ir, Ni, Cu, etc) 
- Graphite oxide reduction (Boehm, 1962) 
- Growth from metal-carbon melts (Ni) 
- Cutting of open nanotubes (graphene ribbons) 
- others 
Manufactured ~tons per year (Segal M. Nature Nanotech. 4, 612–614, 2009) 
 

Polycyclic aromatic hydrocarbon (PAH): molecular cousins 

coronene ovalene pentacene 

Largest PAH:  
10 benzene rings across  

Applications: transistors, touch screens, solar panels, composite materials, etc  

Nanographene: nanoplatelets, nanoribbons, etc 

http://en.wikipedia.org/wiki/File:Coronene.svg
http://en.wikipedia.org/wiki/File:Ovalene.svg
http://upload.wikimedia.org/wikipedia/commons/f/f5/Pentacene.svg
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Image credit: NASA/JPL-Caltech  
 
 

Nanocarbon in Space 

In the interstellar medium (ISM) 
• Optical properties of ISM depend on the existence of silicate grains & diverse  
 populations of carbon-based molecules: 
- Amorphous aliphatic hydrocarbon dust  
- Polycyclic aromatic hydrocarbon  
- Carbon onions (multishell fullerenes)  
- Nanodiamonds (C–H vibrational emission bands from ND) 

In meteorites 
- Nanodiamonds found in meteorites (Lewis, 1987) 
- Up to 1400ppm of ND in primitive chondritic meteorites (T.Daulton, 2006) 
- They are pre-solar grains (based on isotopic anomaly analysis) (Lewis, 1987) 
- Isotopically anomalous Xe and Te in NDs are associated with supernovae 
- Meteoritic ND are possibly formed by low pressure C condensation similar to the CVD 
- Astrophysical nanodiamonds are ~2.6 nm or less 
- Diamondoids (H-terminated surface) or bucky diamonds? 

Image credit: T.Daulton, NRL 

Meteorite ND: 
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Nanocrystalline Diamond Particles  
Range of primary particle sizes: 10-100 nm 

     Monocrystalline: 
- Natural (grinding) 
-Synthetic HPHT (grinding) 
- Microwave plasma torch 
 
       Polycrystalline (Poly-ND): 
-Shock wave compression of graphite (DuPont process) 
-Detonation synthesis using carbon precursors/explosives 
(10-15nm grains) 

20nm 

Ultrananocrystalline Diamond Particles  
Range of primary particle sizes: 1-10 nm 

-Detonation synthesis 
  (carbon containing explosives)  
- vapor grown 
- chlorination of carbide 
- ion irradiation of graphite 
- laser irradiation of carbon 
- HPHT (2009) 

Adamantane 
Molecule C10H16 

 

Lower diamondoids 

  

Highest diamondoids  
Hydrogenated molecules 1-2 nm  
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Commercial Nanodiamond (ND) particles 
(crystal size less than 100nm) 

ND of Static Synthesis 
(High pressure high temperature) 
Grinding of microsized diamond 

ND of Dynamic Synthesis 
(Using explosives) 

Graphite 
precursor 

  Graphite 
+ explosive 
   precursor 

Explosives 
precursor 

Polycrystalline ND 

Detonation ND 
(Ultradispersed 
diamond (UDD), 
Cluster diamond) 

5nm 

Smallest:  
10-20nm  

Smallest: 30-50nm 
individual particles 

10-20nm 

HC Chang et al (2009) 

Type I diamond (Ia,Ib) 
1-3000 ppm of Ns 

PL (after irradiation) 

N-V-N N-V 

natural 
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Metal Container 

Explosive 

Graphite 
+metal powder 30-90% RDX + 

(graphite, soot) 
TNT + RDX 
with negative 

oxygen balance 
Explosive 
Chamber 

5nm ~10-500nm 10-20nm 
~0.1-10µm ~0.1-60µm 

10-20nm 

Nanodiamond of Dynamic Synthesis 

http://upload.wikimedia.org/wikipedia/commons/c/c4/Trinitrotoluene.svg
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 Factors influencing nitrogen content and state  

C14H6N6O12  C7H5N3O6  C3H6N6O6  

Samples of ND produced 
from the precursors: 

1. graphite (DuPont) 
2. graphite\RDX 
3. TNT\RDX wet cooling 
4. TNT\RDX dry cooling 
5. TNT\HNS wet cooling 

Shenderova et al., 
J.Phys.Chem.C, 2011 
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Nanodiamond produced by a shock wave 
conversion of graphite 

MypolexTM 

SAXS 
size 

XRD 
size 

• Crystal size from  XRD:  
   8nm (44o, Diam), 2.4nm(42.5o,Lonsd.) 
 

 
Fraction 25nm (DLS) 
• N<0.5wt% (from CHN analysis) 
• Presence of graphite  
• Presence of lonsdaleite  

0

0.5

1

1.5

2

0 20 40 60
Diameter, nm

Vo
lu

m
e 

fra
ct

io
n,

 a
.u

.
SAXS 

coherently 
scattering 
domains  

electron 
density 
contrast 

6nm 

22nm 

XRD 



17 

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60
Diameter, nm

Vo
lu

m
e 

fra
ct

io
n,

 a
.u

.

10 20 30 40 50 60 70 80 90

In
te

ns
ity

 

Graphite
DiamondLonsdaleite? A

 
 

 

  

Nanodiamond from graphite\hexogen 

• Crystal size from  XRD: 14.8nm (<111>), 9.6nm(<110>) 
 

• Crystal size from SAXS: 35nm 

XRD 
SAXS 

50nm fraction (DLS) 
• N <0.5wt% (from CHN analysis) 
 

35 nm 
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Detonation Nanodiamonds Synthesis 

trinitrotoluene (TNT)  

Explosion chambers: 
 
- Capacity  1-20 m3  
- Explosives 0.5-10 kg  
 

max capacity (experimental):  
300m3, 140kg (water coating) 

Nanodiamond 
Purification 
From Soot  

C6H2(NO2)3CH3  

 

 

 cyclotrimethylene- 
  trinitramine  

 (hexogen or RDX) 
 

C3H6N6O6 

 

Yield: 
• 5-10wt% of soot 
• 35-70% DND in soot 
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Explosive 
charge 

CNOH → 
N2+H2O+CO+CO2+C 

  

shock wave front 

chemical 
reaction 
zone 

Chapman- Jouguet 
plane (C- J)  
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Detonation Nanodiamond Formation 
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Detonation Nanodiamond 

3nm 

Courtesy of B.Palosz, IHPP 

D~6nm • Crystal size from  XRD: 4 nm 

• Crystal size from SAXS: 6 nm 

• N ~2.4 wt% (CHN analysis) – from TNT\RDX (21at% of N in 50\50) 

SAXS 

• N <1 wt% (CHN analysis) – from TNT\HNS (hexanitrostilbene) (15at% of N) 

TNT/RDX 
TNT/HNS 
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Pulse EPR studies of Ns in Nanodiamond 
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B0, T

II

Graphite/RDX powder 

ND in water 

• W-band mode (93.99 GHz) at room T 
   and T=200K 
• Pulse: ~00 – T -  2π/3 – τ - 2π/3,  
  (4-3000-96-300-96 ns)  

Centers T2 T1 concentration 

N0 590 ns 8.0 μs 6*1016  spin/g 
 (1.2 ppm);  
~1-4No /particle 

Surface 
centers 

190 ns 50 μs 7*1020 spin/g 
 (14000 ppm) 

• X-band mode (9.6 GHz) at room T 
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Raman & PL  Spectra of Nanodiamonds 

Sample  
Crystal  

Size, SAXS  
(nm) 

Diamond  
Peak pos. 

(cm-1) 

Graphite/R
DX 35 1332.5 

TNT/RDX 6 1328.5 

TNT/HNS 6 1328.5 
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Raman spectra 
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Nitrogen state in Detonation Nanodiamond: 
“small” particles 

S. Turner, et al. Adv. Funct. Mater. 2009, 19, 2116–2124 
 

Eliminated contribution of N  
from surface groups: 

 

• N is in sp3 coordinated surrounding 
• ~3at% of N in 50% of 6nm particles 
• N is in central part of particles 

spatially resolved EELS  

N-R 
Sp2 C 

Annealing 
in vacuum 

O-R 

oxidation 
of sp2 C 

TNT/RDX 
60/40 
Wet 

synthesis 

core 

core 

core 

shell 

shell 
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Nitrogen state in “large” particles of DND 
Spatially resolved EELS  

• preferred location at 
grain boundaries   

I.Vlasov et al.,  
Small, 2010  

• non-uniform 
distribution of N 

A 

B 

A 

B 

C 

D 

E 

Σ 

TNT/RDX 
60/40 
Wet 

synthesis 
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Nitrogen-Vacancy Centers in Detonation ND 

I. Vlasov, et al., Small, 2010 

DND dispersed over Si 

irradiated by 2 MeV electrons 
5x1018 cm-2 & annealed  

• edge filter with wavelength >630 nm  

Intense and stable emission from NV centers 
of large DND crystallites (>20-30 nm)  
 

TNT/RDX 
60/40 
Wet 

synthesis 
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AFM Fluorescence 

Nitrogen-Vacancy Centers in ND from 
graphite\RDX 

F.Zelezko 
University of Stuttgart, Germany 

25nm 
Luminescent <50% of particles 

Fraction 35nm (DLS) 

Other work: 
Bradac et.al., Nature, 2010 
1% of 5nm DND have NV;  
blinking (25%) 
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Nitrogen-Vacancy Centers in ND from 
graphite\RDX 

F.Zelezko 
University of Stuttgart, Germany 

 
• ~3 NV centers in a particle 
• stable (no blinking) emission from NV centers  
• Luminescence lifetime ~10ns 

Decay of Hahn echo  
(Magnetic resonance 

measurements on single NV)  

• In ND produced from graphite (Mypolex) NV were also observed 
• For ND from TNT\RDX NV centers were observed in ND of wet 
  synthesis but not in ND of dry synthesis 
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Conclusionson N in ND: 

• By varying carbon source material in production of ND of 
dynamic synthesis, it is possible to control N content and state 

 

• as-produced ND from graphite\hexogen contain NV centers in 
a noticeable fraction of particles (no irradiation needed!)  
 

• T2 (spin-spin relaxation time) of NV centers is about 2µs, 
large enough to be useful for applications 

ND N total Ns (EPR) NV 
graphite\RDX <0.5 wt% ~1.2ppm  in <50% particles of 

~30nm 
Detonation 1÷2.5 wt% weak - absent in some 

types of DND  

• Up to 1%! of nitrogen-vacancy defects can form in DND after sintering  
at T= 800 °C and p=6 GPa (P.Baranov, et al. Small (2011) DOI: 
10.1002/smll.201001887 ) 
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Agglomerates 200-300 nm Stable single 4-20 nm particles

Incombustibles 0.5 – 5% 
Non-diamond carbon >5%

Particle size 
and colloid 

stability

Purity Incombustibles <0.1% 
Non-diamond carbon <0.5%

Control of Surface 
Chemistry

Bright Fluorescence

Conventional DND  Modern DND 

Trends in Detonation Nanodiamond 
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Result of Fractionation & Deagglomeration of DND 

1% ND  

Size distribution by Volume 

1 1000 10000 

Vo
lu

m
e 

(%
) 

4.8 nm  

Diameter (nm) 
10 100 

Undersize (%
) 

Raman spectra (excitation 442nm) 

Raman shift, cm-1 

1326  
• Can be dried and re-suspended in DI water  
  with similar size 
• Well purified from sp2 carbon phase 
• Carboxylic groups prevail  
  (zeta potential in DI water is -45mV) 
• Size cutoff less than 30nm 
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Detonation Nanodiamond Model 
(theory and experiment) 

(image by V.Mochalin, O.Shenderova) 

(image by S.Turner) 
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• Motor oil additives 
• Solid lubricants 

• Structural polymer nanocomposites 

• Metal nanocomposite coatings 

• Paints, coatings 

- Transparent armor 

- Hexavalent Cr replacement with Ni-ND 
- x8 times improvement in wear 

- UV protection, EMI shielding 
- Wear resistant paints 
-Improved thermal properties 
- Improved adhesion 
 

- Fuel efficiency 
- Lubricant for airspace appl. 

Detonation Nanodiamond & Onion-like Carbon: 
Applications in Composites 

• Photonic structures 
• ND-CNT functional coatings 
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Changing angle of view 

V.Grichko et al., Nanotechnology 
19, 22, 225201  (2008)  

Nanodiamond photonic structures       
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1µm 

SEM  

Nanodiamond photonic structures       

Unusual features: 
Irregular shapes 

Applications: chem- and biodetectors 

  Important:  
- Nanoparticles of similar sizes 
- Deionization of the suspension  
  (high surface charge on nanoparticles) 
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Conclusions/Future Outlook 

• Based on unique electronic structure of C, new carbon 
allotropes can be discovered  
• Carbon nanotubes and graphene are produced at a 
large scale and find broad applications, while fullerenes 
and nanodiamond particles are not 
 
 

 Further studies of ND synthesis is required 
 Doping of DND with other elements during synthesis 
is a perspective direction      
 Reduction of DND cost is needed 
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