# **Rutherford backscattering spectrometry**

RBS Middle Energy Ion Scattering (MEIS)

H<sup>+</sup>, He<sup>+</sup>... 1 – 5 MeV, H<sup>+</sup>, He<sup>+</sup>... 50 – 300 keV traditionally He<sup>+</sup> 2 MeV Film (layer) thickness 10 – 5000 nm 1 – 500 nm Depth resolution (for near-surface layer) ~ 10 nm ~ 0.5 nm

# The information about the sample under investigation, provided by Rutherford Backscattering Spectrometry

### Geometry

- 1. Layer (film) thickness;
- Thickness heterogeneity;
- 3. Substrate coverage rate;
- Interface (interdiffusion, dislocations).

### Element composition

- Multi-element film stoichiometry and its depth dependence.
- Depth dependence of impurity atomic density.

### Crystalline structure. Types and concentration of defects

- Differential diagnostics of point and continuous defects;
- Depth dependence of point defects concentration;
- Block disorientation angle in textured films;
- Impurity atoms position in crystalline lattice.

#### The basic moments of RBS-MEIS

1. Kinematical factor

2. Scattering cross section





The  $\theta$ -angle scattering probability for ions moving through  $\tau = n^*t$  [at./cm<sup>2</sup>] thickness layer is  $Y = \sigma(\theta) \cdot \Omega \cdot \tau$ ,  $\Omega$  being the detector spatial angle.

3. Stopping cross section & [eV/(at./cm<sup>2</sup>)], stopping power S [eV/cm]

Scattered ion output energy after passing the layer having the thickness  $\tau$  [at./cm<sup>2</sup>]

$$E_2 = (E_0 - \overline{\varepsilon}_{in} \cdot \tau) \cdot K - \overline{\varepsilon}_{out} \cdot \frac{\tau}{|Cos\theta|}$$

If the atomic density *n* is known, then  $t = \tau/n$ ,  $S = \varepsilon_n$ 





Inserting 
$$Z_{Ba} = 56$$
 and  $Z_{Sr} = 38$ , we find  $x \approx 0.3$ .



# Fast ion channeling in single crystals





$$\chi_{\min} = \frac{Y_C}{Y_R}$$

Y<sub>R</sub> – backscattering yield for non-oriented ("random") regime.

 $Y_V$  and  $Y_C$  – yield in aligned or channeling regime in the absence and presence of point defects, respectively.

Under the assumption that  $n_D \ll n \rightarrow Y_C(t)/Y_R(t) \cong Y_V(t)/Y_R(t) + \sigma_D n_D \cdot t$ , where  $n_D$  — defect concentration, n — crystal atoms atomic density.











Intesity, arb. units







Fragments (In peaks) of Si/InAs/Si system for three different Si coverage thicknesses.





PIXE spectrum of NdBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> with presence of Al impurity. Angular scans for back scattered ions (BS) and 3 X ray emission lines.







