P5.29 Fullerenes

Absorption characteristics of fullerene C_{60} in N-methyl-2-pirrolidone/toluene mixture

<u>Kyrey T.O.</u>*^{1,2}, Kyzyma O.A.^{1,2}, Avdeev M.V.¹, Korobov M.V.³, Aksenov V.L.^{1,4}, Bulavin L.A.²

¹Joint Institute for Nuclear Research, Dubna, Moscow reg., Russia ²Taras Shevchenko Kyiv National University, Kyiv, Ukraine ³Lomonosov Moscow State University, Moscow, Russia ⁴Russian Research Center "Kurchatov Institute", Moscow, Russia *e-mail: tanya.kyrey@gmail.com

Solutions of fullerene C₆₀ in nitrogen-containing solvents and mixtures are characterized by the evolution of their UV-Vis, IR and Raman spectra in time. They also exhibit sharp solvatochromic effects under slight variations of fullerene concentration or solvent mixture content. Two main processes, namely the formation of C₆₀ clusters and change in the solute-solvent interaction, contribute to these phenomena [1,2]. To clarify the role of the second factor, UV-Vis spectra of fullerene C₆₀ in various mixtures of polar N-methyl-2pyrrolidone (NMP), $\varepsilon = 32$, and non-polar toluene, $\varepsilon = 2.4$, are analyzed in this work. Previously, temporal solvatochromism was studied for C₆₀/NMP [3]. Also, changes in UV-Vis spectra with an increase in the absorbance at 450-550 nm took place on addition of polar solvent (water, $\varepsilon = 81$, miscible with NMP) to the system [4, 5]. Here, the solvatochromic effect accompanied with a hypsochromic shift of the absorption peak at 330 nm towards higher energy is observed after dissolution of C₆₀/NMP system with toluene. The detailed comparison of the absorption characteristics of C₆₀ in two kinds of mixtures (NMP/toluene and NMP/water) prepared in different ways is presented.

- [1] Avdeev M.V., Tropin T.V., Aksenov V.L., Rus. J. Phys. Chem. A. 84(8), 1273 (2010).
- [2] Kyzyma O.A., Korobov M.V., Avdeev M.V., Garamus V.M., Snegir S.V., Petrenko V.I., Aksenov V.L., Bulavin L.A., *Chem. Phys. Lett.* **493**, 103 (2010).
- [3] Kyzyma O.A., Korobov M.V., Avdeev M.V., Garamus V.M., Petrenko V.I., Aksenov V.L., Bulavin L.A., Fullerenes, *Nanotubes and Carbon Nanostructures* 18, P. 458 (2010).
- [4] Scharff P., Risch K., Carta-Aberlmann L., Carbon **42**(5), 1203 (2004).
- [5] Kyzyma O.A., Bulavin L.A., Aksenov V.L., Avdeev M.V., Tropin T.V., Korobov M.V., Snegir S.V., Rosta L., Materials structure, V. 15 (1), P. 17, (2008)